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A B S T R A C T

Stiffness matrices of beams with stochastic distributed parameters modelled by random fields are considered.
In stochastic finite element analysis, deterministic shape functions are traditionally employed to derive stiffness
matrices using the variational principle. Such matrices are not exact because the deterministic shape functions
are not derived from the exact solution of the governing stochastic partial differential equation with the
relevant boundary conditions. This paper proposes an analytical method based on Castigliano’s approach for
a beam element with general spatially varying parameters. This gives the exact and a simple closed-form
expression of the stiffness matrix in terms of certain integrals of the spatially varying function. The expressions
are valid for any integrable random fields. It is shown that the exact element stiffness matrix of a stochastically
parametered beam can be expressed by three basic random variables. Analytical expressions of the random
variables and their associated coefficient matrices are derived for two cases: when the bending rigidity is a
random field and when the bending flexibility is a random field. It is theoretically proved that the conventional
stochastic element stiffness matrix is a first-order perturbation approximation to the exact expression. A
sampling method to obtain the basic random variables using the Karhunen–Loève expansion is proposed.
Results from the exact stiffness matrices are compared with the approximate conventional stiffness matrix.
Gaussian and uniform random fields with different correlation lengths are used to illustrate the numerical
results. The exact closed-form analytical expression of the element stiffness matrix derived here can be used
for benchmarking future numerical methods.
. Introduction

In the context of continuum modelling of complex engineering sys-
ems, probabilistic uncertainties can be modelled as random variables
r random fields [1]. When random field models are used to represent
patially varying uncertain quantities, the Stochastic Finite Element
ethod (SFEM) [2–4] is the systematic approach available for such

roblems. The implementation of the stochastic finite element method
as two major steps, namely, (a) the incorporation of the random fields
ithin the scope of the finite element modelling to derive the stochastic
overning equations and the boundary conditions, and (b) to solve
he stochastic equations using uncertainty propagation approaches.
he second step has received significant attention as this is often the
omputationally expensive part. Several reduced-order computationally
fficient methods, such as first- and second-order perturbation methods
5,6], Neumann expansion method [7,8], polynomial chaos method [2]
nd spectral function method [9], have been developed. The first step,
lthough not always the computationally most expensive step, governs
he accuracy of the overall results. This paper is about this first step
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in a stochastic finite element analysis, which generally received less
attention than the second step.

In the context of structural mechanics, the derivation of the stiffness
matrix is the first and essential step to implement the finite element
method [10,11]. For this reason, it is of paramount importance to have
an exact, accurate, representative, and, if possible, a simple expression
of the stiffness matrix. This is in general possible for the deterministic
case with regular geometric elements such as various types of beams,
plates and shells. However, when such methods are attempted for
structural systems with random field properties, two major issues arise:
(1) the discretisation of the random field inside the problem domain
and (2) integrating the discretised random fields within the underlying
deterministic finite element framework. The first issue can become
challenging if the domain is not convex [12–16] and the random field is
non-Gaussian. The second issue is often overlooked because, normally,
the underlying deterministic finite element shape functions are used
to include discretised random properties within an integration scheme
over the element. This may not result in significant inaccuracies if
the element size is sufficiently small. However, for mechanically exact
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larger elements, this fact may not be true. In this paper, this aspect of
stochastic modelling is investigated using Euler–Bernoulli beams as an
example.

Mechanics of beams with stochastic field parameters is a classical
topic. In one of the earliest works, Vanmarcke and Grigoriu [17]
discussed stochastic finite element analysis of beams. Deodatis [18] and
Deodatis and Shinozuka [19] considered static finite element analysis
of Euler–Bernoulli beams with random field properties. They have also
proposed a formulation based on stochastic shape functions. Chang and
Chang [20] considered stochastic dynamic finite element analysis of
a beam on a random foundation. Elishakoff et al. [21,22] proposed
exact solutions for bending problems of a beam with spatially stochastic
properties. Ren et al. [23] considered variational principle based finite
element method for stochastic beams. The book by Elishakoff and Ren
[24] present a comprehensive account of finite element for stochastic
mechanics problems when the underlying variability is large. For dy-
namic problems, several authors have proposed spectral formulations
in the frequency domain for beams with random field properties [25–
27]. In [28], a doubly spectral stochastic finite element method was
developed for Euler–Bernoulli beams based on the dynamic shape func-
tions of the underlying deterministic problem. More recently, Larsen
et al. [29] developed a static shape function based stochastic finite ele-
ment method for Euler–Bernoulli and Timoshenko beams for buckling
analysis. From this brief review of literature, it is clear that an exact
stiffness matrix of a beam with parameters modelled as random fields is
not available in literature in closed-form. Direct numerical simulation
is possible to obtain the exact stiffness matrix within a Monte Carlo
simulation framework. However, such approaches lose the elegance
and simplicity of closed-form stiffness matrix expressions available for
deterministic beams.

Motivated by such needs, this paper aims to develop Euler–Bernoulli
beams’ exact element stiffness matrix with spatially randomly varying
parameters. Unlike the conventional variational formulation used in
the stochastic finite element formulation, a direct force–displacement
approach based on Castigliano’s method has been developed. As a con-
sequence, the use of the finite element shape functions is not necessary.
The board aims of the proposed formulation are:

• to develop the exact and simple closed-form expression of the
element stiffness matrix of Euler–Bernoulli beams with general
spatially varying parameters

• to consider random fields describing both the bending rigidity and
flexibility in a unified manner

• to have the ability to include Gaussian and non-Gaussian random
fields within the same analytical framework

• to keep the number of random variables at the minimum to
reduce further numerical works (such as the structural reliability
analysis)

It will be shown that only three random variables are necessary to
include the effect of random fields exactly in the stiffness matrix,
irrespective of the nature of the random fields.

The outline of the paper is as follows. Overview of the conventional
stochastic stiffness matrix for Euler–Bernoulli beams derived using the
cubic shape functions is given in Section 2. In Section 3, Castigliano’s
approach for a beam element with general spatially varying parameters
is developed. This gives the exact closed-form expression of the stiffness
matrix in terms of certain integrals of the spatially varying function. In
Section 4, the special case when the bending flexibility is a random
field is considered. It is proved that the exact stiffness matrix can be
expressed by three basic random variables, which are linear functions
of the underlying random field. The case, case when the bending
rigidity is a random field is discussed in Section 5. It is proved that
the exact stiffness matrix can be expressed by three basic random vari-
ables, which are nonlinear functions of the underlying random field.
In Section 6, the theoretical developments are numerically illustrated.
The statistical properties of the basic random variables, elements of the
2

stiffness matrix and the response of a cantilever are illustrated. In the
Appendix, a sampling method to obtain the basic random variables

using the Karhunen-Loève expansion is proposed. This is achieved
through an explicit closed-form expression of the covariance matrix
derived by evaluating the underlying integrals analytically. Finally,
some key conclusions are drawn in Section 7.

2. Overview of the conventional stochastic stiffness matrix

In this section we briefly review the conventional approach to
obtain the stiffness matrix of a beam with random field properties. The
equation governing the deformation of an Euler–Bernoulli beam [30]
of length 𝐿 with random bending rigidity can be expressed as

𝜕2

𝜕𝑥2

[

𝐸𝐼(𝑥, 𝜃)
𝜕2𝑌 (𝑥)
𝜕𝑥2

]

= 𝑝(𝑥) (1)

In this equation 𝑌 (𝑥) is the transverse bending displacement, 𝐸𝐼(𝑥, 𝜃)
is the bending rigidity, 𝑥 is the length along the beam and 𝑝(𝑥) is the
applied distributed forcing. Here 𝜃 denotes an element of the (random)
sample space 𝛺 so that 𝜃 ∈ 𝛺. It is assumed that the bending rigidity
is a random field of the form

𝐸𝐼(𝑥, 𝜃) = 𝐸𝐼0
(

1 + 𝜖1𝐹1(𝑥, 𝜃)
)

, 𝑥 ∈ [0, 𝐿], 𝜃 ∈ 𝛺 (2)

In Fig. 1, a beam with a random bending rigidity is shown. In an
alternative way, the flexibility function can also be modelled as a
random field. In that case one has

1
𝐸𝐼(𝑥, 𝜃)

= 1
𝐸𝐼0

(

1 − 𝜖2𝐹2(𝑥, 𝜃)
)

, 𝑥 ∈ [0, 𝐿], 𝜃 ∈ 𝛺 (3)

The subscript 0 indicates the mean values, 0 < 𝜖𝑖 ≪ 1 (𝑖 = 1,2)
re deterministic constants (also known as the strength parameters)
nd the random fields 𝐹𝑖(𝑥, 𝜃) are taken to have zero mean, unit
tandard deviation and covariance 𝑅𝑖(𝑥1−𝑥2) (with a stationary random

field assumption). Since, 𝐸𝐼(𝑥, 𝜃) and 1∕𝐸𝐼(𝑥, 𝜃) are strictly positive
functions ∀𝑥, 𝜃, 𝐹𝑖(𝑥, 𝜃) (𝑖 = 1,2) are required to satisfy the conditions

𝑃
[

1 + 𝜖𝑖𝐹𝑖(𝑥, 𝜃) ≤ 0
]

= 0 (4)

This requirement, strictly speaking, rules out the use of Gaussian mod-
els for these random fields. However, for small 𝜖𝑖, it is expected that
Gaussian models still can be used if the primary interest of the analysis
is to estimate the first few response moments and not the response
behaviour near tails of the probability distributions. The analytical
formulation to be developed in this paper is not dependent on the
Gaussian or stationary assumptions of the random fields. However,
these assumptions often simplify subsequent numerical calculations and
interpretation of the results.

The beam element in Fig. 1 has two nodes and four degrees of free-
dom when only the bending deformation is considered. The displace-
ment field within the element is expressed by cubic shape functions
[30,31] for the classical finite element analysis and they are given by

𝐍(𝑥) = 𝚪 𝐬(𝑥) (5)

here the constant matrix and the vector function are

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 −3
𝐿2

2
𝐿3

0 1 −2
𝐿

1
𝐿2

0 0 3
𝐿2

−2
𝐿3

0 0 −1
𝐿

1
𝐿2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

and 𝐬(𝑥) =
[

1, 𝑥, 𝑥2, 𝑥3
]𝑇 (6)

Note that these cubic shape functions arise from the exact solution of
the governing differential equation of the deterministic system under-
pinning Eq. (1) with relevant boundary conditions. Employing these
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Fig. 1. Depiction of an Euler–Bernoulli beam with bending rigidity modelled as a random field, 𝐸𝐼(𝑥, 𝜃). The beam element has four degrees of freedom, corresponding to transverse
eformation and rotation at the two ends.
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hape functions in conjunction with the conventional variational for-
ulation [30,31], the stiffness matrix of the general beam element can

e obtained as

̂(𝜃) = ∫

𝐿

0
𝐍′′(𝑥)𝐸𝐼(𝑥, 𝜃)𝐍′′𝑇

(𝑥) 𝑑𝑥

= ∫

𝐿

0
𝐸𝐼0

(

1 + 𝜖1𝐹1(𝑥, 𝜃)
)

𝐍′′(𝑥)𝐍′′𝑇
(𝑥) 𝑑𝑥

(7)

In the above (∙)′′ stands for double derivative with respect to 𝑥. Sepa-
rating the integral, one obtains

�̂�(𝜃) = �̂�0 + 𝜟�̂�(𝜃) (8)

where the deterministic part is given by

�̂�0 = 𝐸𝐼0 ∫

𝐿

0
𝐍′′(𝑥)𝐍′′𝑇

(𝑥) 𝑑𝑥 = 𝐸𝐼0𝜞
[

∫

𝐿

0
𝐬′′(𝑥)𝐬′′

𝑇
(𝑥) 𝑑𝑥

]

𝜞 𝑇 (9)

The integrand matrix in the above equation is given by

𝐒 = 𝐬′′(𝑥)𝐬′′
𝑇
(𝑥) = 4

⎡

⎢

⎢

⎢

⎢

⎣

0 0 0 0
0 0 0 0
0 0 1 3𝑥
0 0 3𝑥 9𝑥2

⎤

⎥

⎥

⎥

⎥

⎦

(10)

Evaluating the integral in Eq. (9) and simplifying, the deterministic part
of the stiffness matrix is obtained as

�̂�0 =
𝐸𝐼0
𝐿3

⎡

⎢

⎢

⎢

⎢

⎣

12 6𝐿 −12 6𝐿
6𝐿 4𝐿2 −6𝐿 2𝐿2

−12 −6𝐿 12 −6𝐿2

6𝐿 2𝐿2 −6𝐿 4𝐿2

⎤

⎥

⎥

⎥

⎥

⎦

(11)

his is the conventional stiffness matrix of an Euler–Bernoulli beam
30–32].

The random part in Eq. (8) is given by

�̂�(𝜃) = 𝜖1𝐸𝐼0 ∫

𝐿

0
𝐹1(𝑥, 𝜃)𝐍′′(𝑥)𝐍′′𝑇

(𝑥) 𝑑𝑥

= 𝜖1𝐸𝐼0𝜞
[

∫

𝐿

0
𝐹1(𝑥, 𝜃)𝐬′′(𝑥)𝐬

′′𝑇
(𝑥) 𝑑𝑥

]

𝜞 𝑇

= 4𝜖1𝐸𝐼0𝜞

⎡

⎢

⎢

⎢

⎢

⎣

0 0 0 0
0 0 0 0
0 0 𝑧1(𝜃) 3𝑧2(𝜃)
0 0 3𝑧2(𝜃) 9𝑧3(𝜃)

⎤

⎥

⎥

⎥

⎥

⎦

𝜞 𝑇

(12)

The random variables 𝑧𝑖(𝜃) are defined as

𝑧𝑖(𝜃) = ∫

𝐿

0
𝑥(𝑖−1)𝐹1(𝑥, 𝜃)𝑑𝑥, 𝑖 = 1, 2, 3 (13)

These random variables appear as power integrals of the random field
(equivalent to moments over the spatial domain). They were termed as
‘weighted integral’ in [33,34] and was introduced for stochastic static
finite element analysis of Euler–Bernoulli beams by Deodatis [18] and
Deodatis and Shinozuka [19]. Later Manohar and Adhikari [35] ex-
tended this approach for dynamic problems when the weighted integral
appear in terms of integrals over transcendental functions. The random
variables 𝑧𝑖(𝜃) are correlated random variables as they are derived from
the same random field. In this paper, the random variables 𝑧𝑖(𝜃), and
other similar random variables to be introduced later, are called basic
random variables. These are a fundamental minimum number of random
3

variables necessary to represent the total randomness of the system
modelled using random fields.

The random fields appearing in the definition of the weighted
integral in Eq. (22) are general as long as the physical condition in
Eq. (4) is satisfied. In the special case, if the random field is assumed
to be stationary (homogeneous), continuous and Gaussian, then the
random variables 𝑧𝑖(𝜃) in Eq. (13) will also be Gaussian. For such
cases, the random field can be discretised into random variables using
the Karhunen-Loève (KL) expansion [36–40]. The discretised variables
can, in turn, be used to obtain statistical moments and consequently
probability density functions of the random valuable 𝑧𝑖(𝜃). For a certain
orm of the autocorrelation function, such as the exponential func-
ion, the Karhunen-Loève expansion can be obtained in closed-form
2,41]. Using such expansions, the random valuable 𝑧𝑖(𝜃) are explicitly
btained in Appendix.

The expression of the random part of the stiffness matrix can be
ewritten such that it is a linear combination of the basic random
ariables 𝑧𝑖(𝜃). From Eq. (12) one has

�̂�(𝜃) = 4𝜖1𝐸𝐼0𝜞

⎛

⎜

⎜

⎜

⎜

⎝

𝑧1(𝜃)

⎡

⎢

⎢

⎢

⎢

⎣

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎦

+ 𝑧2(𝜃)

⎡

⎢

⎢

⎢

⎢

⎣

0 0 0 0
0 0 0 0
0 0 0 3
0 0 3 0

⎤

⎥

⎥

⎥

⎥

⎦

+𝑧3(𝜃)

⎡

⎢

⎢

⎢

⎢

⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 9

⎤

⎥

⎥

⎥

⎥

⎦

⎞

⎟

⎟

⎟

⎟

⎠

𝜞 𝑇

= 4𝜖1𝐸𝐼0
(

𝑧1(𝜃)
1
𝐿4

�̂�1 + 𝑧2(𝜃)
3
𝐿5

�̂�2 + 𝑧3(𝜃)
9
𝐿6

�̂�3

)

(14)

The constant matrices �̂�𝑖, 𝑖 = 1, 2, 3 are obtained as

̂1 =

⎡

⎢

⎢

⎢

⎢

⎣

9 6𝐿 −9 3𝐿
6𝐿 4𝐿2 −6𝐿 2𝐿2

−9 −6𝐿 9 −3𝐿
3𝐿 2𝐿2 −3𝐿 𝐿2

⎤

⎥

⎥

⎥

⎥

⎦

, �̂�2 =

⎡

⎢

⎢

⎢

⎢

⎣

−12 −7𝐿 12 −5𝐿
−7𝐿 −4𝐿2 7𝐿 −3𝐿2

12 7𝐿 −12 5𝐿
−5𝐿 −3𝐿2 5𝐿 −2𝐿2

⎤

⎥

⎥

⎥

⎥

⎦

(15)

nd

̂3 =

⎡

⎢

⎢

⎢

⎢

⎣

4 2𝐿 −4 2𝐿
2𝐿 𝐿2 −2𝐿 𝐿2

−4 −2𝐿 4 −2𝐿
2𝐿 𝐿2 −2𝐿 𝐿2

⎤

⎥

⎥

⎥

⎥

⎦

(16)

imilar expressions were obtained by Deodatis [18]. Some of the key
bservations of practical interests from this formulation are:

• The random and the deterministic parts of the stiffness matrix are
linearly separated.

• The random part of the stiffness matrix is a linear superpo-
sition of three correlated random variables only. This is irre-
spective of the nature of the underlying random field (homoge-
neous/inhomogeneous or Gaussian/non-Gaussian).

• If the random field is Gaussian, the three random variables ap-
pearing in the expression of the stiffness matrix will also be

Gaussian.
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Fig. 2. Schematic diagram of a general two-noded beam member with a variable cross-section. The quantities 𝑉1 and 𝑀1 are the shear force and bending moment, respectively
at node 1. The quantities 𝑉2, and 𝑀2 are the shear force and bending moment, respectively at node 2.
C
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Although the random part of the stiffness matrix is obtained ana-
lytically in closed-form, it is not exact. This is because the shape
functions used to derive them is not obtained from the exact solution
of the stochastic ordinary differential equation Eq. (1). An alternative
approach is proposed to derive the exact stiffness matrix in the next
section.

3. The Castigliano’s approach for a beam element with general
spatial variabilities

This section proposes the procedure to obtain the closed-form ex-
pression of a beam’s stiffness matrix with variable cross-section. Cas-
tigliano’s method is utilised to derive the exact stiffness matrix in
[42,43]. To explain the essential equations of Castigliano’s approach,
the generalised force and displacements are shown in Fig. 2. To obtain
the stiffness matrix, a flexibility-based approach is considered. The
matrix form of the force–displacement relation for a general beam can
be expressed as

𝐟 = 𝐊𝐮 (17)

Here 𝐟 and 𝐮 are the generalised force and displacement vectors of the
following form

𝐟 = {𝑉1,𝑀1, 𝑉2,𝑀2}𝑇 (18)

and 𝐮 = {𝑤1, 𝜓1, 𝑤2, 𝜓2}𝑇 (19)

and 𝐊 is the 4 × 4 stiffness matrix. The quantities 𝑤𝑖 and 𝜓𝑖 (𝑖 = 1, 2)
are the nodal bending displacements and rotations of the beam cross-
section, respectively. To obtain the stiffness coefficients, the flexibility
approach is considered followed by the equilibrium conditions. To
derive the force–displacement relationship for node 1, node 2 is kept
fixed (all two degrees of freedom are restrained), and generalised forces
𝑉1 and 𝑀1 are applied on node 1.

Only bending deflections are considered in the formulation. So, the
strain energy is expressed as

𝑈 = 1
2 ∫

𝐿

0

𝑀2

𝐸𝐼(𝑥)
𝑑𝑥 (20)

The internal moment is given by 𝑀 = 𝑉1𝑥 − 𝑀1. The flexibility
relationship of the beam is given by

{

𝑤1
𝜓1

}

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜕𝑈
𝜕𝑉1

𝜕𝑈
𝜕𝑀1

⎫

⎪

⎪

⎬

⎪

⎪

⎭

=
[

𝑄3 −𝑄2
−𝑄2 𝑄1

]{

𝑉1
𝑀1

}

(21)

he coefficients 𝑄𝑖s are defined as

𝑖 = ∫

𝐿

0

𝑥(𝑖−1)

𝐸𝐼(𝑥)
𝑑𝑥, 𝑖 = 1, 2, 3 (22)

The stiffness relationship can be found by inverting the flexibility
equation (21) as
{

𝑉1
𝑀1

}

= 1
𝐷1

[

𝑄1 𝑄2
𝑄2 𝑄3

]{

𝑤1
𝜓1

}

(23)

here, 𝐷1 = 𝑄1𝑄3 − 𝑄2
2. In a similar way, the direct flexibility matrix

or point 2 can be obtained. For that, we have to fix point 1 and apply
4

astigliano’s 2nd theorem after putting the internal moment equation
= 𝑉2(𝐿 − 𝑥) −𝑀2 in Eq. (20). Therefore, one obtains

{

𝑤2
𝜓2

}

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜕𝑈
𝜕𝑉1

𝜕𝑈
𝜕𝑀1

⎫

⎪

⎪

⎬

⎪

⎪

⎭

=
[

𝑅3 −𝑅2
−𝑅2 𝑅1

]{

𝑉2
𝑀2

}

(24)

Here 𝑅𝑖s are given by the following integrals

𝑅𝑖 = ∫

𝐿

0

(𝐿 − 𝑥)(𝑖−1)

𝐸𝐼(𝑥)
𝑑𝑥, 𝑖 = 1, 2, 3 (25)

The stiffness relationship for node 2 can be found by inverting the
flexibility relation Eq. (24) as
{

𝑉2
𝑀2

}

= 1
𝐷2

[

𝑅1 𝑅2
𝑅2 𝑅3

]{

𝑤2
𝜓2

}

(26)

where, 𝐷2 = 𝑅1𝑅3 − 𝑅2
2. The coefficients 𝑄𝑖 and 𝑅𝑖 are as follows

𝑄1 = ∫

𝐿

0

1
𝐸𝐼(𝑥)

𝑑𝑥 (27)

𝑄2 = ∫

𝐿

0

𝑥
𝐸𝐼(𝑥)

𝑑𝑥 (28)

𝑄3 = ∫

𝐿

0

𝑥2

𝐸𝐼(𝑥)
𝑑𝑥 (29)

and

𝑅1 = ∫

𝐿

0

1
𝐸𝐼(𝑥)

𝑑𝑥 = 𝑄1 (30)

𝑅2 = ∫

𝐿

0

𝐿 − 𝑥
𝐸𝐼(𝑥)

𝑑𝑥 = 𝐿∫

𝐿

0

1
𝐸𝐼(𝑥)

𝑑𝑥 − ∫

𝐿

0

𝑥
𝐸𝐼(𝑥)

𝑑𝑥 = 𝑄1𝐿 −𝑄2 (31)

𝑅3 = ∫

𝐿

0

(𝐿 − 𝑥)2

𝐸𝐼(𝑥)
𝑑𝑥 = 𝐿2

∫

𝐿

0

1
𝐸𝐼(𝑥)

𝑑𝑥

− 2𝐿∫

𝐿

0

𝑥
𝐸𝐼(𝑥)

𝑑𝑥 + ∫

𝐿

0

𝑥2

𝐸𝐼(𝑥)
𝑑𝑥 (32)

= 𝑄1𝐿
2 − 2𝑄2𝐿 +𝑄3 (33)

The determinant

𝐷2 = 𝑅1𝑅3 − 𝑅2
2 = 𝑄1(𝑄1𝐿

2 − 2𝑄2𝐿 +𝑄3) − (𝑄1𝐿 −𝑄2)2

= 𝑄1𝑄3 −𝑄2
2 = 𝐷1 (34)

Now, considering Eqs. (23), (26) and (27)–(34) the stiffness matrix can
be written as

𝐊 = 1
𝐷1

⎡

⎢

⎢

⎢

⎢

⎣

𝑄1 𝑄2 𝐾13 𝐾14
𝑄2 𝑄3 𝐾23 𝐾24
𝐾31 𝐾32 𝑄1 −(𝑄1𝐿 −𝑄2)
𝐾41 𝐾42 −(𝑄1𝐿 −𝑄2) (𝑄1𝐿2 − 2𝑄2𝐿 +𝑄3)

⎤

⎥

⎥

⎥

⎥

⎦

(35)

he stiffness relationship for the whole beam is given below

⎧

⎪

⎪

⎨

⎪

⎪

𝑉1
𝑀1
𝑉2
𝑀2

⎫

⎪

⎪

⎬

⎪

⎪

=

⎡

⎢

⎢

⎢

⎢

⎣

𝐾11 𝐾12 𝐾13 𝐾14
𝐾21 𝐾22 𝐾23 𝐾24
𝐾31 𝐾32 𝐾33 𝐾34
𝐾41 𝐾42 𝐾43 𝐾44

⎤

⎥

⎥

⎥

⎥

⎦

⎧

⎪

⎪

⎨

⎪

⎪

𝑤1
𝜓1
𝑤2
𝜓2

⎫

⎪

⎪

⎬

⎪

⎪

(36)
⎩ ⎭ ⎩ ⎭
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The stiffness terms corresponding to the coupling between nodes 1
nd 2 can be found considering the moment and force equilibrium as

𝑉1 = 𝐾11𝑤1 +𝐾12𝜓1 +𝐾12𝑤2 +𝐾13𝜓2 (37)

𝑉2 = 𝐾31𝑤1 +𝐾32𝜓1 +𝐾33𝑤2 +𝐾34𝜓2 (38)

𝑀1 = 𝐾21𝑤1 +𝐾22𝜓1 +𝐾23𝑤2 +𝐾24𝜓2 (39)

and 𝑀2 = 𝐾41𝑤1 +𝐾42𝜓1 +𝐾43𝑤2 +𝐾44𝜓2 (40)

For the force equilibrium one obtains 𝑉1 = −𝑉2. Considering Eqs. (37)
and (38) in force equilibrium equation one can obtain the relationship
between some of the coupling terms. Those are given below as

(𝐾11 +𝐾31)𝑤1 + (𝐾12 +𝐾32)𝜓1 + (𝐾13 +𝐾33)𝑤2 + (𝐾14 +𝐾34)𝜓2 = 0 (41)

Equating the coefficients of the left hand and right hand side we get

𝐾11 = −𝐾31 (42)

𝐾12 = −𝐾32 (43)

𝐾13 = −𝐾33 (44)

and 𝐾14 = −𝐾34 (45)

The above relationships can be written as

𝐊𝑏
1𝑖 = −𝐊𝑏

3𝑖, 𝑖 = 1,… , 4 (46)

Now, the stiffness matrix become

𝐊 = 1
𝐷1

⎡

⎢

⎢

⎢

⎢

⎣

𝑄1 𝑄2 −𝑄1 (𝑄1𝐿 −𝑄2)
𝑄2 𝑄3 −𝑄2 𝐾24
−𝑄1 −𝑄2 𝑄1 −(𝑄1𝐿 −𝑄2)

(𝑄1𝐿 −𝑄2) 𝐾42 −(𝑄1𝐿 −𝑄2) (𝑄1𝐿2 − 2𝑄2𝐿 +𝑄3)

⎤

⎥

⎥

⎥

⎥

⎦

(47)

Considering the moment expressions of moments and shear the moment
equilibrium equation 𝑀1 +𝑀2 + 𝑉2𝐿 = 0 becomes

𝑀1 +𝑀2 + 𝑉2𝐿 = 𝐾21𝑤1 +𝐾22𝜓1 +𝐾23𝑤2 +𝐾24𝜓2

+ 𝐾41𝑤1 +𝐾42𝜓1 +𝐾43𝑤2 +𝐾44𝜓2

+ (𝐾31𝑤1 +𝐾32𝜓1 +𝐾33𝑤2 +𝐾34𝜓2)𝐿 = 0

= (𝐾21 +𝐾41 +𝐾31𝐿)𝑤1 + (𝐾22 +𝐾42 +𝐾32𝐿)𝜓1

+ (𝐾23 +𝐾43 +𝐾33𝐿)𝑤2 + (𝐾24 +𝐾44 +𝐾34𝐿)𝜓2 = 0
(48)

Equating the coefficients of the left hand and right hand side we obtain

𝐊24 = −(𝐊44 +𝐊34𝐿) (49)

The complete bending stiffness matrix is therefore obtained by combin-
ing the above relations as

𝐊 = 1
𝑄1𝑄3 −𝑄2

2

×

⎡

⎢

⎢

⎢

⎢

⎣

𝑄1 𝑄2 −𝑄1 (𝑄1𝐿 −𝑄2)
𝑄2 𝑄3 −𝑄2 (𝑄2𝐿 −𝑄3)
−𝑄1 −𝑄2 𝑄1 −(𝑄1𝐿 −𝑄2)

(𝑄1𝐿 −𝑄2) (𝑄2𝐿 −𝑄3) −(𝑄1𝐿 −𝑄2) (𝑄1𝐿2 − 2𝑄2𝐿 +𝑄3)

⎤

⎥

⎥

⎥

⎥

⎦

(50)

This is the most general, concise and exact expression of the bending
stiffness matrix with variable bending flexibility. The only restriction is
that 1∕𝐸𝐼(𝑥) is finitely integrable as given by Eq. (22). In the special
case when 𝐸𝐼(𝑥) is constant with respect to 𝑥, the integrals 𝑄𝑖s become

𝑄1 =
𝐿
𝐸𝐼0

, 𝑄2 =
𝐿2

2𝐸𝐼0
, and 𝑄3 =

𝐿3

3𝐸𝐼0
(51)

ubstituting these in Eq. (50), it can be seen that this stiffness matrix
educes exactly to the conventional expression in Eq. (11). Therefore,
5

q. (50) can be viewed as the generalisation of the classical beam
tiffness matrix with constant cross-section to a variable cross-section.
or frames and other built-up structures, this element matrix can be
mployed with transformation matrices and assembled in the usual pro-
edure used in the finite element method. Next, this general expression
s applied when the flexibility and rigidity of the beam are modelled
sing random fields.

. Bending flexibility is a random field

The expression of the exact stiffness matrix with arbitrary variable
ross-section is given by Eq. (50). There are three integrals, namely
1, 𝑄2 and 𝑄3 given in Eqs. (27)–(29) appear in this expression. Using

the random flexibility function in Eq. (3), the integrals can be expressed
as

𝑄𝑖 = ∫

𝐿

0

𝑥(𝑖−1)

𝐸𝐼(𝑥)
𝑑𝑥 = 1

𝐸𝐼0 ∫

𝐿

0

(

1 − 𝜖2𝐹2(𝑥, 𝜃)
)

𝑥(𝑖−1)𝑑𝑥 𝑖 = 1, 2, 3

(52)

or the random field 𝐹2(𝑥, 𝜃), we define the random variables 𝑦𝑖(𝜃) as

𝑖(𝜃) = ∫

𝐿

0
𝑥(𝑖−1)𝐹2(𝑥, 𝜃)𝑑𝑥, 𝑖 = 1, 2, 3 (53)

sing these definitions, the 𝑄𝑖 can be related to the random variables
𝑖(𝜃) through the following relationships

𝐼0𝑄1 = 𝐿−𝜖2𝑦1(𝜃), 𝐸𝐼0𝑄2 =
𝐿2

2
−𝜖2𝑦2(𝜃) and 𝐸𝐼0𝑄3 =

𝐿3

3
−𝜖2𝑦3(𝜃)

(54)

Substituting these, in the expression of the exact stiffness matrix in (50),
after some algebraic simplifications, one obtains

𝐊(𝜃) =
𝐸𝐼0
𝐷1(𝜃)

( 𝐿
12

𝐊0 + 𝜖2𝐊𝑅(𝜃)
)

(55)

he functional dependence with 𝜃 is used to show the quantifies which
re random. The expressions of 𝐷1(𝜃) and the two matrices in Eq. (55)
re given by

𝐷1(𝜃) =
𝐿4

12
+
(

−𝐿3𝑦1(𝜃)∕3 − 𝐿𝑦3(𝜃) + 𝐿2𝑦2(𝜃)
)

𝜖2

+
(

𝑦1(𝜃)𝑦3(𝜃) − 𝑦2(𝜃)
2) 𝜖2

2 (56)

𝐊0 =

⎡

⎢

⎢

⎢

⎢

⎣

12 6𝐿 −12 6𝐿
6𝐿 4𝐿2 −6𝐿 2𝐿2

−12 −6𝐿 12 −6𝐿2

6𝐿 2𝐿2 −6𝐿 4𝐿2

⎤

⎥

⎥

⎥

⎥

⎦

(57)

and

𝐊𝑅(𝜃) =
(

𝑦1(𝜃)𝐊1 + 𝑦2(𝜃)𝐊2 + 𝑦3(𝜃)𝐊3

)

(58)

The constant matrices 𝐊𝑖, 𝑖 = 1, 2, 3 are derived as

𝐊1 =

⎡

⎢

⎢

⎢

⎢

⎣

−1 0 1 −𝐿
0 0 0 0
1 0 −1 𝐿
−𝐿 0 𝐿 −𝐿2

⎤

⎥

⎥

⎥

⎥

⎦

,𝐊2

⎡

⎢

⎢

⎢

⎢

⎣

0 −1 0 1
−1 0 1 −𝐿
0 1 0 −1
1 −𝐿 −1 2𝐿

⎤

⎥

⎥

⎥

⎥

⎦

,

𝐊3 =

⎡

⎢

⎢

⎢

⎢

⎣

0 0 0 0
0 −1 0 1
0 0 0 0
0 1 0 −1

⎤

⎥

⎥

⎥

⎥

⎦

(59)

From Eq. (55) it can be seen that when the beam is deterministic, that
is, when 𝜖2 = 0, it reduces to the classical deterministic expression
given by (11). For the random case, unlike the approximate analysis
in Section 2, the stiffness matrix, in general, cannot be separated into
a deterministic and random part due to the nonlinear nature of 𝐷1(𝜃)
in the denominator.

Some of the key observations from the exact analysis when the

bending flexibility is a random field are:
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1. The random and the deterministic parts of the stiffness matrix
cannot be separated in a linear manner.

2. In the limit, when the bending flexibility is deterministic, the
random stiffness matrix reduces to the classical deterministic
stiffness matrix.

3. Unlike the conventional analysis in Section 2, the random vari-
ables do not appear as a linear superposition. The expression of
the stiffness matrix is a nonlinear function of the three random
variables.

4. Similar to the conventional analysis in Section 2, the random
variables are linear functions of the underlying random field.

5. If the random field is Gaussian, the three random variables
appearing in the expression of the stiffness matrix will also be
Gaussian.

n the next section, we consider the case when bending rigidity is
andom.

. Bending rigidity is a random field

.1. Exact expressions

When the bending rigidity is a random field, 𝐸𝐼(𝑥, 𝜃) is given by
Eq. (2). It is necessary to evaluate the integrals 𝑄1, 𝑄2 and 𝑄3 given
in Eqs. (27)–(29) as they appear in the expression of the exact stiffness
matrix in Eq. (50). Using the expression of the random bending rigidity
function in Eq. (2), the integrals can be expressed as

𝑄𝑖 = ∫

𝐿

0

𝑥(𝑖−1)

𝐸𝐼(𝑥)
𝑑𝑥 = 1

𝐸𝐼0 ∫

𝐿

0

𝑥(𝑖−1)
(

1 + 𝜖1𝐹1(𝑥, 𝜃)
)𝑑𝑥, 𝑖 = 1, 2, 3 (60)

By rearranging the denominator one has

1
1 + 𝜖1𝐹1(𝑥, 𝜃)

= 1 −
𝜖1𝐹1(𝑥, 𝜃)

1 + 𝜖1𝐹1(𝑥, 𝜃)
(61)

Using this, the integrals in Eq. (60) can be rewritten as

𝑄𝑖 =
1
𝐸𝐼0 ∫

𝐿

0

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 − 𝜖1

{

𝐹1(𝑥, 𝜃)
1 + 𝜖1𝐹1(𝑥, 𝜃)

}

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐺(𝑥,𝜃)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

𝑥(𝑖−1)𝑑𝑥, 𝑖 = 1, 2, 3 (62)

In the above, the new random field 𝐺(𝑥, 𝜃) is defined as a nonlinear
function of the random field 𝐹1(𝑥, 𝜃) through

𝐺(𝑥, 𝜃) =
𝐹1(𝑥, 𝜃)

1 + 𝜖1𝐹1(𝑥, 𝜃)
(63)

For the random field 𝐺(𝑥, 𝜃), we define the random variables 𝑟𝑖(𝜃)
as

𝑟𝑖(𝜃) = ∫

𝐿

0
𝑥(𝑖−1)𝐺(𝑥, 𝜃)𝑑𝑥, 𝑖 = 1, 2, 3 (64)

Using these definitions, the integrals 𝑄𝑖s can be related to the random
variables 𝑟𝑖(𝜃) through the following relationships similar to what
discussed in the previous section

𝐸𝐼0𝑄1 = 𝐿−𝜖1𝑟1(𝜃), 𝐸𝐼0𝑄2 =
𝐿2

2
−𝜖1𝑟2(𝜃) and 𝐸𝐼0𝑄3 =

𝐿3

3
−𝜖1𝑟3(𝜃)

(65)

Substituting these, in the expression of the exact stiffness matrix in (50),
one obtains

�̃�(𝜃) =
𝐸𝐼0
�̃�1(𝜃)

( 𝐿
12

�̃�0 + 𝜖1�̃�𝑅(𝜃)
)

(66)

The expressions of �̃�1(𝜃), �̃�0 and �̃�𝑅(𝜃) are similar to what derived in
the previous section in Eqs. (56)–(58) except the random variables 𝑦𝑖(𝜃)
are replaced by the random variables 𝑟𝑖(𝜃), 𝑖 = 1, 2, 3.

Although the expressions of the stiffness matrix are similar to the
case of random flexibility discussed in the previous section, there is
6

a crucial difference. The random field 𝐺(𝑥, 𝜃) in Eq. (63) is a non-
linear function of the random field 𝐹1(𝑥, 𝜃). As a result, the random
variables 𝑟𝑖(𝜃) will be non-Gaussian even when the random field 𝐹1(𝑥, 𝜃)
is Gaussian. Therefore, the stiffness matrix in Eq. (66) is in general a
non-linear function of non-Gaussian random variables.

5.2. Approximate analysis

In many real-life engineering problems, one often observes small
variabilities in the material and geometric properties due to stricter
quality control. As the random fields have zero mean and unit standard
deviation, the randomness is quantified by the strength parameters
𝜖𝑖, 𝑖 = 1, 2. It is assumed that

|𝜖𝑖|≪ 1, 𝑖 = 1, 2 (67)

Using Taylor series expansion, we can establish
1

1 + 𝜖1𝐹1(𝑥, 𝜃)
= 1 − 𝜖1𝐹1(𝑥, 𝜃) + 𝜖21𝐹

2
1 (𝑥, 𝜃) − 𝜖

3
1𝐹

3
1 (𝑥, 𝜃) +⋯ (68)

rom the inequality of the norms (Cauchy–Schwarz inequality) we
ave

𝜖1𝐹1(𝑥, 𝜃)| ≤ |𝜖1| |𝐹1(𝑥, 𝜃)|≪ 1 (69)

his is because, due to the unit standard deviation, |𝐹1(𝑥, 𝜃)| = 1
hen a probabilistic average is taken. Therefore, the higher order terms
bove 𝜖21 in Eq. (68) can be neglected. Considering the definition of the
andom field 𝐹2(𝑥, 𝜃) in Eq. (3), one can deduce that when 𝜖1 = 𝜖2

1(𝑥, 𝜃) ≈ 𝐹2(𝑥, 𝜃) (70)

or notational convenience we denote

𝜖2 = 𝜖1 = 𝜖 (71)

and 𝐹2(𝑥, 𝜃) ≈ 𝐹1(𝑥, 𝜃) = 𝐹 (𝑥, 𝜃) (72)

s the expressions derived in Section 4 are relatively simple, we employ
hem to derive the first-order perturbation expressions.

From Eq. (56), the inverse of 𝐷1(𝜃) can be approximated as

𝐷
−1
1 (𝜃) ≈ 12

𝐿4

(

1 −
(

−𝐿3𝑦1(𝜃)∕3 − 𝐿𝑦3(𝜃) + 𝐿2𝑦2(𝜃)
) 12
𝐿4
𝜖
)

= �̃�−1
1 (𝜃)

(73)

Substituting this in Eq. (55) and keeping only the first-order terms in 𝜖
one can express the stiffness matrix as

�̃�(𝜃) = 𝐊0 + 𝜟�̃�(𝜃) (74)

Here the deterministic part 𝐊0 is the same as in (11) and the random
part can be expressed as a linear combination of the random variables
𝑧𝑖(𝜃) in (13) as

𝜟�̃�(𝜃) = 𝜖𝐸𝐼0
12
𝐿4

(

𝑧1(𝜃)�̃�1 + 𝑧2(𝜃)�̃�2 + 𝑧3(𝜃)�̃�3

)

(75)

fter some algebraic simplifications, the constant matrices �̃�𝑖, 𝑖 = 1, 2, 3
re obtained as

̃1 =

⎡

⎢

⎢

⎢

⎢

⎣

3𝐿4 2𝐿5 −3𝐿4 𝐿5

2𝐿5 4∕3𝐿6 −2𝐿5 2∕3𝐿6

−3𝐿4 −2𝐿5 3𝐿4 −𝐿5

𝐿5 2∕3𝐿6 −𝐿5 1∕3𝐿6

⎤

⎥

⎥

⎥

⎥

⎦

,

̃2 =

⎡

⎢

⎢

⎢

⎢

⎣

−12𝐿3 −7𝐿4 12𝐿3 −5𝐿4

−7𝐿4 −4𝐿5 7𝐿4 −3𝐿5

12𝐿3 7𝐿4 −12𝐿3 5𝐿4

−5𝐿4 −3𝐿5 5𝐿4 −2𝐿5

⎤

⎥

⎥

⎥

⎥

⎦

(76)

nd

̃3 =

⎡

⎢

⎢

⎢

⎢

12𝐿2 6𝐿3 −12𝐿2 6𝐿3

6𝐿3 3𝐿4 −6𝐿3 3𝐿4

−12𝐿2 −6𝐿3 12𝐿2 −6𝐿3

3 4 3 4

⎤

⎥

⎥

⎥

⎥

(77)
⎣

6𝐿 3𝐿 −6𝐿 3𝐿
⎦
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Comparing the expression of the random part of the stiffness matrix in
Eq. (75) with the conventional expression in Eq. (14), it is observed
that they are identical. This is a remarkable coincidence. It proves that
the conventional expression of the random element stiffness matrix
is equivalent to a first-order perturbation approximation of the exact
expression. This exciting fact has not been established yet as the
exact general expressions were not available in the literature. Based
on this mathematical derivation, we have this fundamental remark in
stochastic finite element analysis:

Remark 1. The conventional element stiffness matrix of an Euler–
Bernoulli beam with a random field bending rigidity derived using the
cubic shape functions is a first-order perturbation approximation of the
exact element stiffness matrix.

An important question that can be asked at this point is whether
this result is general. That is, can we draw the same conclusion, for
example, for Timoshenko beams, plates, shells and other 3D elements.
If such a generality can be established, then it will have a huge impact
in quantifying errors in the stochastic finite element analysis as the
conventional stiffness matrix approach discussed in Section 2 is usually
used in practice.

6. Numerical results and discussions

Theoretical derivations and underlying concepts proposed in the
previous sections will be numerically demonstrated here. A beam of
length 𝐿 = 1.0 m and a nominal cross-section of 0.03 × 0.003 m2 are
considered. The material property assumed is that of aluminium, that
is, 𝐸 = 69 × 109 N/m2. Therefore, the nominal bending rigidity of the
beam is 𝐸𝐼0 = 4.66 N m2.

The autocorrelation function of the random fields to be employed in
this study is the exponential function as given in Eq. (A.85). For numer-
ical calculations, we discretise the random fields using the Karhunen-
Loève (KL) expansion. Further discussions on KL expansion can be
found, for example, in Refs. [2,12,40,41,44–47]. Karhunen-Loève ex-
pansion of a random field is an infinite series. We truncate this series
as in Eq. (A.89) with a finite value of 𝑀 . The number of terms 𝑀
in the KL expansion depends on the correlation length and amount
of information to be retained in the series. In general, the smaller the
correlation length, the more terms are necessary for the KL expansion.

To obtain the three different basic random variables 𝑧𝑖(𝜃), 𝑦𝑖(𝜃) and
𝑟𝑖(𝜃), for 𝑖 = 1, 2, 3, given by Eqs. (13), (53) and (64), it is not necessary
to use the KL expansion. We use KL expansion only for computational
purposes. One can use direct simulations methods [48] to generate the
random fields and then numerically integrate to obtain the random
variables.

Once the truncated Karhunen-Loève (KL) series (A.89) is estab-
lished, it can be employed for different basis random variables 𝜉𝑗 , 𝑗 =
1,… ,𝑀 . The following two cases are considered for numerical illustra-
tions:

• Case 1: All the basis random variables are independent and iden-
tically distributed (i.i.d.) Gaussian random variables with zero
mean and unit standard deviation, that is 𝜉𝑗 ∼ 𝑁(0, 1),∀ 𝑗. The
correlation length in the exponential autocorrelation function is
considered to be 𝐿∕10. For this case, 𝑀 = 56 number of random
variables are used. This captures 94% of the information in the
KL expansion.

• Case 2: All the basis random variables 𝜉𝑗 are i.i.d. uniform random
variables with zero mean and unit standard deviation, that is
𝜉𝑗 ∼ 𝑈 (0, 1),∀ 𝑗. A larger correlation length of 𝐿∕2 is considered.
For this case, 𝑀 = 18 number of random variables are used,
capturing 95% of the information in the KL expansion.

These two cases are designed to give a broader perspective on the
nature of the numerical results. The studies in the rest of this section

consider these two cases. t

7

6.1. Characteristics of the basic random variables

6.1.1. Case 1: Gaussian random variables
The three different basic random variables 𝑧𝑖(𝜃), 𝑦𝑖(𝜃) and 𝑟𝑖(𝜃), for

= 1, 2, 3, given by Eqs. (13), (53) and (64), underpin the expressions
f the three stiffness matrices developed in the paper. Random parts
f the stiffness matrices, given by Eqs. (14), (58) and (66) utilise these
hree basic random variables in unique ways. It is therefore of primary
nterest to understand the nature of the basic random variables. The
andom variables 𝑧𝑖(𝜃) and 𝑦𝑖(𝜃) are statistically identical in nature
rovided the same random field is used for the bending rigidity and
lexibility. Therefore, we only consider the random variables 𝑧𝑖(𝜃) and
𝑖(𝜃), which are derived using different approaches. In Fig. 3, the
robability density functions of the random variables 𝑧𝑖(𝜃) and 𝑟𝑖(𝜃), for
= 1, 2, 3 are shown. The pdfs are obtained with 10,000 samples with
aussian random variables (case 1). The random variables 𝑧𝑖(𝜃) are

ampled using the analytical covariance matrix given in Eq. (A.102).
he samples of 𝑟𝑖(𝜃) are calculated by performing the integration in Eq.
64) numerically. Note that 𝑟𝑖(𝜃) change with 𝜖. However, negligible
ifference was observed in our numerical calculations for different
alues of 𝜖. Therefore, results for 𝜖 = 0.10 are shown as representative
alues in Fig. 3.

From the three probability density function plots in Fig. 3, it can be
bserved that 𝑧𝑖(𝜃) are 𝑟𝑖(𝜃) are close for all 𝑖 = 1, 2, 3. Their nature is
lose to Gaussian random variables as all the basis random variables
re Gaussian. The covariance matrices of 𝑧𝑖(𝜃) are 𝑟𝑖(𝜃) are calculated
s

𝑧 =
⎡

⎢

⎢

⎣

0.1800 0.0900 0.0583
0.0900 0.0569 0.0410
0.0583 0.0410 0.0313

⎤

⎥

⎥

⎦

and

𝑟 =
⎡

⎢

⎢

⎣

0.1834 0.0918 0.0594
0.0918 0.0580 0.0418
0.0594 0.0418 0.0319

⎤

⎥

⎥

⎦

(78)

he covariance matrix of 𝑧𝑖(𝜃) is obtained directly from the closed-form
xpressions in Eq. (A.102). The covariance matrix of 𝑟𝑖(𝜃) is calculated
sing the numerical integration in Eq. (64) with 10,000 Monte Carlo
amples. The numerical integral for each sample involved 56 functions
n the numerator and denominator. The resulting covariance matrix as
hown in Eq. (78) is close that of 𝑧𝑖(𝜃).

.1.2. Case 2: Uniform random variables
In a strict sense, Karhunen-Loève expansion is applicable to Gaus-

ian random fields only. This is because the sum of non-Gaussian
andom variables is, in general, not Gaussian. However, due to the
entral limit theorem (see, for example, [39]), if many terms are used in
he KL expansion with a non-Gaussian random variable, the resulting
andom field tends to be a Gaussian random field. The advantage of
sing uniform random variables in KL expansion is that, unlike the
revious case, parameters can be selected such that it always produces
ositive random fields. This is a necessary requirement for random
ields to be used to model bending rigidity, which must always remain
ositive for stable structures. In Fig. 4, the probability density functions
f the random variables 𝑧𝑖(𝜃) and 𝑟𝑖(𝜃), for 𝑖 = 1, 2, 3 are shown. The pdfs
re obtained with 10,000 samples with 18 uniform random variables
case 2). The random variables 𝑧𝑖(𝜃) are sampled using the analytical
xpression Eq. (A.92). Unlike the Gaussian case, they were not sampled
rom the analytical covariance matrix given in Eq. (A.102). However,
umerical results show that they are very close. The samples of 𝑟𝑖(𝜃)
re obtained by performing the integration in Eq. (64) numerically with
= 0.10. From the three probability density function plots in Fig. 4, we
bserve that 𝑧𝑖(𝜃) are 𝑟𝑖(𝜃) are close for all 𝑖 = 1, 2, 3. Their nature is,
owever, significantly different from Gaussian random variables as all

he basis random variables are uniform. This is a major difference from
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Fig. 3. The probability density function (pdf) of the basic random variables 𝑧𝑖(𝜃) and 𝑟𝑖(𝜃), for 𝑖 = 1, 2, 3, given by Eqs. (13) and (64). The pdfs are obtained with 10,000 samples
ith Gaussian random variables (case 1, with 56 random variables). The random variables 𝑧𝑖(𝜃) are sampled using the analytical covariance matrix given in Eq. (A.102). The

amples of 𝑟𝑖(𝜃) are obtained by performing the numerical integration (64) for 𝜖 = 0.10.
Fig. 4. The probability density function (pdf) of the basic random variables 𝑧𝑖(𝜃) and 𝑟𝑖(𝜃), for 𝑖 = 1, 2, 3, given by Eqs. (13) and (64). The pdfs are obtained with 10,000 samples
ith uniform random variables (case 2, 18 random variables).
o
p
a

he previous case. The covariance matrices of 𝑧𝑖(𝜃) are 𝑟𝑖(𝜃) are given
elow

𝑧 =
⎡

⎢

⎢

⎣

0.5677 0.2838 0.1848
0.2838 0.1576 0.1081
0.1848 0.1081 0.0763

⎤

⎥

⎥

⎦

and

𝑟 =
⎡

⎢

⎢

⎣

0.5750 0.2875 0.1873
0.2875 0.1598 0.1096
0.1873 0.1096 0.0774

⎤

⎥

⎥

⎦

(79)

he covariance matrix of 𝑟𝑖(𝜃) is calculated using the numerical inte-
ration in Eq. (64) with 10,000 Monte Carlo samples. The numerical
ntegral for each sample involved 18 functions in the numerator and
enominator. The resulting covariance matrix as shown in Eq. (79)
s close that of 𝑧𝑖(𝜃). We only show the second-order properties of
he random variables. As seen in Fig. 4, the random variables are
ighly non-Gaussian in nature. Therefore, higher-order moments may
e useful to characterise them.

.2. Characteristics of the stiffness matrix coefficients

Once the basic random variables are obtained, they contribute to the
andom stiffness matrix. Three approaches to obtain the stiffness matrix
ave been proposed. They are (a) conventional approach with random
ending rigidity given by Eq. (8), (b) the exact approach with random
ending flexibility given by Eq. (55), and (c) the exact approach with
andom bending rigidity given by Eq. (66). Three different notations,
amely �̂�(𝜃), 𝐊(𝜃) and �̃�(𝜃), have been used to distinguish the three

expressions. The three random element stiffness matrices use the ran-
dom variables 𝑧𝑖(𝜃), 𝑦𝑖(𝜃) and 𝑟𝑖(𝜃), for 𝑖 = 1, 2, 3, given by Eqs. (13),
(53) and (64), respectively. In this section, the statistical nature of the
element of the stiffness matrices obtained using these three different
approaches will be discussed.

There are four unique elements in the stiffness matrix. Therefore,
representative results for 𝐾 (𝜃), 𝐾 (𝜃), 𝐾 (𝜃) and 𝐾 (𝜃) are shown.
11 12 22 24 d

8

For easier comparative analysis, the random variables are divided by
their corresponding deterministic values given by Eq. (11).

6.2.1. Case 1: Gaussian random variables
In Fig. 5, the four elements of the stiffness matrix obtained using

the three different approaches are shown. Probability density functions
calculated using a 10,000-sample Monte Carlo simulation are com-
pared. Twenty percent randomness, that is, 𝜖 = 0.2 is considered. Recall
that the conventional approach, the exact random bending flexibility
approach and the exact random bending rigidity approach use the basic
random variables 𝑧𝑖(𝜃), 𝑦𝑖(𝜃) and 𝑟𝑖(𝜃), for 𝑖 = 1, 2, 3 respectively. They,
in turn, are obtained using 56 basis i.i.d. Gaussian random variables as
discussed in the previous section. Due to the use of Gaussian random
variables, from Fig. 5 it is observed that the four random stiffness
coefficients are Gaussian in nature. They have a nominal mean of 1
(as they are normalised by the corresponding deterministic values) and
similar standard deviations. Scrutinising further, it can be seen that
the results from the two exact approaches are closer to each other
than the conventional method. This is expected as it was mathemati-
cally proved that the conventional method is a first-order perturbation
approximation to the exact approach.

6.2.2. Case 2: Uniform random variables
We consider the same four elements of the stiffness matrix as be-

fore, namely 𝐾11(𝜃), 𝐾12(𝜃), 𝐾22(𝜃) and 𝐾24(𝜃). The probability density
functions of these selected normalised stiffness coefficients are shown
in Fig. 6 for 𝜖 = 0.2. These pdfs are obtained using a 10,000-sample
Monte Carlo simulation with uniform random variables resulting the
basic random variables 𝑧𝑖(𝜃), 𝑦𝑖(𝜃) and 𝑟𝑖(𝜃), for 𝑖 = 1, 2, 3. The nature
f the pdfs is very different from the Gaussian case discussed in the
revious subsection. The pdfs of all the four normalised coefficients
re centred about one but have a flatter region, resembling a uniform

istribution. The results from the two exact approaches are closer to
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Fig. 5. The probability density function (pdf) of four selected normalised stiffness coefficients. The pdfs are obtained with 10,000 samples with Gaussian random variables (case
1) and the value of 𝜖 = 0.2 has been used. The random stiffness coefficients are normalised with respect to their deterministic values given by Eq. (11). The conventional approach,
the exact random bending flexibility approach and the exact random bending rigidity approach use the basic random variables 𝑧𝑖(𝜃), 𝑦𝑖(𝜃) and 𝑟𝑖(𝜃), for 𝑖 = 1, 2, 3 respectively.
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ach other and significantly different from the conventional method.
his implies that for non-Gaussian basis random variables, relatively
ore error is shown by the approximate conventional method.

.3. Response analysis of a cantilever beam

In Fig. 7, a cantilever beam with a random bending rigidity is
hown. A force 𝑃 is applied at the tip which results a deflection 𝛿 under
he force. As the bending rigidity is a random field, the tip deflection
ill be a random variable. The tip deflection of the nominal beam is
iven by

0 =
𝑃𝐿3

3𝐸𝐼0
(80)

For the random case, eliminating the degrees of freedom at the fixed
end, we have
[

𝐾33(𝜃) 𝐾34(𝜃)
𝐾43(𝜃) 𝐾44(𝜃)

]{

𝛿(𝜃)
𝜓(𝜃)

}

=
{

𝑃
0

}

(81)

he random tip deflection 𝛿(𝜃) is obtained by solving this equation.
irect Monte Carlo Simulation is used to obtain the samples of 𝛿(𝜃) are

he results for the two parametric cases are described next.
 m

9

.3.1. Case 1: Gaussian random variables
The three different basic random variables 𝑧𝑖(𝜃), 𝑦𝑖(𝜃) and 𝑟𝑖(𝜃), for

= 1, 2, 3, given by Eqs. (13), (53) and (64) are used to obtain three
ifferent stiffness matrices as explained before. For this case, 56 i.i.d.
aussian random variables are simulated to generate the results. In
able 1, we show mean and standard deviation of the normalised tip
eflection using 10,000 samples. The normalised tip deflection of the
antilever is obtained as
𝛿(𝜃)
𝛿0

(82)

Results for four values of the strength parameter 𝜖 is shown in Table 1.
The value of standard deviation increases with increasing values of
𝜖 as expected. The difference between the exact and approximate
results with random rigidity increases with higher values of 𝜖. Note
hat uncertainty propagated exactly in all three methods using the
irect Monte Carlo simulation. Therefore, the differences observed arise
urely due to the formulation methods and not due to the uncertainty
ropagation methods.

In Fig. 8, the probability density functions of the normalised deflec-
ion are shown for the four values of 𝜖. The nature of the pdfs is close
o Gaussian distributions. The results from the two exact methods are
loser to each other and different from the approximate conventional
ethod.
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Fig. 6. The probability density function (pdf) of four selected normalised stiffness coefficients. The pdfs are obtained with 10,000 samples with Uniform random variables (case
2), and the value of 𝜖 = 0.2 has been used. The random stiffness coefficients are normalised with respect to their deterministic values given by Eq. (11).
Fig. 7. A cantilever beam with bending rigidity modelled as a random field, 𝐸𝐼(𝑥, 𝜃). A force 𝑃 is applied at the tip, resulting a deflection 𝛿 under the force.
Table 1
Mean and standard deviation of the normalised tip deflection of the cantilever with the Gaussian random field model.

Statistics Methods 𝜖 = 0.05 𝜖 = 0.10 𝜖 = 0.15 𝜖 = 0.20

Mean Conventional (random rigidity) 1.0008 1.0034 1.0077 1.0139
Exact (random flexibility) 1.0000 1.0000 1.0000 1.0000
Exact (random rigidity) 1.0024 1.0049 1.0073 1.0097

Standard Conventional (random rigidity) 0.0266 0.0538 0.0821 0.1124
deviation Exact (random flexibility) 0.0265 0.0531 0.0796 0.1062

Exact (random rigidity) 0.0268 0.0535 0.0803 0.1071
10
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Fig. 8. The probability density function of the normalised deflection 𝛿∕𝛿0 of a cantilever with a point load at the tip. The pdfs are obtained with 10,000 samples with Gaussian
random variables (case 1) and with four values of 𝜖.
Table 2
Mean and standard deviation of the normalised tip deflection of the cantilever with the uniform random field model.

Statistics Methods 𝜖 = 0.05 𝜖 = 0.10 𝜖 = 0.15 𝜖 = 0.20

Mean Conventional (random rigidity) 1.0019 1.0076 1.0174 1.0320
Exact (random flexibility) 1.0000 1.0000 1.0000 1.0000
Exact (random rigidity) 1.0025 1.0049 1.0074 1.0098

Standard Conventional (random rigidity) 0.0416 0.0846 0.1305 0.1812
deviation Exact (random flexibility) 0.0414 0.0828 0.1243 0.1657

Exact (random rigidity) 0.0417 0.0834 0.1251 0.1668
6.3.2. Case 2: Uniform random variables
The three different basic random variables 𝑧𝑖(𝜃), 𝑦𝑖(𝜃) and 𝑟𝑖(𝜃),

for 𝑖 = 1, 2, 3, are obtained with 18 i.i.d. uniform random variables.
The nature of these random variables and the resulting stiffness coeffi-
cients was discussed before. A key observation was that the probability
density functions of the basic random variables and the stiffness coeffi-
cients were non-Gaussian in nature. Here we examine if the same trend
is followed to the response also.

In Table 2 we show mean and standard deviation of the normalised
tip deflection. Results for four values of 𝜖 are shown, and they are
calculated using 10,000 samples as before. The difference between the
exact and the approximate method is more compared to the Gaussian
case. In Fig. 9, the probability density functions of the normalised
11
deflection are shown for the four values of 𝜖. The results for the two
exact methods are closer to each other. However, significant differences
between approximate (conventional) and exact results are observed, es-
pecially for larger values of 𝜖. This shows the impact of the formulation
of the stochastic problem. There can be errors in the response statistics
even if an exact simulation-based uncertainty propagation method is
employed.

7. Conclusions

This paper addressed a fundamental issue in the stochastic finite
element analysis, that is, the incorporation of random fields within
the scope of the finite element modelling. A four-node Euler–Bernoulli
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eam element was used as an example to illustrate three distinct pos-
ibilities for stochastic finite element modelling. The three approaches
o obtain the element stiffness matrix discussed are:

• Conventional with stochastic rigidity: The random and the determin-
istic parts of the stiffness matrix become linearly separated. The
random part of the stiffness matrix is a linear superposition of
three random variables, which, in turn, are linear functions of the
underlying random field.

• Exact with stochastic flexibility: The random and the determinis-
tic parts of the stiffness matrix are not linearly separable. The
random part of the stiffness matrix is a nonlinear function of
three random variables, which, in turn, are linear functions of the
underlying random field.

• Exact with stochastic rigidity: The random and the deterministic
parts of the stiffness matrix are not linearly separable. The ran-
dom part of the stiffness matrix is a nonlinear function of three
random variables, which, in turn, are also nonlinear functions of
the underlying random field.

he last two approaches are possible due to the derivation of the exact
tiffness matrix using Castigliano’s approach for a beam element with a
eneral spatially varying parameter. The resulting closed-form expres-
ion is simple and valid for any finitely integrable function representing
 o

12
he spatial bending flexibility. In the special case, when the bending
lexibility is a constant, the general stiffness matrix reduces exactly to
he conventional expression.

Each of the derived stiffness matrices is expressed as a combination
f three basic random variables and constant matrices. Closed-form
xpressions of the constant matrices have been derived for all three
ases. The basic random variables appear as power integrals of the
nderlying random fields. In general, they should be obtained nu-
erically. However, if the random field is a stationary and Gaussian

andom field, then Karhunen-Loève expansion can be used to represent
hem. In that case, the integrals leading to the basic random variables
ave been evaluated in closed form. This gives an analytical expression
f the covariance matrix, from which the samples can be generated
asily. In the numerical analysis, the statistical properties of the basic
andom variables, elements of the stiffness matrix and the response
f a cantilever are compared between the three proposed approaches.
oticeable differences were observed when uniform random variables
ere used in the simulation of the underlying random fields.

One of the important theoretical results that emerged from this
tudy is that the first-order perturbation approximation of the exact
lement stiffness matrix with stochastic rigidity is the same as the
onventional stiffness matrix with stochastic rigidity derived using the
sual cubic shape functions. It proved that the conventional expression

f the random element stiffness matrix is a first-order perturbation
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approximation of the exact expression. This result puts a clear perspec-
tive on the accuracy of conventional stochastic finite element analysis.
Future research is needed to verify whether this result is general and
applicable to other problems such as stochastic Timoshenko beams,
plates, shells and general 3D elements. Only static problem is con-
sidered in this work. Future work is necessary to consider dynamic
problems and the derivation of the exact, consistent mass matrix for
stochastic problems.
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Appendix. Closed-form expressions of the basic random variables
using Karhunen-Loève expansion

Three different basic random variables, involving power integrals
of the underlying random fields, are introduced for the bending defor-
mation analysis of beams. They are 𝑧𝑖(𝜃), 𝑦𝑖(𝜃) and 𝑟𝑖(𝜃), for 𝑖 = 1, 2, 3
given by Eqs. (13), (53) and (64), The random variables 𝑧𝑖(𝜃) and 𝑦𝑖(𝜃)
involve linear functions of the underlying random field. For this case,
closed-form expressions can be obtained analytically as explained in
this section.

A.1. Karhunen-Loève expansion

Suppose 𝐹 (𝐫, 𝜃) is a random field with a covariance function
𝐶𝐹 (𝐫1, 𝐫2) defined in a space . Here 𝜃 denotes an element of the
(random) sample space 𝛺 so that 𝜃 ∈ 𝛺. Mathematically and nu-
merically, it is challenging to deal with random fields directly in the
equations of motion, which are often expressed by partial differential
equations. For this reason, it is required to discretise a random field
in terms of random variables. Once this is done, then a wide range
of mathematical and numerical techniques can be used to solve the
resulting discrete stochastic differential equations. Among the many
discretisation techniques, the spectral decomposition of random fields
using the Karhunen-Loève expansion turns out to be very useful in
practice. In this paper, this approach has been applied to model
updating.

Since the covariance function is finite, symmetric and positive
definite, it can be represented by a spectral decomposition. Using this
spectral decomposition, the random field 𝐹 (𝐫, 𝜃) can be expressed in a
generalised Fourier type of series as

𝐹 (𝐫, 𝜃) = 𝐹0(𝐫) +
∞
∑

𝑗=1

√

𝜆𝑗𝜉𝑗 (𝜃)𝜑𝑗 (𝐫) (A.83)

where 𝜉𝑗 (𝜃) are uncorrelated random variables and throughout the
aper (∙)0 implies the deterministic part corresponding to (∙). The
onstants 𝜆𝑗 and functions 𝜑𝑗 (𝐫) are eigenvalues and eigenfunctions
atisfying the integral equation

∫
𝐶𝐹 (𝐫1, 𝐫2)𝜑𝑗 (𝐫1)d𝐫1 = 𝜆𝑗𝜑𝑗 (𝐫2), ∀ 𝑗 = 1, 2,… (A.84)

The spectral decomposition in Eq. (A.83), which discretises a random
field into random variables, is known as the Karhunen-Loève expansion.
The series in Eq. (A.83) can be ordered in a decreasing series so that it
can be truncated after a finite number of terms with the desired accu-
racy. Fukunaga [38] and Papoulis and Pillai [39], and the references
therein give further discussions on the Karhunen-Loève expansion.

In this paper one dimensional systems are considered. To demon-
strate the approach a Gaussian random field with an exponentially
decaying autocorrelation function is considered. Such a model is rep-
resentative of many physical systems and closed form expressions for
13
he Karhunen-Loève expansion may be obtained. The autocorrelation
unction between points 𝑥1 and 𝑥2 can be expressed as

(𝑥1, 𝑥2) = 𝑒−|𝑥1−𝑥2|∕𝑏 (A.85)

ere the constant 𝑏 is known as the correlation length, and it plays
n important role in the description of a random field. If the corre-
ation length is very small, then the random field becomes close to a
elta-correlated field, often known as white noise. The random field
ffectively becomes a random variable if the correlation length is very
arge compared to the domain under consideration. Assuming the mean
s zero, then the underlying random field 𝐹 (𝑥, 𝜃) can be expanded using
he Karhunen-Loève expansion [38,39] in the interval −𝑎 ≤ 𝑥 ≤ 𝑎 as

(𝑥, 𝜃) =
∞
∑

𝑗=1
𝜉𝑗 (𝜃)

√

𝜆𝑗𝜑𝑗 (𝑥) (A.86)

Using the notation 𝑐 = 1∕𝑏, the corresponding eigenvalues and eigen-
functions for odd 𝑗 are given by

𝜆𝑗 =
2𝑐

𝜔2
𝑗 + 𝑐2

, 𝜑𝑗 (𝑥) =
cos(𝜔𝑗𝑥)

√

𝑎 +
sin(2𝜔𝑗𝑎)

2𝜔𝑗

, where tan(𝜔𝑗𝑎) =
𝑐
𝜔𝑗
,

(A.87)

and for even 𝑗 are given by

𝜆∗𝑗 =
2𝑐

𝜔∗
𝑗
2 + 𝑐2

, 𝜑∗
𝑗 (𝑥) =

sin(𝜔∗
𝑗𝑥)

√

𝑎 −
sin(2𝜔∗

𝑗 𝑎)

2𝜔∗
𝑗

,

where tan(𝜔∗
𝑗 𝑎) =

𝜔∗
𝑗

−𝑐
(A.88)

These eigenvalues and eigenfunctions will now be used to obtain the
expressions of the random variables.

A.2. Derivation of the power integrals

Karhunen-Loève expansion in Eq. (A.86) needs to be truncated at a
finite value for numerical calculation. The number of terms are selected
based on the ‘amount of information’ to be retained. This in turn can be
related to the number of eigenvalues retained, since the eigenvalues are
arranged in decreasing order. Considering the total number of terms is
𝑀 , rewriting Eq. (A.86) in the interval [0, 𝐿] we have

𝐹 (𝑥, 𝜃) ≈
𝑀∕2
∑

𝑗=1
𝜉2𝑗−1(𝜃)

√

𝜆𝑗𝜑𝑗
(

−𝐿
2
+ 𝑥

)

+ 𝜉2𝑗 (𝜃)
√

𝜆∗𝑗𝜑
∗
𝑗

(

−𝐿
2
+ 𝑥

)

=
𝑀∕2
∑

𝑗=1
𝜉2𝑗−1(𝜃)𝐴𝑗 cos

(

𝜔𝑗
(

−𝐿
2
+ 𝑥

))

+ 𝜉2𝑗 (𝜃)𝐴∗
𝑗 sin

(

𝜔∗
𝑗

(

−𝐿
2
+ 𝑥

))

, 0 ≤ 𝑥 ≤ 𝐿

(A.89)

In the above equation, the constants

𝐴𝑗 =

√

𝜆𝑗
√

𝐿
2 + sin(𝜔𝑗𝐿)

2𝜔𝑗

(A.90)

and 𝐴∗
𝑗 =

√

𝜆∗𝑗
√

𝐿
2 −

sin(𝜔∗𝑗𝐿)

2𝜔∗𝑗

(A.91)

They are obtained from Eqs. (A.87) and (A.88) by substituting 𝑎 = 𝐿∕2.
The basic random variables 𝑧𝑖(𝜃) given by Eq. (13) can be explicitly

btained using (A.89) as

𝑖(𝜃) =
𝑀∕2
∑

𝜉2𝑗−1(𝜃)𝐴𝑗𝐼𝑖𝑗 + 𝜉2𝑗 (𝜃)𝐴∗
𝑗 𝐼

∗
𝑖𝑗 , 𝑖 = 1, 2, 3 (A.92)
𝑗=1
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Here, the integrals

𝐼𝑖𝑗 = ∫

𝐿

0
𝑥(𝑖−1) cos

(

𝜔𝑗
(

−𝐿
2
+ 𝑥

))

𝑑𝑥 (A.93)

and 𝐼∗𝑖𝑗 = ∫

𝐿

0
𝑥(𝑖−1) sin

(

𝜔∗
𝑗

(

−𝐿
2
+ 𝑥

))

𝑑𝑥, 𝑖 = 1, 2, 3 (A.94)

The above integrals can be evaluated exactly in closed-form as

𝐼1𝑗 = 2
sin

(

1∕2𝜔𝑗𝐿
)

𝜔𝑗
(A.95)

𝐼∗1𝑗 = 0 (A.96)

𝐼2𝑗 =
𝐿 sin

(

1∕2𝜔𝑗𝐿
)

𝜔𝑗
(A.97)

𝐼∗2𝑗 =
−cos

(

1∕2𝜔∗
𝑗𝐿

)

𝜔∗
𝑗𝐿 + 2 sin

(

1∕2𝜔∗
𝑗𝐿

)

𝜔∗
𝑗
2

(A.98)

𝐼3𝑗 =
𝐿2𝜔𝑗 2 sin

(

1∕2𝜔𝑗𝐿
)

+ 2 cos
(

1∕2𝜔𝑗𝐿
)

𝜔𝑗𝐿 − 4 sin
(

1∕2𝜔𝑗𝐿
)

𝜔𝑗 3

(A.99)

and 𝐼∗3𝑗 = −
𝐿
(

cos
(

1∕2𝜔∗
𝑗𝐿

)

𝜔∗
𝑗𝐿 − 2 sin

(

1∕2𝜔∗
𝑗𝐿

))

𝜔∗
𝑗
2

(A.100)

Using the expressions of the integrals, it is possible to obtain the
ovariance matrix of the random variables 𝑧𝑖(𝜃). The random variables
𝜉𝑗 (𝜃) in Eq. (A.92) are independent and identically distributed (i.i.d.)
random variables with

E
[

𝜉𝑗 (𝜃), 𝜉𝑘(𝜃)
]

= 𝛿𝑗𝑘,∀ 𝑗, 𝑘 (A.101)

Where 𝛿𝑗𝑘 is the Kronecker delta function. Utilising this orthogonal
property, the elements of the 3 × 3 covariance matrix of the random
variables 𝑧𝑖(𝜃) is obtained as

𝐶𝑧𝑖𝑙 = E
[

𝑧𝑖(𝜃), 𝑧𝑙(𝜃)
]

=
𝑀∕2
∑

𝑗=1
𝐴2
𝑗 𝐼𝑖𝑗𝐼𝑙𝑗 + 𝐴

∗2
𝑗 𝐼

∗
𝑖𝑗𝐼

∗
𝑙𝑗 𝑖, 𝑙 = 1, 2, 3 (A.102)
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