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Minor Sparsifiers and the Distributed Laplacian Paradigm∗

Sebastian Forster† Gramoz Goranci‡ Yang P. Liu§ Richard Peng¶ Xiaorui Sun∥

Mingquan Ye∗∗

Abstract

We study distributed algorithms built around minor-based vertex sparsifiers, and give the first
algorithm in the CONGEST model for solving linear systems in graph Laplacian matrices to high
accuracy. Our Laplacian solver has a round complexity of$ (=> (1) (√=+�)), and thus almost matches
the lower bound of Ω̃(√= +�), where = is the number of nodes in the network and � is its diameter.

We show that our distributed solver yields new sublinear round algorithms for several corner-
stone problems in combinatorial optimization. This is achieved by leveraging the powerful algo-
rithmic framework of Interior Point Methods (IPMs) and the Laplacian paradigm in the context of
distributed graph algorithms, which entails numerically solving optimization problems on graphs via
a series of Laplacian systems. Problems that benefit from our distributed algorithmic paradigm in-
clude exact mincost flow, negative weight shortest paths, maxflow, and bipartite matching on sparse
directed graphs. For the maxflow problem, this is the first exact distributed algorithm that applies to
directed graphs, while the previous work by [Ghaffari et al. SICOMP’18] considered the approximate
setting and works only for undirected graphs. For the mincost flow and the negative weight shortest
path problems, our results constitute the first exact distributed algorithms running in a sublinear
number of rounds. Given that the hybrid between IPMs and the Laplacian paradigm has proven
useful for tackling numerous optimization problems in the centralized setting, we believe that our
distributed solver will find future applications.

At the heart of our distributed Laplacian solver is the notion of spectral subspace sparsifiers of
[Li, Schild FOCS’18]. We present a nontrivial distributed implementation of their construction by
(i) giving a parallel variant of their algorithm that avoids the sampling of random spanning trees
and uses approximate leverage scores instead, and (ii) showing that the algorithm still produces a
high-quality subspace spectral sparsifier by carefully setting up and analyzing matrix martingales.
Combining this vertex reduction recursively with both tree and elimination-based preconditioners
leads to our algorithm for solving Laplacian systems. The construction of the elimination-based
preconditioners is based on computing short random walks, and we introduce a new technique for
reducing the congestion incurred by the simulation of these walks on weighted graphs.
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1 Introduction

The steady growth of data makes it increasingly important to control and reduce the communication of

algorithms. The CONGEST model [Pel00] is a widely studied model for low communication algorithms

on large graphs and sparse matrices. In thismodel, each vertex/variable occupies a separatemachine, and

communicates in synchronous rounds by sending messages of length$ (log=) to its neighbors given by

the edges of the underlying graph. This bandwidth restriction implies a polynomial lower bound in the

round complexity for many fundamental graph problems [PR00, Elk06, DSHK+12]. While early work on

efficient algorithms in this model has focused on the minimum spanning tree problem [GHS83, GKP98,

KP98], extensive work over the past few years has led to efficient algorithms for several more funda-

mental graph problems, such as approximate and exact single-source shortest paths [Nan14, HKN16,

Elk20, GL18, FN18, CM20], approximate and exact all-pairs shortest paths [HW12, HNS17, ARKP18,

EN18, LPP19, AR19, BN19, AR20], approximate and exact minimum cut [GK13, NS14, DHNS19, GNT20,

DEMN21], approximatemaximumflow [GKK+15], bipartitemaximummatching [AKO18], triangle count-

ing [IG17, CPZ19, CS19], and single-source reachability [GU15, JLS19].

A major development in sequential and parallel graph algorithms is the development of hybrid al-

gorithms that combine numerical and combinatorial building blocks. This line of work was initiated by

the seminal work of Spielman and Teng [ST14], which showed that a Laplacian linear system on a graph

can be solved in nearly linear time. Here, the Laplacian of a weighted undirected graph � = (+, �) is
defined as L(�) = D(�) − A(�), where D(�) is the diagonal weighted degree matrix, and A(�) is the
weighted adjacency matrix. Equivalently, if ®F ∈ R<

>0 are the edge weights,

L (�)DE =
{∑
(D,I) ∈� ®FDI if D = E,

− ®FDE otherwise.
.

Since then, there has been extensive work towards giving more efficient and simpler Laplacian sys-

tem solvers sequentially [KMP10, KMP11, KOSA13, CKM+14, KS16], as well as parallel versions [PS14,
KLP+16]. These results have in turn been used to give the state-of-the-art runtimes for a variety of graph

problems, including exact maximumflows, bipartitematchings, andmincost flows [Mad16, LS20b, LS20a,

CMSV17, AMV20, vdBLN+20], approximate maximum flows [KLOS14, She13, Pen16], and approximate

parallel shortest paths [Li20, ASZ20]. Ideas from the latter works have found application in the dis-

tributed setting, giving nearly optimal algorithms for approximatemaxflows [GKK+15] and approximate

single-source shortest paths [BKKL17] in the CONGEST model.

Our main result is an algorithm for solving graph Laplacian linear systems in the CONGEST model

in $ (=> (1) (√= +�)) rounds (Theorem 1), where = is the number of nodes in the underling graph and �

is its diameter. This nearly matches a lower bound of Ω̃(√= + �), which we show for completeness in

Appendix A by reduction to [DSHK+12].

Theorem 1. There is an algorithm in the CONGEST model that on a weighted graph � = (+, �, ®F) with
= vertices and diameter � , vector ®1 on the vertices of � , and error n < 0.1, produces in $ (=> (1) (=1/2 +
�) log(1/n)) rounds a vector ®G distributed over the vertices such that


®G − L(�)†®1




L(�)
≤ n ·




®1



L(�)

.

Theorem 2. In the CONGESTmodel of computation, solving Laplacian systems to accuracy n ≤ 1
2 requires

at least Ω̃(=1/2 + �) rounds of communication.

3



We give several applications towards designing hybrid algorithms for graph problems in the CON-

GEST model. Specifically, by combining our Laplacian solver with interior point methods [Mad16,

CMSV17], we obtain the first algorithms for exact computation of maximum flows, bipartite matchings,

and negative-weight shortest paths that run in a sublinear number of rounds in the CONGEST model

on sparse graphs (Section 7).

At a high level, we build ourCONGESTmodel algorithm by first building a parallel/PRAM algorithm

for solving Laplacian systems that only works with minors1 of the original graph, and show that one

round of communication necessary in our algorithm (such as matrix vector multiplication) between

neighbors on a minor can be simulated in the original graph in $̃ (√= +�) rounds. Previous methods for

computing low stretch spanning trees and approximate maximum flows [GKK+15] use a similar notion

of considering a graph on clusters of nodes in the original graph, however – to the best of our knowledge

– we are the first to work explicitly with the notion of minors. We are optimistic that our approach based

onminor vertex sparsifiers may provide a general framework for designingCONGESTmodel algorithms

with near optimal complexities.

The main backbone of our algorithm for solving Laplacian systems that works with minors only is

the parallel Laplacian solver of [KLP+16]. This solver relies on sparse spectral approximations of the

Schur complements of an = × = matrix, which can be thought of as a smaller matrix that preserves the

solutions of linear systems on a subset of coordinates in [=]. At a high level, the algorithm eliminates

onto (sparse) Schur complements of the original graph while adding edges, leading to graphs that are not

minors of the original graph. To resolve this, a major contribution of this paper is an efficient parallel

algorithm to construct a spectral sparsifier for a Schur complement which is a minor of the original

graph. While the existence of such a minor spectral sparsifier was known [LS18], the algorithm required

sampling a random spanning tree, and hence could not be implemented in parallel. We instead show that

a large batch of edges may be independently sampled at the same time using leverage scores (Definition

2.5), providing an arguably simpler and more direct analysis than [LS18].

1.1 Applications to Flow Problems

We briefly discuss how our Laplacian solver can be applied to achieve results on maximumflow, bipartite

matching, mincost flows, and negative weight shortest paths, and compare to previous complexities. We

achieve our bounds by combining our Laplacian system solver in Theorem 1 with recent interior point

methods of [Mad16, CMSV17].

For unit capacity graphs, the runtimes we achieve in Theorems 7, 8, and 9 for the maximum flow

problem, mincost flow, and negative weight shortest path problems are

$ (<3/7+> (1) (=1/2�1/4 + �)).

For sparse unweighted graphs with< = $ (=), and polynomially small diameter � = =2/7−Ω (1) , the algo-
rithms in Theorems 7, 8, and 9 run in a sublinear number of rounds, i.e. =1−Ω (1) rounds. To our knowledge,
these are the first exact sublinear round algorithms for unit maximum flows, bipartite matchings, and

negative weight shortest paths for any regime of diameter � . Our distributed maximum flow algorithm

extends to directed graphs, while the previous work by Ghaffari et al. [GKK+15] considered the approx-
imate setting and works only for undirected graphs. In fact, for the maximum flow problem, our results

1In fact, our algorithm deals with d-minors (Definition 4.1), which can be thought of as minors with congestion d , where

d ≥ 1 is a parameter. However, for the sake of simplicity, we refer to them as minors throughout the informal discussions of

our techniques in the introduction and overview.
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are – to the best of our knowledge – the fastest known in the low-diameter regime; see Section 1.2 for

further discussion.

At a high level, our runtime comes from two pieces. The results of [Mad16, CMSV17] show that in

$̃ (<3/7) rounds of an interior point method, in each round which involves solving a Laplacian system

on the underlying graph with edge weights/resistances, we can reduce the amount of residual flow to

$̃ (<3/7). The residual flow can routed combinatorially with $̃ (<3/7) rounds of an augmenting paths or

shortest paths computation. Therefore, the total number of rounds required to implement the interior

point method is$ (<3/7+> (1) (=1/2+�)) using Theorem 1, and the shortest path computations can be done

in $̃ (<3/7 (=1/2�1/4 + �)) rounds using the results of [CM20]. Combining these gives the result.

1.2 Related Work

Distributed Graph Algorithms Previous works in distributed algorithms most related to our result

and the corresponding techniques are the algorithms for simulating random walks and generating

random spanning trees [DSNPT13, GB20]. On unweighted, undirected graphs with diameter � , the

algorithms by Das Sarma, Nanongkai, Pandurangan, and Tetali [DSNPT13] generate an ℓ-step random

walk in $̃ (
√
ℓ�+�) rounds, and a random spanning tree in $̃ (

√
<�) rounds, respectively. There are well

known connections between sampling a large number of random walks and Laplacian solving [DST17,

DGT17]. However, it is not clear how to utilize these methods in the context of our algorithms, since

many of the intermediate graph structures we deal with involve dealing with weighted random walks,

which in turn leads to congestion issues when trying to simulate these walks in the distributed setting.

We discuss how to overcome such obstacles in Section 3.

There has also been work in the distributed setting relating to spectral graph properties. This in

particular includes distributed sparsification [KX16], PageRank [DSMPU15], Laplacian solvers in well-

mixing settings [GB20], and expander decomposition [CPZ19, CS19, CS20].

Continuous optimization methods have been used to give the state-of-the-art distributed algo-

rithms for approximate max-flow [GKK+15] and approximate transshipment [BKKL17]. Note however

that these approximation algorithms are tailored to undirected graphs and their running time depends

polynomially on 1/n (for a desired accuracy of n). Our max-flow routine also works on directed graphs

and only depends polylogarithmically on 1/n, which allows for computing a high-accuracy solution

and rounding it to an exact one. Furthermore, these prior approaches for ℓ∞ and ℓ1-norm minimization,

respectively, do not carry over to ℓ2-norm minimization (as would be needed for solving Laplacian sys-

tems) as it is not known how to efficiently sample from a collection of trees when using an ℓ2 variant of

tree-based graph approximations to build oblivious routing schemes.

In addition to these works, there are many papers related to the three problems we solve by ap-

plying our distributed Laplacian solver. There have been numerous results on exact and approximate

shortest path computation in the past decade [HW12, Nan14, HKN16, EN19a, Elk20, HNS17, GL18,

ARKP18, EN18, FN18, LPP19, EN19b, AR19, BN19, AR20, CM20]. For the single-source shortest paths

(SSSP) problem all of these works assume non-negative or positive edge weights. It is well-known that

the SSSP problem in presence of negative edge weights can be solved in$ (=) rounds by a variant of the
Bellman-Ford algorithm. To the best of our knowledge no algorithm that improves upon this bound has

been formulated (or implied) in the CONGEST model so far.

For distributed computations of maximum flows, Ghaffari, Karrenbauer, Kuhn, Lenzen, and

Patt-Shamir [GKK+15] designed an algorithm that returns an (1+n)-approximation in$ ((√=+�)=> (1)n−3)
rounds. In terms of exact algorithms, we are not aware of any paper claiming a sublinear number of
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rounds in the CONGEST model (cf. [GKK+15] for a detailed discussion of maximum flow for other dis-

tributed models). To the best of our knowledge, we need to compare ourselves with the following two

approaches:

• The problem can trivially be solved in $ (< + �) rounds by collecting the whole graph topology

in a single node and then solving the problem with internal computation.

• The Ford-Fulkerson algorithm [FF56] takes | 5 ∗ | iterations (where | 5 ∗ | is the value of a maximum

flow) and the running time in each iteration is dominated by the time needed to perform an B-C

reachability computation (on a directed graph). The latter problem can be solved in $̃ (√=�1/4 +
�) [GU15] or $̃ (√=+=1/3+> (1)�2/3) rounds, respectively, which yields total running time of $̃ ( | 5 ∗ | (√=�1/4+
�)) or $̃ ( | 5 ∗ | (√= + =1/3+> (1)�2/3)) rounds, respectively. In unit-capacity (“unweighted”) graphs,

where | 5 ∗ | ≤ =, this gives a total running time of $̃ (=3/2�1/4 + =�) or $̃ (=3/2 + =4/3+> (1)�2/3),
respectively.

Due to a well-known reduction to maximumflow, the bipartitemaximummatching problem is in-

timately connected to the maximumflow problem. In theCONGESTmodel, the fastest known algorithm

for computing a bipartitemaximummatching (of an unweighted graph) takes$ (= log=) rounds [AKO18]
–more precisely the algorithm takes$ (B∗ log B∗) rounds, where B∗ is the size of amaximummatching. Ob-

taining a subquadratic maximummatching algorithm for networks of arbitrary topology is a major open

problem [AK20]. In addition, there are numerous works on computing approximate matchings, which

are usually based on computing a maximalmatching, using the framework of Hopcroft and Karp [HK73],

or rounding a fractional matching (cf. [AK20] for an overview on approximate matching algorithms in

the CONGEST model).

Laplacian Solvers Our algorithmcombines both tree-basedultrasparsificationalgorithms [ST14, KMP10,

KMP11, CKM+14] and elimination-based algorithms that utilize Schur complements [KLP+16, KS16,
Kyn17]. Both types of algorithms were originally developed for the sequential model. The issue of

round complexity was previously addressed in parallel Laplacian solving [BGK+14, PS14].
We believe that a variant of [BGK+14] tailored to the CONGEST model gives a round complexity of

around =3/4 +�=1/4 as opposed to the bound in Theorem 1 to because the depth of the parallel algorithm

of [BGK+14] is more than polylogarithmic. The polylogarithmic depth parallel algorithm from [PS14] is

more difficult to convert to the CONGEST setting because it explicitly adds edges to the graph, which

causes increased congestion.

The outer layer recursion of our algorithm is akin to the recursive construction of solvers and pre-

conditioners present in Laplacian solving [Pen13, KLP+16], approximate max-flow [Pen16], and matrix

sampling [CP15, CLM+15, CMM17].

Parallel Laplacian solvers and spectral algorithms have also motivated the study of (nearly) log space

variants of these algorithms [MRSV17, MRSV19, AKM+20]. It’s an intriguing question to formally con-

nect these low space algorithms with distributed algorithms, both of which stem from works on low

iteration count algorithms.

Vertex Sparsification Critical to our result is the construction of minor based Schur complements by

Li and Schild [LS18]. Minor based sparsification has been studied for distances [CGH16, KNZ14], and

implicitly for cuts via hierarchical routing schemes [Räc02, RST14]. A more systematic treatment of uses

of such sparsifiers, in dynamic graph algorithms, can be found in [Gor19]. Some of the cut preserving
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vertex sparsifiers [Moi09, LM10, CLLM10, EGK+14, KR13], as well as their recent variations in small cut

settings [CDK+21] produce either minors or probability distribution over minors.

2 Preliminaries

We start by describing general notation we use throughout the paper.

General notation. Given a symmetric matrix M, we let ‖M‖2 = max‖G ‖2=1 |G⊤MG | denote the maxi-

mum absolute value of any eigenvalue. For a vector E and matrixM, we define ‖E ‖M def
=
√
E⊤ME . For pos-

itive real numbers 0,1 we say that 0 ≈n 1 if exp(−n)0 ≤ 1 ≤ exp(n)0. We say that a matrixM ∈ R=×= is

positive semidefinite if G⊤MG ≥ 0 for all G ∈ R=. For matricesA and B, we writeA � B if B−A is positive

semidefinite. For positive semidefinite matrices A,B we say that A ≈n B if exp(−n)A � B � exp(n)A.

Schur complements and Cholesky factorization. Our algorithms are based on Schur complements

and sparsified Cholesky factorization. At a high level, the Schur complement of an =×= matrix provides

a matrix which is equivalent under linear system solves on a subset of coordinates in [=].

Definition 2.1 (Schur complement). For an = ×= symmetric matrixM and subset of terminals T ⊆ [=],
let ( = [=]\T . Permute the rows/columns of M to write

M =

[
M [(,( ] M [(,T]
M [T,( ] M [T,T] .

]

Then the Schur complement ofM onto T is denoted SC(M, T) def
= M [T,T] −M [T,( ]M−1[(,( ]M [(,T] .

For a graph� and subset T ⊆ + (�), for simplicitywewrite SC(�,T) def
= SC(L� , T). It is well-known

that SC(�,T) is also a Laplacian.

Lemma 2.2 (Cholesky factorization). Given a matrix M ∈ R=×= , a subset T ⊆ [=], and ( = [=]\T , we
have

M−1 =

[
I −M−1[(,( ]M [(,T]
0 I

] [
M−1[(,( ] 0

0 SC(M, T)−1
] [

I 0

−M [T,( ]M−1[(,( ] I

]
.

The Cholesky factorization directly implies that the Schur complement represents the inverse of the

Laplacian on a subset of the coordinates.

Lemma 2.3 (e.g. Fact 5.4 in [DKP+17]). Let I be the identity matrix, and let J be the all 1 matrix. For any

graph � , and subset T ⊆ + (�) we have that

SC(�,T)† = (I − |T |−1J) (L†
�
) [T,T] (I − |T |−1J).

In addition, we have that

SC(�, T)(L†
�
) [T,T]SC(�, T) = SC(�, T).

An equivalent view is that the quadratic form of the Schur complement gives the minimum energy

extension of a vector on the terminals to the original vertex set, in the quadratic form of the original

Laplacian [Gre96, MP13].
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Lemma 2.4. (Lemma B.2. of [MP13], matrix version in Appendix A.5.5 of [BBV04]) For a graph � and a

T ⊆ + (�), the Schur complement of the Laplacian of� onto T , SC(�, T) satisfies for all vectors ®G [T ] :


®G [T ]

SC(�,T) = min

®G [+ \T] ∈R+ \T






[
®G [+ \T]
®G [T]

]




L(�)

.

Matrix Analysis Tools Our algorithm for computing Schur complement sparsifiers which are minors

requires computing and sampling via leverage scores.

Definition 2.5 (Effective resistance and leverage scores). For a graph � with resistances A4 , define

res� (4) def
= 1⊤4 L

†
�
14 and lev� (4) def

= res� (4)/A4 .
Note that 0 ≤ lev� (4) ≤ 1 and

∑
4∈� (�) lev� (4) = = − 1 for connected graphs� .

Let�\4 and�/4 denote the graphs resulting respectively from deleting and contracting edge 4. Note

that these correspond to setting the resistance of edge 4 to positive infinity or 0, respectively. The Wood-

bury matrix formula allows us to understand changes in the quadratic form when resistances of of the

edges change.

Lemma 2.6 (Woodbury matrix formula). For matrices A,U ,C,V of compatible sizes we have

(A + UCV )† = A† − A†U (C−1 + VA†U )−1VA†.

We use the following to understand the matrix martingales that arise in the analysis minor-based

Schur complements.

Lemma 2.7 (Freedman’s inequality formatrixmartingales [Tro11]). Consider amatrixmartingale (Y (:) ):≥0
whose values are symmetric matrices with dimension 3 and let (X (:) ):≥1 be the difference sequence X (:) def

=

Y (:) −Y (:−1) . Assume that the difference sequence is uniformly bounded in that ‖X (:) ‖2 ≤ ' almost surely

for : ≥ 1. Define the predictable quadratic variation random matrix

W (:) def
=

:∑
9=1

E[(X ( 9 ) )2 |X ( 9−1) ].

Then for all n ≥ 0 and f2 > 0 we have that

Pr
[
∃: > 0 : ‖Y (:) − Y (0) ‖2 ≥ n and ‖W (:) ‖2 ≤ f2

]
≤ 23 · exp

( −n2/3
f2 + 'n/3

)
.

The induced 2-norm of a symmetric matrix is bounded by its maximum row sum.

Lemma 2.8. For a symmetric matrix M ∈ R=×= , we have that

‖M‖2 ≤ max
8∈[=]

∑
9 ∈[=]
|M8 9 |.

Proof. For all vectors ®G , note by the AM-GM inequality that

®G⊤M®G =

∑
1≤8, 9 ≤=

®G8 ®G 9M8 9 ≤
∑

1≤8, 9 ≤=
®G28

��M8 9

�� ≤ max
8∈[=]

∑
9 ∈[=]

��M8 9

�� ∑
8∈[=]

®G28 ≤ max
8∈[=]

∑
9 ∈[=]

��M8 9

�� ‖G ‖22 .
�
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CONGESTmodel In theCONGESTmodel [Pel00], we are given a communication network� = (+, �)
with = nodes modelling processors that have unique $ (log=)-bit IDs, < edges modelling bidirectional

communication links between the processors, and diameter � . Initially, each node knows its own ID

and the IDs of its neighbors as well as the value of =. Computation in this model is carried out in rounds

synchronized by a global clock. In each round, every node sends to each of its neighbors an arbitrary

$ (log=)-bit message, receives the messages of its neighbors, performs arbitrary internal computation,

and stores arbitrary information for the next round. The main goal in this paper is to design algorithms

for graph problemswith a small number of rounds. For problems on directed graphs, the direction of each

edge is known by both of its endpoints, but the corresponding communication link is still bidirectional.

For problems on weighted graphs (involving, e.g., costs or capacities), the weight of each edge is known

by both of its endpoints, but the corresponding communication link still allows for direct transmission

of each message within a single round. In particular the diameter � always refers to the underlying

undirected, unweighted communication network. Our running time bounds hold under the assumption

that all weights are polynomial in =, which is a standard assumption in the CONGESTmodel literature.

3 Overview

Here we will give the main ideas behind our algorithm that efficiently solves Laplacians in a distributed

setting (Theorem 1). We start by discussing elimination-based parallel Laplacian algorithms which re-

move a constant fraction of vertices to reduce the size of the graph. This naturally leads to requiring

sparsifiers of the Schur complement that are minors of the original graph, whose existence is shown by

[LS18]. Our key contribution is a nontrivial distributed implementation of their construction by giving

a parallel variant of their algorithm that avoids the sampling of random spanning trees and samples by

approximate leverage scores. We analyze this algorithm using matrix martingales. Finally, to achieve

our main result we combine the algorithmwith tree-based ultrasparsifiers, an alternate vertex reduction

scheme that is not parallel but significantly reduces the size of the graph.

Parallel Laplacian Solvers via Elimination The starting point for our algorithm is based on the

poly(log=) round Laplacian system solvers in the PRAM model, namely the sparsified Cholesky algo-

rithm from [KLP+16]. This algorithm repeatedly finds a constant fraction of the vertices on which the

block minor is “almost independent” and hence easy to solve. The inverse of this block then gives the

result of eliminating these vertices, which is the Schur complement on the rest of the vertices, which we

view as the terminal vertices T .
More explicitly, this can be seen in the context of the Cholesky factorization in Lemma 2.2, where we

letM = L(�) be the Laplacian. We find an “almost independent” set of vertices( so that computingM−1[(,( ]
to high accuracy is simple using a preconditioned gradient descent method. Therefore, the remaining

difficulty in computingM−1 is simply from computing and inverting the Schur complement: SC(M, T)−1.
To do this, we first approximately compute the Schur complement SC(M,T), which is again a Laplacian,
and then recursively apply a Cholesky factorization to it again.

However, this resulting Schur complement may be dense, even if the original graph is sparse. For

example, eliminating the center of a star results in a complete graph on the peripheral leaf vertices. To

make this more efficient, sparsified elimination algorithms [KLP+16, CGP+18, DPPR20] seek to directly

construct a sparse approximation of this Schur complement. This can be done in a variety of ways, but

algorithmically one of the simplest interpretations is through the sampling of random walks. Indeed,
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matrix concentration bounds imply that the following procedure suffices for generating a good approx-

imation of SC(�, T) with high probability:

Algorithm 1: Approximate Schur Complement using Random Walks

1 Set � ← ∅
2 for each edge 4 = DE in� do

3 Repeat the following two steps $ (n−2 log=) times:

4 Random walk both endpoints D and E until they are in T , to CD and CE respectively.

5 Add an edge to the approximate Schur complement � between CD and CE , with weight as

function of the original weight, and the number of steps the walk took.

6 return �

By picking T so that+ \T is almost independent, that is, each vertex not in T has a constant fraction

of its weight going to T , it can be ensured that the lengths of the walks don’t exceed $ (log=) with
high probability. As a result, PRAM algorithms are able to construct low error Schur complements by

sampling about $ (n−2 log=) walks of length $ (log=) per edge. As the number of vertices in the Schur

complement decreases by a constant factor per step, this process yields a parallel solver with another

$ (log=) factor overhead in parallel depth.

Another contribution we make is introducing a new technique that reduces the congestion of these

random walks by augmenting the terminal set T . More concretely, recall that in the CONGEST model,

each edge can only pass $ (log=) bits per round. Random walks in weighted graphs on the other hand

may severely congest some edges: consider for example, a star with one very heavily weighted edge,

and rest lightly weighted. All the walks starting from the lightly weighted edges’ end points will likely

utilize the heavily weighted edges, leading to a congestion of Ω(=) in the worst case. To resolve this we

use a procedure to estimate the congestion of an edge accumulated by such random walks. We use these

estimates to add edges with high estimated congestion to T to ensure that remaining edges have low

congestion.

However, a single elimination round only removes a constant fraction of the vertices, but performing

Ω(log=) elimination rounds would result in a significant blowup in the congestion (as each elimination

round accumulates $̃ (1) congestion). Hence, we only perform Θ((log log=)2) rounds of elimination

between sparsification steps. A formal statement of this elimination scheme is shown in Lemma 4.10.

Minor Sparsifiers and its Distributed Construction After that, the core component of our algo-

rithm is that we must bring the Schur complement back to being a minor of the original graph, by

constructing a spectral sparsifier of the Schur complement which is a minor of the original graph (The-

orem 3). That is, the Schur complement results from contracting connected subsets of vertices in the

original graph and reweighting edges. Minors are particularly useful for distributed algorithms because

we can simulate one round of communication between neighbors on a minor, such as multiplying by

the incidence matrix, in $̃ (√= + �) rounds (Lemma 4.3). They interact particularly well with the par-

allel Laplacian solving algorithm which is a short sequence of matrix-vector multiplies on submatrices.

Existence and efficient sequential constructions of these objects were first shown by Li and Schild [LS18].

A key contribution of ourwork is to give a simplified parallel variant of the algorithmof Li-Schild [LS18]

which leads to an efficient distributed implementation. The algorithm of [LS18] works by contracting

or deleting edges 4 with probability given by its leverage score. The main difference is that instead
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of sampling edges using a random spanning tree, we identify a large subset of edges that can be sam-

pled independent of each other, without affecting each edges’s sampling probability too much. This is

done via localization [SRS18], which provides an overall bound on the total influence of edges’ effective

resistances.

The algorithm then comprises of three main steps, and is analyzed via matrix martingales.

1. Calculating edges’ influence on the Schur complement (Lemma 5.6).

2. Computing the mutual influence of edges’s resistances, and picking a large set that has small

mutual influence, which we term the steady set (Definition 5.1).

3. Among these steady edges, randomly contract/delete them with probability given by an approxi-

mation of their leverage scores.

Note that all steps actually require solving Laplacian systems in the original graph, which seems circular.

We address this using the now well understood recursive approach of [Pen16], which we discuss below

together with the overall algorithm.

Overall Recursive Scheme Given a graph� , the goal of the algorithm is to return a chain of approx-

imate Schur complements of � , each with 0.99 as many vertices as the previous. This chain has length

$ (log=), and after built, can be applied in $ (log=) steps and $̃ (√= + �) rounds to solve a Laplacian

system to high accuracy in the CONGEST model. The construction of the chain is as follows – pick

3 = Θ((log log=)2) say, and run 3 rounds of the sparsified Cholesky elimination scheme (Lemma 4.10)

to reduce the graph size to 0.993 |+ (�) |. Now, use the minor Schur complement algorithm (Theorem 3)

to build a minor of� which is a Schur complement sparsifier with respect to the remaining 0.993 |+ (�) |
remaining vertices.

To compute the Schur complement sparsifier, we employ a separate recursion, because the Schur

complement sparsifier construction requires Laplacian system solves to compute leverage scores (and

other similar measures). To do this, we ultrasparsify the graph� , thus reducing the size by a factor of :

(Lemma 4.9), and build a Schur complement chain on the ultrasparsifier. Now, we can use this solver on

the ultrasparsifier to precondition a solver on� with $̃ (
√
:) steps of preconditioned conjugate gradient

to compute the desired leverage scores. We want to emphasize the final Schur complement chain we

output for � does not involve the ultrasparsifier, and hence can still be applied in parallel.

One final technical detail is that due to needing to solve submatrices of the Laplacian (Lemma 5.6)

we require tracking graphs that embed with low congestion in the original graph, a slight generalization

of minors (Definition 4.1). We ensure that the congestion stays as => (1) throughout the algorithm, so it

does not affect the final round complexity.

4 Full Algorithm and Analysis

The goal of this section is to formalize the notions and graph reduction algorithms described in Section

3, and provide a bound for the overall performance.

4.1 Distributed Communication on Minors of Overlay Networks

As described, we will work with graphs that are minors of the original graph, which doubles as the

communication network. However, some of our linear systems reductions duplicate edges, leading to
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minors with slightly larger congestion. So we will need to incorporate such congestion parameters into

our definition of minors. The following definition is a direct extension of the distributed # -node cluster

graph from [GKK+15], with congestion incorporated, and the connection with graph minors stated more

explicitly.

Definition 4.1. Given a parameter d ≥ 1, a graph� is a d-minor of� if we have the followingmappings:

1. For each vertex of� , D ∈ + (�):

(a) A subset of vertices of� , which we term a supervertex, (�→� (D) ⊆ + (� ), with a root vertex
+�→�
<0? (D) ∈ (�→� (D).

(b) A connected subgraph of� on(�→� (D), which for simplicitywewill keep as a tree,)�→� (D).
Note that this requires (�→� (D) being connected in � .

2. A mapping of the edges of � onto edges of � , or self-loops on vertices of � , such that for any

D�E� = 4� ∈ � (�), the mapped edge ��→�
<0? (4� ) = 4� = D�E� satisfies D� ∈ (�→� (D� ) and

E� ∈ (�→� (E�).

and additionally:

1. Each vertex of � is contained in at most d supervertices +�→�
<0? (E�) for some E� .

2. Each edge of � appears as the image of the edge map ��→�
<0? (·), or in one of the trees connecting

supervertices, )�→� (E�) for some E� , at most d times.

When d = 1, then� is simply a minor of � .

Finally, we say a d-minor mapping is stored distributedly, or that� is d-minor distributed over � if

it’s stored by having all the images of the maps recording their sources. That is, each E� ∈ + (� ) records

1. All E� for which E� ∈ +�→�
<0? (E�),

2. For each edge 4� incident to E� (including self loops that may not exist in original � ):

(a) All vertices for which 4� is in the corresponding tree{
E� | 4� ∈ )�→�

(
E�

)}

(b) All edges 4� that map to it.

We will denote the original graph, which doubles as the overlay network, using � .

Note that the vertex mappings, or even the neighborhoods of � , cannot be stored at one vertex in

� . This is because both of these sets may have size up to Ω(=), and passing that information to a single

low degree vertex would incur too much communication.

We store vectors on � by putting the values at the root vertices of each of its corresponding super-

vertices. This notion of rooting can be made more explicit: we can compute directions for all edges in

the spanning tree )�→� (E�) that point to the corresponding root vertex +�→�
<0? (E�).
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Lemma 4.2. Given a graph� that’s d-minor distributed over a communication network� = (+, �) with =
vertices,< edges, and diameter � , we can compute in$ (d

√
= log= +�) rounds of communication on� , an

orientation for each E� and each edge 4 ∈ )�→� (E�) such that each vertex other than the root has exactly

one edge pointing away from it, and following these edges leads us to the root.

We will make extensive usage of the following lemma, which we prove in Appendix B, about sim-

ulating communications on � using rounds of CONGEST communications in a graph that it d-minor

distributes into.

Lemma 4.3. Let� = (+, �) be a graph with= vertices and< edges that d-minor distributes into a communi-

cation network� = (+, �) with = vertices,< edges, and diameter � . In the CONGESTmodel, the following

operations can be performed with high probability using $ (Cd
√
= log= + �) rounds of communication on

� :

1. Each +�→�
<0? (E�) sends $ (C log=) bits of information to all vertices in (�→� (E�).

2. Simultaneously aggregate the sum/minimum of $ (C log=) bits, from all vertices in (�→� (E�) to
+�→�
<0? (E�) for all E� ∈ + (�).

One direct use of this communication result is that it allows us to efficiently compute matrix-vector

products.

Corollary 4.4. Given a matrix A with nonzeroes supported on the edges of a graph � that’s d-minor

distributed over a communication network � = (+, �) with = vertices, < edges, and diameter � , with

values stored with endpoints of the corresponding edge, and a vector ®G ∈ R |+ (�) | stored distributedly on the

vertices +�→�
<0? (E�), we can compute the vector A®G , also stored at +�→�

<0? (E�) using $ (Cd
√
= log= + �) of

communication in the CONGEST model, with high probability.

Proof. We first invoke Lemma 4.3 to pass ®G+� to all of (�→� (+� ). Then in $ (d) round of distributed

communication, we can pass these entries (multiplied by the weights of A) to the corresponding row

index. That is, if ��→�
<0? (D�E�) = D�E� , we pass

AD� E� ®GE�

from E� to D� . Running Lemma 4.3 again to sum together the passed values over each super vertex then

brings the values to the root vertex. �

Another implication is that that the Koutis-Xu distributed sparsification algorithm can also be simu-

lated on� in the CONGEST model, with a round overhead of $̃ (
√
= + �) [KX16].

Corollary 4.5. There is an algorithm, SpectralSparsifyKX, that for a graph � that d-minor distributes

into � , and some error 0 < n < 0.1, SpectralSparsifyKX(�,�, n) with high probability returns in

$
((
d
√
= log= + �

)
log8 =/n2

)

rounds, a graph �̃ , distributed as a d-minor in� such that:

1. �̃ is a (reweighted) subgraph of� ,
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2. L(�) ≈n L(�̃),

3. �̃ has $̃ ( |+ (�) |/n2) edges.

Proof. The algorithm by [KX16] is based on repeated spanner computations on subgraphs (which are

obtained by removing edges from previous spanner computations and uniform sampling of edges). The

spanner algorithm of [BS07], internally used in [KX16], iteratively grows clusters – organized as span-

ning trees rooted at center nodes – and adds edges to the spanner. In each iteration some of the existing

clusters first are sampled at random, which is done by the respective center node who then forwards the

information whether the cluster is sampled to all nodes in its cluster. Then each node decides whether

it joins a cluster and if so which one and also decides which of its neighboring edges it adds to the span-

ner. These decisions are made by comparing the weights of its incident edges. Thus, all the operations

performed by nodes in the algorithm of [BS07], and thus the algorithm of [KX16] fit the description of

operations supported by Lemma 4.3. �

We will call this sparsification routine regularly, often as preprocessing. This is partly because sub-

graphs 1-minor distributes into itself trivially.

The minor property also compose naturally: a minor of a minor of� is also a minor of� . This holds

with d-minors too, up to multiplications of the congestion parameters. We prove the following general

composition result in Appendix B.

Lemma 4.6. Given graphs�1, and�2 via a d2-minor distribution of�2 into� , and a d1-minor distribution

of �1 into �2 stored on the root vertices of the supervertices of �2, and images of �2’s edges in � , we can,

with high probability, compute using $̃ (d1d2 · (
√
= +�)) rounds of communication in the CONGESTmodel

a d1 · d2-minor distribution of�1 into� .

We will always work with congestions in the => (1) range: this essentially means we can perform

distributed algorithms on� , while paying an overhead of about
√
= +� in round complexity to simulate

on the original graph.

The composition of minors from Lemma 4.6 implies, among others, that a subset of edges can be

quickly contracted.

Corollary 4.7. Given � that’s d-minor distributed on � , along with a subset of edges � ⊆ � (�) then we

can obtain a d-minor distribution of�/� (� with � contracted), into� in $̃ (d (
√
= +�)) rounds, under the

CONGEST model of computation.

The proof of this requires running $ (log=) rounds of parallel contraction on the edges of � . We

defer it to Appendix B as well.

4.2 Laplacian Building Blocks

Some of our algorithm require working with submatrices of Laplacians, which may not be Laplacians

anymore, but are still SDD. Fortunately, we can reduce solving an SDD matrix on a graph to solving a

Laplacian on a 2-minor. The proof is straightforward and can be found in [Gre96] or [ST14].

Lemma 4.8 (Gremban [Gre96]). Given an =-by-= SDD matrix M that d-minor distributes into � , we can

construct a graph � on 2= vertices, along with a 2d-minor distribution of � into� with vertices 8 and = + 8’s
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roots mapping to the same root vertex, so that for any vector ®1 ∈ R= and any vectors ®G ∈ R2= such that




®G − L (� )†
[
®1
®1

]





L(� )
≤ n







[
®1
®1

]





L(� )†

,

we have 



 ®G1:= − ®G=+1:2=2
−M†®1






M

≤ n



®1




M†
.

In this section we outline the main pieces needed to prove Theorem 1. As described in Section 3,

we require three main graph reduction procedures: ultrasparsification (Lemma 4.9), sparsified Cholesky

(Lemma 4.10), and minor-based Schur complements (Theorem 3).

The ultrasparsification procedure, based on [ST14, KMP10], allows us to significantly reduce the size

of the graph and maintain congestion, but incurs a large approximation error.

Lemma 4.9. There is a routine UltraSparsify(�, :) in the CONGEST model that given a graph � with

= vertices and< edges, that d-minor distributes into the communication network� , which has = vertices,<

edges, and diameter � , along with a parameter : , produces in $ (=> (1) (d
√
= + �)) rounds a graph � such

that:

1. � is a subgraph of� ,

2. � has at most = − 1 +<2$ (
√
log= log log=)/: edges.

3. L(�) � L(� ) � :L(�).

Furthermore, the algorithm also gives �̂,Z1, Z2,� such that

1. �̂ 1-minor distributes into � such that �̂ = SC(�,�) with |� | =<2$ (
√
log= log log=)/: .

2. There are operators Z1 and Z2 evaluable with$ (d
√
= log=+�) rounds of CONGEST communication

on� such that:

L (� )† = Z⊤1

[
Z2 0

0 L
(
�̂
)†

]
Z1

The elimination procedure, based on [KLP+16], incurs small approximation error, but significantly

increases the congestion.

Lemma 4.10. There is a routine Eliminate(�,3, n) in the CONGEST model that given a graph � that

d-minor distributes into a communication network� , along with step count 3 and error n, produces in

$ ((n−6 log14 =)3 (d
√
= log= + �))

rounds a subset T and access to operators Z1 and Z2 such that

1. |T | ≤ ( 4950 )3 |+ (�) |.

2. The cost of applying Z1, Z
⊤
1 and Z2 to vectors is$ ((n−6 log14 =)3 (d

√
= log= +�)) rounds of commu-

nication on� .
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3. L(�)† is (1 ± n)3 -approximated by a composed operator built from Z1, Z2, and the inverse of the of

the Schur complement of L(�) onto � , SC(L(�),�):

(1 − n)3 L (�)† � Z⊤1

[
Z2 0

0 SC (L (�) , �)†
]
Z1 � (1 + n)3 L (�)†

Note that we cannot directly set 3 = Ω(log=) to finish with |T | a constant: (log=)log= may be even

larger than =. So we need to bring the structure back to a minor of the original communication network.

For this we use the construction of spectral vertex sparsifiers that are minors [LS18], modified to not use

random spanning trees.

Theorem 3. There is a routine ApproxSC(�,T , n) in the CONGEST model that given a graph � with

= vertices and < edges that d-minor distributes into the communication network � , a subset of vertices

T ⊆ + (�), an error parameter n < 0.1, and access to a (distributed) Laplacian solver Solve, it returns a

graph � , represented as a distributed d-minor of� such that:

1. T ⊆ + (� ),

2. � has $ ( |T |n−2 log2 =) edges (and hence at most that many vertices as well).

3. The Schur complements of� and � well approximate each other, i.e.,

SC (�, T) ≈n SC (�,T) .

The cost of this computation consists of:

1. $ (n−3 log10 =) calls to Solve with accuracy 1/poly(=) on graphs that 2d-distribute into� .

2. An overhead of $ (d (=1/2 + �)n−3 log11 =) rounds.

4.3 Schur complement chains and a proof of Theorem 1

In this section, we formally show how to combine Lemma 4.10, Lemma 4.9, and Theorem 3 to efficiently

construct a Schur complement chain and prove Theorem 1.

Definition 4.11. For a graph� of = vertices, {(�8 ,Z8,1,Z8,2, T8)}C8=1 is a (W, n)-Schur-complement solver

chain of� if the following conditions hold.

1. �1 = � .

2.

(1 − n) L (�8 )† � Z⊤8,1

[
Z8,2 0

0 SC (L (�8 ) , T8)†
]
Z8,1 � (1 + n) L (�8 )†

3. T8 ⊂ + (�8+1) ⊂ + (�8 ) and SC(�8, T8) ≈n SC(�8+1,T8 )

4. |+ (�8 ) | ≥ W · |+ (�8+1) | if 8 < C , and |+ (�C ) | ≤ W .
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Algorithm 2: PseudoinverseMulti ({(�8 ,Z8,1,Z8,2,T8 ) | 9 ≤ 8 ≤ C}, ®1)
1 ®D ← Z 9,1

®1;
2 if 9 = C then

3 ®E ← SC(�C ,TC )†®D [TC ] ;

4 return Z)
C,1

[
ZC,2®D [+ (�C )\TC ]

®E

]
;

5 else

6 ®D1 ← ®D [T9 ] −
®D)[T9 ]
®1

‖®1‖22
· ®1;

7 ®E ← PseudoinverseMulti

(
{(�8 ,Z8,1,Z8,2, T8) | 9 + 1 ≤ 8 ≤ C},

[ ®0
®D1

] )
;

8 ®E1 ← ®E [T9 ] −
®E)[T9 ]
®1

‖®1‖22
· ®1;

9 return Z)
9,1

[
Z 9,2®D [+ (� 9 )\T9 ]

®E1

]
;

Lemma 4.12. Let� be a communication network with = vertices and< edges. Let

{(�8 , Z8,1,Z8,2,T8)}C8=1 be a (W, n)-Schur-complement solver chain of graph � for some W ≥ 2 and n ≤ 1
� log=

for large constant � , satisfying the following conditions:

1. �8 d-minor distributes into� .

2. Linear operators Z8,1 and Z8,2 can be evaluated in $ (=> (1) (=1/2 + �)) rounds.

Then for a given vector ®1, Algorithm PseudoinverseMulti computes a vector ®G in

$ (d=> (1) (=1/2 + �)) rounds such that


®G − L (�)† ®1



L(�)
≤ 2n log= ·




®1



L(�)†

.

The correctness proof rely heavily on the following conversion from operator guarantees to error

guarantees.

Lemma 4.13. (Lemma 1.6.7 of [Pen13]) If A and B are two symmetric PSD matrices such that A ≈X B† for
some 0 < X < 1, then for any vector ®1, we have


A®1 − B†®1




B
≤ X




®1



B†
.

Proof of Lemma 4.12. We prove this lemma by induction on 9 . For the base case 9 = C , we have that

Z)
C,1

[
ZC,2®D [+ (�C )\TC ]

®E

]
= Z)

C,1

[
ZC,2®D [+ (�C )\TC ]
SC(�C ,TC )†®D [TC ]

]

=Z)
C,1

[
ZC,2 0

0 SC(�C , TC )†
]
®D = Z)

C,1

[
ZC,2 0

0 SC(�C ,TC )†
]
ZC,1
®1,

(1)
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in which

(1 − n)L(�C )† � Z)
C,1

[
ZC,2 0

0 SC(�C , TC )†
]
ZC,1 � (1 + n)L(�C )†. (2)

By Lemma 4.13 and combining (1) and (2), we have



Z)
C,1

[
ZC,2®D [+ (�C )\TC ]

®E

]
− L(�C )†®1






L(�C )

≤ n



®1




L(�C )†
.

We suppose that it holds for case 9 + 1, i.e.,


PseudoinverseMulti ({(�8 ,Z8,1, Z8,2, T8) | 9 + 1 ≤ 8 ≤ C}, ®1) − L(� 9+1)†®1




L(� 9+1)

≤2(C − 9)n



®1




L(� 9+1)†
,

then we have that 



®E − L(� 9+1)†
[ ®0
®D1

]




L(� 9+1)

≤ 2(C − 9)n





[ ®0
®D1

]




L(� 9+1)†

. (3)

Lemma 2.4 gives




®E [T9 ] −
(
L(�†9+1)

[ ®0
®D1

] )
[T9 ]







SC(� 9+1,T9 )

≤




®E − L(� 9+1)†

[ ®0
®D1

]




L(� 9+1)

. (4)

Combining (3) and (4), we have




®E [T9 ] −
(
L(�†9+1)

[ ®0
®D1

] )
[T9 ]







SC(� 9+1,T9 )

≤ 2(C − 9)n





[ ®0
®D1

]




L(� 9+1)†

. (5)

Now we prove the case 9 . By triangle inequality, we have that



Z)
9,1

[
Z 9,2®D [+ (� 9 )\T9 ]

®E1

]
− L(� 9 )†®1






L(� 9 )

(6)

≤




Z)

9,1

[
Z 9,2®D [+ (� 9 )\T9 ]

®E1

]
− Z)

9,1

[
Z 9,2 0

0 SC(� 9 , T9 )†
]
Z 9,1
®1





L(� 9 )

(7)

+




Z)

9,1

[
Z 9,2 0

0 SC(� 9 ,T9 )†
]
Z 9,1
®1 − L(� 9 )†®1






L(� 9 )

. (8)

Obviously, for (8), Lemma 4.12 gives



Z)
9,1

[
Z 9,2 0

0 SC(� 9 ,T9 )†
]
Z 9,1
®1 − L(� 9 )†®1






L(� 9 )

≤ n



®1




L(� 9 )†
. (9)
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Now our task is to bound (7),



Z)
9,1

[
Z 9,2®D [+ (� 9 )\T9 ]

®E1

]
− Z)

9,1

[
Z 9,2 0

0 SC(� 9 ,T9 )†
]
Z 9,1
®1





L(� 9 )

=





Z)
9,1

[
Z 9,2®D [+ (� 9 )\T9 ]

®E1

]
− Z)

9,1

[
Z 9,2 0

0 SC(� 9 ,T9 )†
]
®D





L(� 9 )

=





Z)
9,1

[
Z 9,2®D [+ (� 9 )\T9 ]

®E1

]
− Z)

9,1

[
Z 9,2®D [+ (� 9 )\T9 ]
SC(� 9 ,T9 )†®D [T9 ]

]




L(� 9 )

=





Z)
9,1

[ ®0[+ (� 9 )\T9 ]
®E1 − SC(� 9 , T9 )†®D [T9 ]

]




L(� 9 )

=






[ ®0[+ (� 9 )\T9 ]
®E1 − SC(� 9 , T9 )†®D [T9 ]

]




Z 9,1L(� 9 )Z)

9,1

.

(10)

By triangle inequality, (10) gives




[ ®0[+ (� 9 )\T9 ]
®E1 − SC(� 9 , T9 )†®D [T9 ]

]




Z 9,1L(� 9 )Z)

9,1

≤





[ ®0[+ (� 9 )\T9 ]
®E1 − SC(� 9+1,T9 )†®D [T9 ]

]




Z 9,1L(� 9 )Z)

9,1

+





[ ®0[+ (� 9 )\T9 ]
SC(� 9+1,T9 )†®D [T9 ] − SC(� 9 ,T9 )†®D [T9 ]

]




Z 9,1L(� 9 )Z)

9,1

,

(11)

in which 




[ ®0[+ (� 9 )\T9 ]
®E1 − SC(� 9+1, T9 )†®D [T9 ]

]




Z 9,1L(� 9 )Z)

9,1

=






[ ®0[+ (� 9 )\T9 ]
®E1 − P (L(� 9+1)†)) [T9 ,T9 ]P ®D [T9 ]

]




Z 9,1L(� 9 )Z)

9,1

=






[ ®0[+ (� 9 )\T9 ]
®E1 − P (L(� 9+1)†)) [T9 ,T9 ] ®D1

]




Z 9,1L(� 9 )Z)

9,1

=











®0[+ (� 9 )\T9 ]

P®E [T9 ] − P
(
L(� 9+1)†

[ ®0
®D1

] )
[T9 ]











Z 9,1L(� 9 )Z)

9,1

=






®E [T9 ] −
(
L(� 9+1)†

[ ®0
®D1

] )
[T9 ]







P (Z 9,1L(� 9 )Z)

9,1) [T9 ,T9 ]P
,

(12)

where P is the projectionmatrix of the space spanned by SC(� 9+1,T9 ). Furthermore, the vectors ®D1 and ®E1
are the projections of the vectors ®D [T9 ] and ®E [T9 ] onto P respectively.

By the given condition, we have that

L(� 9 )† ≈n Z)
9,1

[
Z 9,2 0

0 SC(� 9 , T9 )†
]
Z 9,1. (13)
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Multiplying the both sides of the LHS and RHS of (13) by L(� 9 ) gives

L(� 9 ) ≈n L(� 9 )Z)
9,1

[
Z 9,2 0

0 SC(� 9 ,T9 )†
]
Z 9,1L(� 9 ). (14)

Multiplying the left (resp. right) side of the LHS and RHS of (14) by Z 9,1 (resp. Z
)
9,1) gives

Z 9,1L(� 9 )Z)
9,1 ≈n Z 9,1L(� 9 )Z)

9,1

[
Z 9,2 0

0 SC(� 9 , T9 )†
]
Z 9,1L(� 9 )Z)

9,1, (15)

which implies that [
Z 9,2 0

0 SC(� 9 , T9 )†
]
≈n (Z 9,1L(� 9 )Z)

9,1)† (16)

and

Z 9,1L(� 9 )Z)
9,1 ≈n

[
Z
†
9,2 0

0 SC(� 9 ,T9 )

]
. (17)

Moreover, (17) gives

(Z 9,1L(� 9 )Z)
9,1) [T9 ,T9 ] ≈n SC(� 9 ,T9 ). (18)

Multiplying the both sides of the LHS and RHS of (18) by P gives

P (Z 9,1L(� 9 )Z)
9,1) [T9 ,T9 ]P ≈n SC(� 9 ,T9 ). (19)

In addition, SC(� 9+1, T9 ) ≈n SC(� 9 , T9 ). Combining with (19), we have

P (Z 9,1L(� 9 )Z)
9,1) [T9 ,T9 ]P ≈2n SC(� 9+1,T9 ). (20)

Getting back to (12), by (20) we have that




®E [T9 ] −
(
L(� 9+1)†

[ ®0
®D1

] )
[T9 ]







P (Z 9,1L(� 9 )Z)

9,1) [T9 ,T9 ]P

≤4n





®E [T9 ] −

(
L(� 9+1)†

[ ®0
®D1

] )
[T9 ]







SC(� 9+1,T9 )

.

(21)

Combining (21) with (5) gets




®E [T9 ] −
(
L(� 9+1)†

[ ®0
®D1

] )
[T9 ]







P (Z 9,1L(� 9 )Z)

9,1) [T9 ,T9 ]P
≤ 2(C − 9)n4n






[ ®0
®D1

]




L(� 9+1)†

. (22)
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Now consider bounding






[ ®0
®D1

]




L(� 9+1)†

,






[ ®0
®D1

]




L(� 9+1)†

= ‖®D1‖ (L(� 9+1)†) [T9 ,T9 ] =


P ®D [T9 ]

(L(� 9+1)†) [T9 ,T9 ]

=


®D [T9 ]

P (L(� 9+1)†) [T9 ,T9 ]P

=


®D [T9 ]

SC(� 9+1,T9 )†

≤ 4n/2


®D [T9 ]

SC(� 9 ,T9 )† = 4

n/2 ‖®D‖A ,

(23)

where A =

[
0 0

0 SC(� 9 ,T9 )†
]
�

[
Z 9,2 0

0 SC(� 9 ,T9 )†
]
, then






[ ®0
®D1

]




L(� 9+1)†

≤ 4n/2



Z 9,1

®1




A
= 4n/2




®1



Z)
9,1AZ 9,1

≤ 4n



®1




L(� 9 )†
. (24)

Combining (22), (24) with (12), we have that




[ ®0[+ (� 9 )\T9 ]
®E1 − SC(� 9+1,T9 )†®D [T9 ]

]




Z 9,1L(� 9 )Z)

9,1

≤ 2(C − 9)n42n



®1




L(� 9 )†
. (25)

Another item in (11) is




[ ®0[+ (� 9 )\T9 ]
SC(� 9+1,T9 )†®D [T9 ] − SC(� 9 ,T9 )†®D [T9 ]

]




Z 9,1L(� 9 )Z)

9,1

=


SC(� 9+1, T9 )†®D [T9 ] − SC(� 9 ,T9 )†®D [T9 ]




(Z 9,1L(� 9 )Z)

9,1) [T9 ,T9 ]
.

(26)

By (18), we have 

SC(� 9+1,T9 )†®D [T9 ] − SC(� 9 ,T9 )†®D [T9 ]



(Z 9,1L(� 9 )Z)

9,1) [T9 ,T9 ]

≤4n/2


SC(� 9+1, T9 )†®D [T9 ] − SC(� 9 , T9 )†®D [T9 ]




SC(� 9 ,T9 ) .

(27)

By the fact SC(� 9+1,T9 ) ≈n SC(� 9 ,T9 ) and applying Lemma 4.13, we have

SC(� 9+1,T9 )†®D [T9 ] − SC(� 9 , T9 )†®D [T9 ]



SC(� 9 ,T9 ) ≤ n



®D [T9 ]

SC(� 9 ,T9 )† . (28)

Recall that in (23) and (24) we have



®D [T9 ]

SC(� 9 ,T9 )† = ‖®D‖A =




Z 9,1
®1




A
=




®1



Z)
9,1AZ 9,1

≤ 4n/2



®1




L(� 9 )†
. (29)

Combining (26), (27), (28) and (29) gives




[ ®0[+ (� 9 )\T9 ]
SC(� 9+1, T9 )†®D [T9 ] − SC(� 9 ,T9 )†®D [T9 ]

]




Z 9,1L(� 9 )Z)

9,1

≤ n4n



®1




L(� 9 )†
. (30)
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Finally, combining (25), (30) with (9), we have that for the case 9 ,



Z)
C,1

[
ZC,2®D [+ (�C )\TC ]

®E

]
− L(�C )†®1






L(�C )

≤
[
2(C − 9)n42n + n4n + n)

] 


®1



L(� 9 )†

. 2(C − 9 + 1)n



®1




L(� 9 )†
.

Since C ≤ log=, we can prove that



Z)
1,1

[
Z1,2®D [+ (�1)\T1 ]

®E

]
− L(�1)†®1






L(�1)

≤ 2n log=



®1




L(�1)†
,

that is, 


®G − L(�)†®1



L(�)
≤ 2n log=




®1



L(�)†

.

�

Algorithm 3: Distributed Laplacian Solver

1 procedure Solve(�)
2 � ′← SpectralSparsifyKX(�)
3 (�1,Z1,1,Z1,2, T1,�2) ← UltraSparsify(� ′, :)
4 {(�8 , Z8,1,Z8,2,T8 )}C8=2 ← BuildChain(�2, 3, n, :)
5 solve L(�) ®G = ®1 by preconditioned Chebyshev with�1 as preconditioner s.t. L(�1) ®~ = ®2 is

approximated by PseudoinverseMulti({(�8 ,Z8,1, Z8,2, T8)}C8=1, ®2).
6 procedure BuildChain(�,3, n, :)
7 if |+ (�) | ≤ : then

8 return ;

9 (Z1,Z2,�) ← Eliminate(�,3, n).
10 � ← ApproxSC(�,�, n)
11 return (�,Z1, Z1,�) ∪ BuildChain(�,3, n, :)

Proof. (of Theorem 1) The parameters are set as follow:

• n = ( 1
log= )10.

• 3 = (log log=)2

• : = 2(log=)
2/3

The correctness of the algorithm is obtained by Lemma 4.3, Lemma 4.9, Lemma 4.10, Theorem 3 and

Lemma 4.12.

Now we bound the number of rounds required. By Lemma 4.10, Theorem 3 we have that the Schur-

complement chain obtained for graph� satisfying the following conditions

|+ (�) | = |+ (�1) | ≥ |+ (�2) |2$ (
√
log= log log=)/: = |+ (�2) |/:1−> (1)
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and

|+ (�8 ) |/|+ (�8+1) | ≥ n−2 log2 =/0.993 = 2Θ( (log log=)
2) .

Hence, the Schur-complement chain obtained by the BuildChain algorithm is a (2Θ( (log log=)2) , n)-Schur-
complement chain of length$ (log=/(log log=)2). By Lemma 4.12, PseudoinverseMulti for the Schur-

complement chain takes$ (d=> (1) (=1/2 + �)) rounds.
Let 5 (=, d) denote the number of rounds required by Algorithms Solve and BuildChain on a graph

with = vertices that is d-minor distributes to � , and let 6(=, d) denote the number of rounds of Build-

Chain with = vertices that is d-minor distributes to� .

Since preconditionedChebyshevneeds to call the Laplacian solver of the preconditioner$ (
√
:) times,

by Lemma 4.3, Lemma 4.9, Lemma 4.10, Theorem 3, and Lemma 4.12 we have

5 (=, d) = $
((
log14 = log60 =

) (log log=)2 (
d=1/2 log= + �

))
+

6
(
=/:1−> (1) , d

)
+$

(√
:d=> (1)

(
=1/2 + �

))
= $

(
=> (1)

(
d=1/2 log= + �

))
+ 6

(
=/:1−> (1) , d

)
.

and

6(=, d) = $
( (
log14 = log60 =

) (log log=)2 (
d=1/2 log= + �

))
+ 5 (=, 2d) log10 = · n−3 + 6 (=/:, 2d)

= $
(
=> (1)

(
d=1/2 + �

))
+ polylog (=) 5 (=, 2d) + 6 (=/:, 2d) .

Since the depth of the recursion is $ (log=/(log log=)2), the overall increase in congestion is at most

2$ (log=/(log log=)2)d ≤ => (1)d

so all the graphs constructed => (1)d-minor distribute into� .

Hence, the algorithm Solve takes d=> (1) (=1/2 + �) rounds. �

5 Minor Schur Complement

In this sectionwe give the algorithm for constructingminor based approximate Schur complements. Due

to the recursive invocation of this routine and solver constructions in Section 4, we can treat the calls to

solvers for SDD or Laplacian matrices as black-boxes. The formal guarantees of our constructions are

stated in Theorem 3, which is restated below.

Theorem 3. There is a routine ApproxSC(�,T , n) in the CONGEST model that given a graph � with

= vertices and < edges that d-minor distributes into the communication network � , a subset of vertices

T ⊆ + (�), an error parameter n < 0.1, and access to a (distributed) Laplacian solver Solve, it returns a

graph � , represented as a distributed d-minor of� such that:

1. T ⊆ + (� ),

2. � has $ ( |T |n−2 log2 =) edges (and hence at most that many vertices as well).
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3. The Schur complements of� and � well approximate each other, i.e.,

SC (�, T) ≈n SC (�,T) .

The cost of this computation consists of:

1. $ (n−3 log10 =) calls to Solve with accuracy 1/poly(=) on graphs that 2d-distribute into� .

2. An overhead of $ (d (=1/2 + �)n−3 log11 =) rounds.

Before delving into technical details, we first discuss the high-level connections and differences be-

tween our algorithm and that of [LS18].

Comparison to [LS18] Our starting point is the same as [LS18], that is, randomly contracting an edge

with probability being equal to its leverage score (and deleting otherwise) is exactly a matrix martingale

on the spectral form of the graph. It gives a natural algorithm – iteratively computing leverage scores of

edges and sampling them until the variance having been accumulated. The correctness of the algorithm

is proved via the matrix martingale concentration inequality.

The main difference lies in the way of obtaining a nearly-linear running time. The leverage scores of

all the edges keep changing as some edges get sampled, so a fast algorithm is needed to do better than re-

computing the sampling probabilities of all the edges after each edge gets sampled. Li and Schild [LS18]

address this issue by showing that a random spanning tree has the correct marginals, and use the fast

random spanning tree sampling algorithm [LS18, ALGV20] to obtain such trees. While there are dis-

tributed algorithms for sampling spanning trees from unweighted graphs [DSNPT13], partial states of

elimination algorithms, namely Schur complements, are naturally weighted. Furthermore, we are un-

able to directly extend fast random walk simulations to weighted graphs due to the higher congestion

of weighted random walks.

Instead, we devise a parallel version of this algorithm based on sampling large subsets of edges

independently. We compute a large subset of steady edges / that are mostly uncorrelated, which is

obtained by the localization of electrical flows [SRS18]. We then identify such subsets, as well as compute

all their effective resistances, using standard sketchingmethods that are also highly parallel. By ensuring

that the size of these sets is at least 1/poly(log=) of the total number of edges, we are able to ensure the

rapid convergence of this process.

In general, we track the cost of our algorithms via three quantities. The first is the number of Lapla-

cian solvers to principal minors of L(�) that we must call, and the second is how many additional

rounds of communication between neighbors of � that are necessary, each of which can be simulated

in $ (d
√
= log= + �) rounds in � by Lemma 4.3. Finally, we must also ensure that the local computa-

tions on vertices E ∈ + (�) are actually simple minimum/sum aggregations, as each vertex E ∈ + (�)
actually corresponds to a connected component in � . These can also be simulated in $ (d

√
= log= + �)

rounds in� by Lemma 4.3. We note that the computations for solving Laplacian systems and computing

leverage scores, etc. only involve matrix-vector multiplications and sampling Bernoulli/Cauchy random

variables, which can all be aggregated in a distributed manner.

Distributed storage conventions. In this section, we work with graph � that d-minor distributes

into the original graph/communication network � and is stored distributedly (see Definition 4.1). We

work with vertex vectors ®G ∈ R+ (�) . In this case, for a vertex E ∈ + (�) (corresponding to a connected
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component in � ), we assume that the root +�→�
<0? (E) ∈ + (�) stores the value of GE . We also work with

edge vectors ®F ∈ R� (�) of edge resistances or leverage scores. For an edge 4� = (D� , E�) ∈ � (�), it
corresponds to an edge in� with endpoints D� and E� that store the weightF4� . When an algorithm is

said to compute vertex vectors or edge vectors, it means that these conditions are satisfied.

The remaining part of this section is organized as follows.

1. In Section 5.1, we give the formal definition of steady edges, and present the algorithm for minor

based approximate Schur complement.

2. In Section 5.2, we give the algorithm for finding the set of steady edges.

3. In Section 5.3, we prove the correctness of the algorithm in Section 5.2 via matrix martingales, and

Theorem 3.

5.1 Sparsification Algorithm

We start by defining the key notion steady edges, which are edges that intuitively do not interact with

each other much. Here, we emphasize that these steady edges are stochastic, not deterministic.

Definition 5.1. A stochastic subset of edges / ⊆ � (� ) is (U, X)-steady if

1. (Quadratic form) E
[∑

4∈/ A
−1
4
®14 ®1)4

]
� UL(� );

2. (Localization) For each edge 4 ∈ / , ∑5 ≠4∈/
| ®1)4 L(� )† ®1 5 |√

A4A 5
≤ X ;

3. (Variance) For each edge 4 ∈ / ,

A−14 ®1)4 L(� )†
[
0 0

0 SC(�,T)

]
L(� )†®14 ≤

18|T |
|� (� ) | .

Intuitively, the Quadratic form constraint guarantees that no edge is picked in the set of steady edges

with a high probability. The Localization constraint bounds the “correlation” between edges, by restrict-

ing the electrical flow of each edge 4 putting on the remaining edges in/ . Finally, the Variance constraint

says that the induced leverage score of edge 4 on the Schur complement is bounded, and allows us to

control the variance in the matrix martingale analysis.

Now we describe the algorithm for computing a minor Schur complement. First, identify a set of

steady edges and approximately compute their leverage scores by the Johnson-Lindenstrauss lemma.

Then for each steady edge, contract it with probability being its approximate leverage score, and delete

it otherwise. Repeat this process until the size of the resulting graph is small enough. The algorithm

pseudocode is shown in algorithm ApproxSC. For this algorithm we have the following theorem.

Theorem 4. Given a graph� with< edges and a set of terminals T ⊆ + (�), and parameter n ∈ (0, 1), the
algorithm ApproxSC(�,T , n) returns a graph � such that |� (� ) | ≤ $ ( |T |n−2 log2<) and SC(�,T) ≈n
SC(�, T) with probability at least 1 − 1/poly(<).

The proof of Theorem 4 is deferred to Section 5.3. Now we describe the subroutines in algorithm

ApproxSC.
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Algorithm 4: Finding sparsifier of Schur complement onto terminals, but with extra Steiner

vertices

1 procedure ApproxSC(�, T , n)
2 Initialize� (0) ← � and 8 ← 0.

3 Set X ← n

� log2<
with< = |� (�) |. ⊲ � is a large constant

4 while |� (� (8) ) | ≥ � |T | log2<
n2

do

5 � (8) ← Split(� (8) , LevApx(4,� (8) , 0.01)). ⊲ Lemmas 5.4 and 5.2

6 / (8) ← FindSteady(� (8) ,T , X). ⊲ Lemma 5.5

7 For each edge 4 ∈ / (8) , set ?4 ← LevApx(4, � (8) , X). ⊲ Lemma 5.2

8 For each edge 4 ∈ / (8) , contract 4 with probability ?4 and delete 4 with probability

1 − ?4 . Perform the contractions and deletions via Corollary 4.7 and let the resulting

graph be � (8) .
9 � (8+1) ← Unsplit(� (8) ). ⊲ Lemma 5.4

10 8 ← 8 + 1.
11 � ← � (8) .
12 return � .

The Split and sampling process depend on the leverage score of each edge. Instead of computing the

leverage scores precisely, we use LevApx to compute approximate leverage scores following the stan-

dard random projection scheme devised by Spielman and Srivastava [SS11]. Specifically, the subroutine

LevApx satisfies the following guarantees.

Lemma 5.2 (Approximate leverage scores). Given a graph � ′ that d-minor distributes into � , an error

parameter X > 0 and the distributed Laplacian solver Solve, for each edge 4 ∈ � (� ′), the algorithm

LevApx(4,� ′, X) returns the approximation of lev�′ (4) = A−14 ®1)4 L(� ′)†®14 to within a factor of 1 + X with

high probability. Furthermore, it takes

1. $ (X−2 log |+ (� ′) |) calls to Solve with accuracy 1/poly( |+ (�) |) on graphs that d-minor distribute

into� ;

2. An additional $ (dX−2
√
= log= log |+ (� ′) | + �) rounds of communication in� .

Before proving Lemma 5.2, we present the Johnson-Lindenstrauss lemma which is essential for prov-

ing Lemma 5.2.

Lemma 5.3 (Johnson-Lindenstrauss Lemma). Given = vectors ®E1, · · · , ®E= ∈ R3 and a parameter X > 0, let

Q ∈ R:×3 with : ≥ 24X−2 log= be a random ±1/
√
: matrix with each entry being an independent Bernoulli

random variable. Then with probability at least 1 − 1/=,

‖Q(®E8 − ®E 9 )‖22 ≈X ‖®E8 − ®E 9 ‖22,

for all 8, 9 ∈ [=].
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Proof of Lemma 5.2. Recall that the effective resistance of 4 = (D, E) ∈ � (� ′) is defined by res�′ (4) =
®1)4 L(� ′)†®14 . More specifically, we have

res�′ (4) = ®1)4 L(� ′)†®14 = ®1)4 L(� ′)†L(� ′)L(� ′)†®14
= ®1)4 L(� ′)†B)R−1BL(� ′)†®14 (Setting L(� ′) = B)R−1B)

=




R−1/2BL(� ′)†®14


2
2
,

which is equal to the squared Euclidean distance between theD-th and E-th column vectors of the matrix

R−1/2BL(� ′)†. To compute the effective resistance for each edge, it suffices to compute the pairwise

distances among the column vectors of matrix R−1/2BL(� ′)†. Applying Johnson-Lindenstruass lemma,

we generate a random matrixQ ∈ RC×|� (�′) | with C = $ (X−2 log |+ (� ′) |) such that with high probability




QR−1/2BL(� ′)†®14



2
2
≈X res�′ (4),

where computing the matrix QR−1/2BL(� ′)† requires matrix multiplication of QR−1/2B and solving

$ (X−2 log |+ (� ′) |) Laplacian linear systems.

Now we implement the above operations in the distributed settings. First generate Q on the end-

points of the images of the edges in � ′. Note that R−1/2 is a rescaling of the resistances of the edges,

which are also stored together with their endpoints. Let each edge 4 ∈ � (� ′) store the corresponding
column ofQR−1/2 on both of its endpoints, i.e., both endpoints of ��

′→�
<0? (4) store (QR−1/2):,4 . Computing

the matrixQR−1/2B is reduced to computing the matrix-vector multiplicationQR−1/2B:,E for each vertex

E ∈ + (� ′). Note that each edge can choose its direction arbitrarily, as the direction factor backs in when

we apply the multiplication by ®14 at the end, which is also a local step. Lemma 4.3 allows us to perform

this process in$ (dX−2
√
= log= log |+ (� ′) | + �) rounds. �

The algorithm ApproxSC requires that the leverage scores of all the edges are bounded away from 0

and 1, which can be done by the two subroutines, Split and Unsplit that have the following guarantees.

Lemma 5.4 (Split and Unsplit, see Proposition 3.4 and 3.5 in [LS18]). Given a graph � ′ that d-minor

distributes into � and the approximate leverage score lev′�′ (4) ≈0.01 lev�′ (4) for each 4 ∈ � (� ′), the
algorithm Split(� ′, lev′�′ (4)) returns a graph � ′ in $̃ (d (

√
= + �)) rounds such that

1. � ′ is electrically equivalent to� ′;

2. � ′ 2d-minor distributes into� ;

3. For each edge 4 ′ ∈ � (� ′), lev� ′ (4 ′) ∈ [3/16, 13/16].

The algorithm Unsplit returns a graph resulting from collapsing paths, parallel edges, and removing non-

terminal leaves, along with a d-minor distribution into� .

Proof. In algorithm Split, for each edge 4 ∈ � (� ′), if lev′�′ (4) ≤ 1/2, replace 4 by a path of two edges 41
and 42 with resistance A4/2; if lev′�′ (4) ≥ 1/2, replace 4 by two parallel edges 41 and 42 with resistance 2A4 .
In the first case, both edges have leverage score lev� ′ (41) = lev� ′ (42) = 1

2 +
lev�′ (4)

2 , in which lev�′ (4) ∈
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[
0, 1

2(1−0.01)

]
; in the second case, both edges have leverage score lev� ′ (41) = lev� ′ (42) = lev�′ (4)

2 , in which

lev�′ (4) ∈
[

1
2(1+0.01) , 1

]
. It is easy to verify that each edge 4 ′ ∈ � (� ′) has lev� ′ (4 ′) ∈ [3/16, 13/16].

The bound on the cost and embeddability follows since each edge is turned into a path of at most

two edges. The new vertex can be placed at either endpoints of ��→�
<0? (4), and the congestion on both

edge 4 and the endpoints of 4 goes up by a factor of 2. This 2-minor embedding of the new graph into

� ′ then meets the definition of Lemma 4.6, which means that � ′ 2d-minor distributes into � with an

overhead of $̃ (d (
√
= + �)) rounds.

The execution of Unsplit is straightforward because the resulting graph is a minor of � ′, and all

changes happen on$ (1) neighbors, and only involve local endpoints of edges of� ′. Therefore, they can
be implemented using $ (d) rounds of communications among neighbors of� ′. �

5.2 Algorithm for Finding Steady Edges

In this section, we present the subroutine FindSteady, shown in algorithm 5, that returns the set of

steady edges in algorithm ApproxSC.

Algorithm 5: Given a graph � with a set of terminals T and parameter X , return the set of

steady edges

1 procedure FindSteady(�,T , X)
2 Set U ← X

46�local log
2 |� (� ) | .

3 For each 4 ∈ � (� ), let E4 ← DiffApx(4, �,T). ⊲ Lemma 5.6

4 For each 4 ∈ � (� ), let B4 ← ColumnApx(4, �, � (� )). ⊲ Lemma 5.7

5 /1 ← {4 ∈ � (� ) | E4 ≤ 16|T |/|� (� ) |, B4 ≤ 16�local log
2 |� (� ) |}.

6 Let /2 be the set of sampled edges from /1 such that each 4 ∈ /1 is sampled with probability

U .

7 For each 4 ∈ /2, let B
′
4 ← ColumnApx(4, �, /2). ⊲ Lemma 5.6

8 / ← {4 ∈ /2 | B ′4 ≤ X/1.1}.
9 return / .

The algorithm FindSteady has the following lemma.

Lemma 5.5. Given a graph � that d-minor distributes into � , a set of terminals T ⊆ + (� ) and constant
X ∈ (0, 1), the algorithm FindSteady(�,T , X) has access to the distributed Laplacian solver Solve and

returns an edge set / with at least U |� (� ) |/2 edges in expectation that is (U, X)-steady. Furthermore, it

takes

1. $ (log2 |+ (� ) |) calls to Solve with 1/poly( |+ (� ) |) error on graphs that d-minor distribute into� ;

2. An additional $ ((d
√
= log= log |+ (� ) | + �) log |+ (� ) |) rounds of communication in� .

Before proving Lemma 5.5, we first introduce the subroutines DiffApx and ColumnApx.

Lemma 5.6 (Difference sketch, Lemma 1.4 in [LS18]). Given a graph � that d-minor distributes into �

and a set of terminals T ⊆ + (� ), for each edge 4 ∈ � (� ), the algorithm DiffApx(4, �, T) returns an
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approximation to

A−14 ®1)4 L(� )†
[
0 0

0 SC(�, T)

]
L(� )†®14

within a factor of 1.1 with high probability. Furthermore, it requires

1. $ (log |+ (� ) |) calls to Solve with accuracy 1/poly( |+ (� ) |) on graphs that d-minor distribute into

� ;

2. An additional $ (d
√
= log= log |+ (� ) | + �) rounds of communication in� .

Proof. By Lemma 2.3, we have that[
0 0

0 SC(�,T)

]
=

[
0 0

0 SC(�, T)

]
L(� )†

[
0 0

0 SC(�,T)

]
,

and then

A−14 ®1)4 L(� )†
[
0 0

0 SC(�,T)

]
L(� )†®14

=A−14 ®1)4 L(� )†
[
0 0

0 SC(�,T)

]
L(� )†

[
0 0

0 SC(�,T)

]
L(� )†®14 .

(31)

Using the fact L(� )† = L(� )†L(� )L(� )† and setting L(� ) = B)R−1B, (31) becomes

A−14 ®1)4 L(� )†
[
0 0

0 SC(�,T)

]
L(� )†B)R−1BL(� )†

[
0 0

0 SC(�,T)

]
L(� )†®14 . (32)

Formulating (32) in another way, it becomes

A−14





R−1/2BL(� )†
[
0 0

0 SC(�,T)

]
L(� )†®14






2

2

. (33)

Combining (31), (32) and (33), we have

A−14 ®1)4 L(� )†
[
0 0

0 SC(�,T)

]
L(� )†®14 = A−14





R−1/2BL(� )†
[
0 0

0 SC(�, T)

]
L(� )†®14






2

2

.

By Lemma 5.3, we generate a random matrix Q ∈ RC×|� (� ) | with C = $ (log |+ (� ) |) such that

A−14





QR−1/2BL(� )†
[
0 0

0 SC(�,T)

]
L(� )†®14






2

2

≈0.1A−14 ®1)4 L(� )†
[
0 0

0 SC(�,T)

]
L(� )†®14 .

Therefore, the round complexity is determined by computing the matrix

QR−1/2BL(� )†
[
0 0

0 SC(�,T)

]
L(� )†.
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Firstly, we can compute the matrix A1 = QR−1/2B as Lemma 5.2, which takes

$ (d
√
= log= log |+ (� ) | + �)

rounds. Then multiplying by L(� )† requires calling $ (log |+ (� ) |) times Solve on L(� ), which corre-

sponds to the C rows of the matrix A1.

Recall that

SC(�,T) = L(� ) [T,T] − L(� ) [T,+ (� )\T ]
(
L(� ) [+ (� )\T,+ (� )\T ]

)−1
L(� ) [+ (� )\T,T],

then we have

A1

[
0 0

0 SC(�,T)

]
= A1 [:,T]SC(�,T)

=A1 [:,T]L(� ) [T,T] − A1 [:,T]L(� ) [T,+ (� )\T ]
(
L(� ) [+ (� )\T,+ (� )\T ]

)−1
L(� ) [+ (� )\T,T],

which can be computed by calling C times Solve on L(� ) [+ (� )\T,+ (� )\T ] and three matrix-matrix multi-

plications; each matrix-matrix consists of C matrix-vector multiplications.

Let the matrix A2 = A1

[
0 0

0 SC(�,T)

]
, then computing A2L(� )† requires calling C times Solve

on L(� ).
Therefore, the algorithm DiffApx(4, �, T) requires calling $ (log |+ (� ) |) times Solve on graphs

that d-minor distributes into� and additional$ (d
√
= log= log |+ (� ) |+�) rounds of communication. �

Lemma 5.7 (Analog to Proposition 4.3 in [LS18]). Given a graph � that d-minor distributes into� and a

subset, ⊆ � (� ), for each edge 4 ∈, , the algorithm ColumnApx(4, �,, ) returns an approximation to

∑
5 ≠4∈,

| ®1)4 L(� )†®15 |√
A4A 5

within a factor of 1.1 with high probability. Furthermore, it takes

1. $ (log2 |+ (� ) |) calls to Solve with accuracy 1/poly( |+ (� ) |) on graphs that d-minor distribute into

� ;

2. An additional $ ((d
√
= log= log |+ (� ) | + �) log |+ (� ) |) rounds of communication in� .

The proof of Lemma 5.7 depends on the following ℓ1 sketch.

Lemma 5.8 (Theorem 3 in [Ind06]). Given an integer 3 ≥ 1 and two constants 0 < X, n < 1, there exists a

matrix C ∈ RC×3 with C = $ (n−2 log(1/X)) and an algorithm Recover(®D,3, X, n) such that

1. The entries of C are independently sampled from a Cauchy distribution;

2. For any vector ®E ∈ R3 , the algorithm Recover(C®E, 3, X, n) outputs an estimator A such that

A ≈n ‖®E ‖1,

with probability 1 − X .
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Proof of Lemma 5.7. We use the ℓ1 sketch in Lemma 5.8 in a way analogous to the ℓ2 resistance estimation

procedure in Lemma 5.2. Randomly partitioning the set, such that, = *∪(, \* ) and Pr[4 ∈ * ] = 1/2
for each 4 ∈, , then for each 4 ∈ * , we have

E


∑

5 ∈, \*

| ®1)4 L(� )†®15 |√
A4A 5


=
1

2

∑
5 ≠4∈,

| ®1)4 L(� )†®15 |√
A4A 5

.

Denote the random variable -8 =
∑

5 ∈, \*
| ®1)4 L(� )† ®1 5 |√

A4A 5
, and repeat C1 = $ (log |+ (� ) |) times to obtain

-1, · · · , -C1 . Let - be - =
∑C1

8=1-8 , then by Chernoff bound we have that with high probability,

2-

C1
≈0.1

∑
5 ≠4∈,

| ®1)4 L(� )†®15 |√
A4A 5

.

Let R, \* and B, \* be the diagonal resistance matrix and incidence matrix restricted to, \ * , and

®E = A−1/24 R
−1/2
, \*B, \*L(� )†®14 . Then we have

‖®E ‖1 =
∑

5 ∈, \*

| ®1)4 L(� )†®15 |√
A4A 5

.

By Lemma 5.8, setting the matrix C ∈ RC2×|, \* | with C2 = $ (log |+ (� ) |), then with probability 1 −
1/poly( |+ (� ) |) the algorithm Recover(C®E, |, \* |, 1/poly( |+ (� ) |), 0.01) outputs a 0.01-approximation

of the quantity ‖®E ‖1.
Now we analyze the round complexity which is analogous to the ℓ2 sketch presented in the proof

of Lemma 5.2. Computing the matrix CR
−1/2
, \*B, \*L(� )

† consists of computing CR
−1/2
, \*B, \* , which

takes$ (d
√
= log= log |+ (� ) | +�) rounds, and solving C2 Laplacian linear systems in L(� ). Note that we

repeat that for C1 times, therefore, the algorithm ColumnApx(4, �,, ) requires calling $ (log2 |+ (� ) |)
times Solve with accuracy 1/poly( |+ (� ) |) on graphs that d-minor distribute into � , and an additional

$ ((d
√
= log= log |+ (� ) | + �) log |+ (� ) |) rounds of communication in� . �

Lemma 5.9. The graph � with a set of terminals T ⊆ + (� ) satisfies that
∑

4∈� (� )
A−14 ®1)4 L(� )†

[
0 0

0 SC(�, T)

]
L(� )†®14 ≤ |T |. (34)

Proof. Since the LHS of (34) is a scalar, it holds that

∑
4∈� (� )

A−14 ®1)4 L(� )†
[
0 0

0 SC(�,T)

]
L(� )†®14

=

∑
4∈� (� )

Tr

(
A−14 ®1)4 L(� )†

[
0 0

0 SC(�,T)

]
L(� )†®14

)
.

(35)
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By the properties of the trace operation, (35) becomes

∑
4∈� (� )

Tr

(
L(� )†

[
0 0

0 SC(�,T)

]
L(� )†A−14 ®14 ®1)4

)

=Tr
©­«
L(� )†

[
0 0

0 SC(�,T)

]
L(� )†

∑
4∈� (� )

A−14 ®14 ®1)4
ª®¬
.

(36)

By the fact
∑

4∈� (� ) A
−1
4
®14 ®1)4 = L(� ) and the properties of trace operation, (36) becomes

Tr

(
L(� )†

[
0 0

0 SC(�,T)

]
L(� )†L(� )

)
= Tr

(
L(� )†L(� )L(� )†

[
0 0

0 SC(�,T)

] )

=Tr

(
L(� )†

[
0 0

0 SC(�,T)

] )
= Tr

((
L(� )†

)
[T,T]

SC(�,T)
)

=Tr

((
L(� )†

)
[T,T]

SC(�, T)SC(�,T)†SC(�,T)
)

=Tr

(
SC(�,T)

(
L(� )†

)
[T,T]

SC(�,T)SC(�, T)†
)
.

(37)

Lemma 2.3 gives SC(�, T)
(
L(� )†

)
[T,T] SC(�,T) = SC(�,T), so (37) gets

Tr
(
SC(�, T)SC(�,T)†

)
= Tr(P) = |T | − 1 ≤ |T |,

where P is the projection matrix of the space spanned by SC(�,T).
This completes the proof. �

Now we review the flow localization theorem.

Theorem 5 (Flow localization [SRS18]). For a graph � , let

B4 =
∑

5 ∈� (� )

| ®1)4 L(� )†®15 |√
A4A 5

,

then there exists an universal constant �local such that
∑

4∈� (� ) B4 ≤ �local |� (� ) | log2 |� (� ) |.

Now we are ready to prove Lemma 5.5.

Proof of Lemma 5.5. We prove that / ⊆ � (� ) is (U, X)-steady according to the Definition 5.1.

1. (Quadratic form)

E

[∑
4∈/

A−14 ®14 ®1)4

]
� E

[∑
4∈/2

A−14 ®14 ®1)4

]
= U

∑
4∈/1

A−14 ®14 ®1)4 � UL(� ).
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2. (Localization) By Lemma 5.7, we have that for each 4 ∈ /2, B
′
4 ≈0.1

∑
5 ≠4∈/2

| ®1)4 L(� )† ®1 5 |√
A4A 5

, which gives∑
5 ≠4∈/2

| ®1)4 L(� )† ®1 5 |√
A4A 5

≤ 1.1B ′4 . Combining with line 8 in algorithm FindSteady, we know that for

each edge 4 ∈ / ,

∑
5 ≠4∈/

| ®1)4 L(� )†®15 |√
A4A 5

≤ X.

3. (Variance) Lemma 5.6 gives that for each 4 ∈ � (� ),

E4 ≈0.1 A−14 ®1)4 L(� )†
[
0 0

0 SC(�, T)

]
L(� )†®14 ,

which implies that A−14 ®1)4 L(� )†
[
0 0

0 SC(�,T)

]
L(� )†®14 ≤ 1.1E4 . Combining with line 5 in algo-

rithm FindSteady, we have that for each edge 4 ∈ / ,

A−14 ®1)4 L(� )†
[
0 0

0 SC(�,T)

]
L(� )†®14 ≤

18|T |
|� (� ) | .

Now we bound |/ |. By Lemma 5.6 and Lemma 5.9, we know that at most 1.1|� (� ) |/16 edges for

4 ∈ � (� ) satisfy that

E4 ≥ 16|T |/|� (� ) |.

Similarly, Lemma 5.7 and Theorem 5 tell us that at most 1.1|� (� ) |/16 edges satisfy that

B4 ≥ 16�local log
2 |� (� ) |.

We conclude that

|/1 | ≥ (1 − 2.2/16) |� (� ) | ≥ 13|� (� ) |/16.
In addition,

E[|/2 |] = U |/1 | ≥ 13U |� (� ) |/16.
By the definition of /2, we know that for each 4 ∈ /2,

E[B ′4 ] ≤ 16U�local log
2 |� (� ) |.

By Markov’s inequality, we have that

Pr[B ′4 ≥ X/1.1] ≤
E[B ′4 ]
X/1.1 ≤

16U�local log
2 |� (� ) |

X/1.1 =
44

115
.

Therefore,

E[|/ |] ≥
(
1 − 44

115

)
E[|/2 |] ≥ U |� (� ) |/2.

The round complexity mainly comes from Lemma 5.6 and Lemma 5.7, and the remaining steps in

algorithm FindSteady can be trivially implemented. �
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Finally, we bound the number of while loops, which is a key ingredient to prove Theorem 4 and

Theorem 3.

Lemma 5.10. The while loop in algorithm ApproxSC executes $ (U−1 log<) times with

U =
X

46�local log
2<

=
n

46�local� log4<

with probability at least 1 − 1/poly(<).
Proof. To bound the number of iterations, it suffices to argue that

E[|� (� (8+1) ) |] ≤ (1 − Ω(U)) |� (� (8)) |.
Recall that in Lemma 5.5, we have E[|/ (8) |] ≥ U |� (� (8) ) |/2, so it suffices to argue that each original edge

of � (8) is removed with at least a constant probability, even considering the Split operation. We break

the analysis into two cases.

Case 1: 4 is split into two parallel edges 41 and 42. Recall that by the definition of Split, both 41 and

42 have leverage score in [3/16, 13/16]. Therefore, if 41 ∈ / (8) , then it will be contracted with probability
at least 3/16. In that case both 41 and 42 disappear, as desired.

Case 2: 4 is split into a path consisting of 41 and 42. Recall that by the definition of Split, both 41
and 42 have leverage score in [3/16, 13/16]. Therefore, if 41 ∈ / (8) , the it will be deleted with probability

at least 3/16. Then 42 becomes a leaf, so it will be removed during the Unsplit operation, as desired. �

5.3 Matrix Martingale Analysis of Approximation

In this section, we prove Theorem 4 by defining several stochastic sequences of matrices that capture

the change of the quadratic form of the Schur complement. We also prove Theorem 3.

Let g denote the final value of 8 in algorithm ApproxSC. Recall that Lemma 5.10 gives g = $ ( log<U ).
Let the hidden constant be � ′, i.e., g =

�′ log<
U

. For 0 ≤ 8 ≤ g and 0 ≤ C ≤ |/ (8) |, let 48,C be the C-th edge

in / (8) under an arbitrary ordering, and

Ŷ
(8,0)

= S0L(� (8) )†S)0 , (38)

with S0 = [0, SC(�,T)1/2], then we have the following iteration equation

Ŷ
(8,C+1)

=

{
Ŷ
(8,C) + A−148,C (1 − ?48,C )−1S0L(� (8) )†®148,C ®1)48,C L(� (8) )†S)0 if 48,C is deleted,

Ŷ
(8,C) − A−148,C ?−148,C S0L(� (8) )†®148,C ®1)48,CL(� (8) )†S)0 if 48,C is contracted.

(39)

Especially for Ŷ
(0,0)

, by Lemma 2.3 we have

Ŷ
(0,0)

= S0L(�)†S)0 = SC(�,T)1/2
(
L(�)†

)
[T,T]

SC(�, T)1/2

= SC(�, T)†/2SC(�,T)SC(�, T)†/2 = P,

where P is the projection matrix of the space spanned by SC(�,T).
In the proof of Theorem 4, if we assume that SC(� (8) ,T) ≈0.1 SC(�, T) for all (8, C), then we have

the following claim to bound


S0L(� (8) )†S)0 

2.
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Claim 5.11.


S0L(� (8) )†S)0 

2 ≤ 1.1.

Proof. The fact SC(� (8) , T) ≈0.1 SC(�,T) gives us SC(� (8) , T)† ≈0.1 SC(�,T)†, i.e.,

SC(� (8) , T)† � 1.1 · SC(�,T)†.

By Lemma 2.3, it holds that

P
(
L(� (8) )†

)
[T,T]

P � 1.1 · P
(
L(�)†

)
[T,T]

P .

Moreover, we have

SC(�,T)1/2
(
L(� (8) )†

)
[T,T]

SC(�, T)1/2 � 1.1 · SC(�,T)1/2
(
L(�)†

)
[T,T]

SC(�,T)1/2. (40)

Lemma 2.3 has

SC(�, T)
(
L(�)†

)
[T,T]

SC(�, T) = SC(�, T), (41)

which implies that

SC(�,T)1/2
(
L(�)†

)
[T,T]

SC(�,T)1/2 = SC(�, T)†/2SC(�,T)SC(�, T)†/2 (42)

by multiplying the both sides of the LHS and RHS of (41) by SC(�,T)†/2. Combing (40) and (42), we

have

SC(�,T)1/2
(
L(� (8) )†

)
[T,T]

SC(�,T)1/2 � 1.1 · SC(�,T)†/2SC(�, T)SC(�,T)†/2. (43)

Furthermore,

LHS of (43) = S0L(� (8) )†S)0 ,
RHS of (43) = 1.1 · P

Therefore, S0L(� (8) )†S)0 � 1.1 · P and


S0L(� (8) )†S)0 

2 ≤ 1.1. �

Now we define the difference sequence for Ŷ
(8,C)

by

X (8,C) =

{
0 if C = 0,

Ŷ
(8,C) − Ŷ (8,C−1) if C > 0.

The operator norm of X (8,C) has the following bound.

Lemma 5.12. For all (8, C), it holds that



X (8,C)




2
≤ 162|T |
|� (� (8) ) | .
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Proof. By the definition of X (8,C) and equation (39), we have


X (8,C)



2
=




Ŷ (8,C) − Ŷ (8,C−1)



2

≤(A48,C ·min{1 − ?48,C , ?48,C })−1



S0L(� (8) )†®148,C ®1)48,CL(� (8) )†S)0





2
.

(44)

By Lemma 5.4 and Lemma 5.2, we have that for each 48,C ∈ / (8) , lev� (8 ) (48,C ) ∈ [3/16, 13/16] and ?48,C ≈X
lev� (8 ) (48,C ). Since X ≤ 0.01, we have ?48,C ∈ [1/8, 7/8]. Then (44) becomes


X (8,C)




2
≤ 8A−148,C

®1)48,C L(�
(8) )†S)0 S0L(� (8) )†®148,C

≤ 8A−148,C
®1)48,C L(�

(8) )†
[
0 0

0 SC(�, T)

]
L(� (8) )†®148,C .

The assumption SC(� (8) ,T) ≈0.1 SC(�,T) implies that[
0 0

0 SC(�, T)

]
� 1.1

[
0 0

0 SC(� (8) , T)

]
,

which gives 


X (8,C)



2
≤ 9A−148,C

®1)48,CL(�
(8) )†

[
0 0

0 SC(� (8) ,T)

]
L(� (8) )†®148,C .

Combining with condition 3 in Definition 5.1, we have


X (8,C)



2
≤ 162|T |
|� (� (8) ) | .

�

Claim 5.13. For each fixed 0 ≤ 8 ≤ g , the sequence Ŷ (8,0) , · · · , Ŷ (8, |/
(8 ) |)

is a martingale.

Proof. By the definition of X (8,C) and Lemma 5.12, we have


Ŷ (8,C)



2
≤



Ŷ (8,C−1)




2
+



X (8,C)




2
≤



Ŷ (8,C−1)




2
+ 162|T |
|� (� (8) ) | ,

which implies that for a fixed 8 and 0 ≤ C ≤ |/ (8) |,

E

[


Ŷ (8,C)



2

]
< ∞. (45)

Now considering the quantity E

[
Ŷ
(8,C+1)

����Ŷ (8,0) , · · · , Ŷ (8,C)
]
, we have

E

[
Ŷ
(8,C+1)

����Ŷ (8,0) , · · · , Ŷ (8,C)
]
= E

[
Ŷ
(8,C+1)

����Ŷ (8,C)
]

=(1 − ?48,C ) ·
(
Ŷ
(8,C) + A−148,C (1 − ?48,C )

−1S0L(� (8) )†®148,C ®1)48,CL(�
(8) )†S)0

)
+?48,C ·

(
Ŷ
(8,C) − A−148,C ?

−1
48,C

S0L(� (8) )†®148,C ®1)48,CL(�
(8) )†S)0

)
=Ŷ
(8,C)

.

(46)

Putting (45) and (46) together proves this claim. �
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However, the Unsplit and Split operations lead to Ŷ
(8+1,0)

≠ Ŷ
(8, |/ (8 ) |)

. In order to treat the g

sequences as a whole, we define the new sequence Y (8,C) such that




Y (0,0) = Ŷ
(0,0)

= P,

Y (8,C) − Y (8,C−1) = X (8,C) ,
Y (8,0) = Y (8−1, |/

(8 ) |) .

We prove Theorem 4 by considering two parts: the martingale Y (8,C) and the errors resulting from

Ŷ
(8+1,0) − Ŷ

(8, |/ (8 ) |)
. Before that, we prove that the sequence Y (8,C) is also a martingale following the

proof of Claim 5.13.

• Note that E
[

Y (8,C)



2

]
< ∞ since




Y (8,C)



2
≤



Y (8,C−1)




2
+



X (8,C)




2
≤



Y (8,C−1)




2
+ 162|T |
|� (� (8) ) | .

• For the special case, E

[
Y (8+1,0)

����Y (8,0) , · · ·Y (8, |/ (8 ) |)
]
= E

[
Y (8,/

(8 ) )
]
. More generally,

E

[
Y (8,C+1)

����Y (8,0) , · · · , Y (8,C)
]
= E

[
Y (8,C+1)

����Y (8,C)
]

=Y (8,C) + E
[
X (8,C+1)

]
= Y (8,C) + E

[
Ŷ
(8,C+1) − Ŷ (8,C)

]
= Y (8,C) .

This completes the proof.

Lemma 5.14. Let� be a sufficiently large constant in algorithm ApproxSC. Then for all (8, C), it holds that



W (8,C)





2
≤ n2

100 log<
.

Proof. Recall that in Lemma 2.7

W (:)
=

:∑
9=1

E

[(
X ( 9 )

)2 ����X ( 9−1)
]
.

Here we have

W (8+1,0) −W (8,0)
=

∑
1≤C≤ |/ (8 ) |

E

[(
X (8,C)

)2 ����X (8,C−1)
]
=

∑
1≤C≤ |/ (8 ) |

E

[(
X (8,C)

)2]
, (47)

and set W (0,0)
= 0. By the fact

(
X (8,C)

)2 � 

X (8,C)


2
· X (8,C) , we have

∑
1≤C≤ |/ (8 ) |

E

[(
X (8,C)

)2]
�

∑
1≤C≤ |/ (8 ) |




X (8,C)



2
E

[
X (8,C)

]
. (48)
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By Lemma 5.12, it holds that∑
1≤C≤ |/ (8 ) |




X (8,C)



2
E

[
X (8,C)

]
� 162|T |
|� (� (8) ) |

∑
1≤C≤ |/ (8 ) |

E

[
X (8,C)

]
. (49)

By the definition of X (8,C) and the fact ?48,C ∈ [1/8, 7/8], we have∑
1≤C≤ |/ (8 ) |

E

[
X (8,C)

]
� 8

∑
1≤C≤ |/ (8 ) |

E

[
A−148,C S0L(�

(8) )†®148,C ®1)48,C L(�
(8) )†S)0

]

= 8 · S0L(� (8) )†E


∑
1≤C≤ |/ (8 ) |

A−148,C
®148,C ®1)48,C


L(� (8) )†S)0 .

(50)

By the condition 1 in Definition 5.1, (51) becomes∑
1≤C≤ |/ (8 ) |

E

[
X (8,C)

]
� 8U · S0L(� (8) )†L(� (8) )L(� (8) )†S)0 = 8U · S0L(� (8) )†S)0 . (51)

Combining (51), (49), (48) with (47), we have

W (8+1,0) −W (8,0) � 1296|T |U
|� (� (8)) | S0L(�

(8) )†S)0 .

and 


W (8+1,0) −W (8,0)




2
≤ 1296|T |U
|� (� (8) ) |




S0L(� (8) )†S)0 



2
≤ 1426|T |U
|� (� (8)) | ,

where the last inequality follows from Claim 5.11.

For any 8, C , we have


W (8,C)




2
=




W (8,C) −W (0,0)




2
≤

∑
0≤:≤8




W (:+1,0) −W (:,0)




2
≤ g · 1426|T |U|� (� (8) ) |

=
� ′ log<

U
· 1426|T |U|� (� (8) ) | ≤

� ′ log<
U

· 1426|T |Un
2

� |T | log2<
≤ n2

100 log<
.

�

Now combining Lemma 5.12 and Lemma 5.14, we have the following lemma.

Lemma 5.15. With probability at least 1 − 1/poly(<), for all (8, C), it holds that ‖Y (8,C) − P ‖2 ≤ n/2.

Proof. Lemma 5.12 gives


X (8,C)



2
≤ 162 |T |
|� (� (8 ) ) | . The algorithmApproxSC implies that |� (� (8) ) | = Ω

(
|T | log2<

n2

)
.

Then we have


X (8,C)



2
= $

(
n2

log2<

)
. Setting ' =

n2

100 log2<
and f2 =

n2

100 log< , and applying Lemma 2.7,

we obtain

Pr

[
∃(8, C)

����



Y (8,C) − Y (0,0)




2
≥ n/2,




W (8,C)




2
≤ f2

]

≤2|T | · exp
( −n2/12
f2 + 'n/6

)
≤ 2|T | · exp ©­«

−n2/12
n2

100 log< + n3

600 log2<

ª®¬
= 1/poly(<).
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Moreover, since


W (8,C)



2
≤ f2, we have

Pr
[


Y (8,C) − Y (0,0)




2
≥ n/2

]
≤ 1/poly(<),

which gives that

Pr
[


Y (8,C) − P




2
≤ n/2

]
≥ 1 − 1/poly(<).

�

Since Split and Unsplit preserve the Schur complement,we conclude that Ŷ
(8+1,0)

satisfies

Ŷ
(8+1,0)

= S0L(� (8+1) )†S)0
= SC(�,T)1/2

(
L(� (8+1) )†

)
[T,T]

SC(�,T)1/2

= SC(�,T)1/2
(
L(� (8) )†

)
[T,T]

SC(�,T)1/2

= S0L(� (8) )†S)0 ,

where � (8) corresponds to� (8) in algorithmApproxSC. The LaplacianmatricesL(� (8) ) and L(� (8) ) satisfy
the following relation

L(� (8) ) = L(� (8) ) + UC (8)U) ,

where C (8) is a diagonal matrix such that

C
(8)
5 5

=

{
−1 if 5 ∈ / (8) is deleted
∞ if 5 ∈ / (8) is contracted

and U = B)
/ (8 )

R
−1/2
/ (8 )

, where B/ (8 ) and R/ (8 ) are the matrices with restriction of B and R to the indices

corresponding to the set / (8) . Then by Woodbury matrix formula (see Lemma 2.6) we have

L(� (8) )† = L(� (8) )† − L(� (8) )†U
(
(C (8) )−1 + U)L(� (8) )†U

)−1
U)L(� (8) )†. (52)

Furthermore, multiplying the left side and right side of (52) by S0 and S)0 respectively, one can obtain

Ŷ
(8+1,0) − Ŷ (8,0) = −S0L(� (8) )†U

(
(C (8) )−1 + U)L(� (8) )†U

)−1
U)L(� (8) )†S)0 . (53)

For the quantity Ŷ
(8, |/ (8 ) |) − Ŷ (8,0) , by virtue of the equation (39), we have

Ŷ
(8, |/ (8 ) |) − Ŷ (8,0) =

∑
0≤C< |/ (8 ) |

Ŷ
(8,C+1) − Ŷ (8,C)

= S0L(� (8) )†UP (8)U)L(� (8) )†S)0 ,
(54)

where P (8) is a diagonal matrix such that
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P
(8)
5 5

=

{ (1 − ?5 )−1 if 5 is deleted,

−?−1
5

if 5 is contracted.

Subtracting (54) from (53) gives

Ŷ
(8+1,0) − Ŷ (8, |/

(8 ) |)

= − S0L(� (8) )†U
[(
(C (8) )−1 + U)L(� (8) )†U

)−1
+ P (8)

]
U)L(� (8) )†S)0 .

Define X̂
(8)

= Ŷ
(8+1,0) − Ŷ (8, |/

(8 ) |)
. Before bounding




X̂ (8)



2
, we have the following lemma.

Lemma 5.16.






(
(C (8) )−1 + U)L(� (8) )†U

)−1
+ P (8)






2

≤ 36X .

Proof. Let D (8) be the diagonal matrix with entries being the diagonal entries of the matrix (C (8) )−1 +
U)L(� (8) )†U , specifically,

D
(8)
5 5

=

{
−1 + lev� (8 ) ( 5 ) if 5 is deleted,

lev� (8 ) ( 5 ) if 5 is contracted.

Define another matrix Q (8) by

Q (8) = D (8) −
(
(C (8) )−1 + U)L(� (8) )†U

)
.

Note that all the diagonal entries of Q (8) are 0. Considering the summation of non-diagonal entries of

Q (8) , which is equal to the summation of non-diagonal entries of U)L(� (8) )†U , we have

∑
5 ≠6

����Q (8)5 6
���� = ∑

5 ≠6∈/ (8 )

| ®1)4 L(� (8) )†®15 |√
A 5 A6

≤ X,

where the inequality follows from the localization condition of Definition 5.1. Lemma 2.8 gives




Q (8)



2
≤
∑
5 ≠6

����Q (8)5 6
����,

and thus


Q (8)



2
≤ X .

Consider the left side of the target inequality,




(
(C (8) )−1 + U)L(� (8) )†U

)−1
+ P (8)






2

=






(
D (8) − Q (8)

)−1
+ P (8)






2

≤





(
D(8) − Q (8)

)−1
− (D (8) )−1






2

+



(D (8) )−1 + P (8)




2
,

(55)
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in which 



(D (8) − Q (8) )−1 − (D(8) )−1





2

=





(D (8) − Q (8) )−1 Q (8) (D(8) )−1





2

≤




(D (8) − Q (8) )−1






2




Q (8)



2




(D (8) )−1



2
≤

(
3

16
− X

)−1
· X · 16

3
≤ 30X,

(56)

and 


(D(8) )−1 + P (8)



2
= max

5 ∈/ (8 )

{���� 1

−1 + lev� (8 ) ( 5 )
+ 1

1 − ?5

����,
���� 1

lev� (8 ) ( 5 )
− 1

?5

����
}
≤ 6X, (57)

where ?5 ≈X lev� (8 ) ( 5 ).
Substituting (56) and (57) to (55) completes the proof. �

Based on Lemma 5.16, we can give the following bounds on X̂
(8)
.

Lemma 5.17. For all (8, C), it holds that 


X̂ (8)



2
≤ 40X,


E/ (8 ) [X̂ (8) ]




2
≤ 40UX,



E/ (8 )

[(
X̂
(8) )2]





2

≤ 1600UX2 .

Proof. Recall that

X̂
(8)

= Ŷ
(8+1,0) − Ŷ (8, |/

(8 ) |)

= −S0L(� (8) )†U
[(
(C (8) )−1 + U)L(� (8) )†U

)−1
+ P (8)

]
U)L(� (8) )†S)0 ,

then 


X̂ (8)



2
=





S0L(� (8) )†U
[(
(C (8) )−1 + U)L(� (8) )†U

)−1
+ P (8)

]
U)L(� (8) )†S)0






2

≤





(
(C (8) )−1 + U)L(� (8) )†U

)−1
+ P (8)






2




S0L(� (8) )†UU)L(� (8) )†S)0




2

≤ 36X ·



S0L(� (8) )†L(� (8) )L(� (8) )†S)0 




2

= 36X ·



S0L(� (8) )S)0 




2

≤ 40X, (By Claim 5.11)

where the second inequality follows from Lemma 5.16 and the fact UU) � L(� (8) ).
For E/ (8 )

[
X̂
(8) ]

, we have




E/ (8 ) [X̂ (8) ]



2

=





E/ (8 )
[
S0L(� (8) )†U

[(
(C (8) )−1 + U)L(� (8) )†U

)−1
+ P (8)

]
U)L(� (8) )†S)0

]




2

.
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Since
(
(C (8) )−1 + U)L(� (8) )†U

)−1
+ P (8) �






(
(C (8) )−1 + U)L(� (8) )†U

)−1
+ P (8)






2

· I , we have

E/ (8 )

[
S0L(� (8) )†U

[(
(C (8) )−1 + U)L(� (8) )†U

)−1
+ P (8)

]
U)L(� (8) )†S)0

]

�




((C (8) )−1 + U)L(� (8) )†U

)−1
+ P (8)






2

E/ (8 )

[
S0L(� (8) )†UU)L(� (8) )†S)0

]

and 


E/ (8 ) [X̂ (8) ]



2

≤




((C (8) )−1 + U)L(� (8) )†U

)−1
+ P (8)






2




E/ (8 ) [S0L(� (8) )†UU)L(� (8) )†S)0
]




2

=





((C (8) )−1 + U)L(� (8) )†U
)−1
+ P (8)






2




S0L(� (8) )†E/ (8 ) [UU)
]
L(� (8) )†S)0





2
.

(58)

By Lemma 5.16 and U = B)
/ (8 )

R
−1/2
/ (8 )

, (58) becomes




E/ (8 ) [X̂ (8) ]



2
≤36X







S0L(� (8) )†E/ (8 )

∑

5 ∈/ (8 )
A−15
®15 ®1)5


L(� (8) )†S)0








2

≤36UX



S0L(� (8) )S)0 




2

≤40UX,

where the second inequality follows from the condition 1 of Definition 5.1 and the last inequality follows

from Claim 5.11.

For E/ (8 )

[(
X̂
(8) )2]

, using the fact
(
X̂
(8) )2 � 


X̂ (8)




2
· X̂ (8) , we have





E/ (8 )
[(
X̂
(8) )2]





2

≤



X̂ (8)




2




E/ (8 ) [X̂ (8) ]



2
≤ 40X · 40UX = 1600UX2.

�

Now we bound



Ŷ (8,0) − Y (8,0)




2
.

Lemma 5.18. With probability at least 1 − 1/poly(<),



Ŷ (8,0) − Y (8,0)




2
≤ n/2.

Proof. We first consider the difference matrix Ŷ
(8,0) − Ŷ

(0,0)
, which can be decomposed into two parts:

the summation of Ŷ
( 9+1,0) − Ŷ ( 9, |/

( 9 ) |)
and the summation of

∑ |/ ( 9 ) |
:=1

(
Ŷ
( 9,:) − Ŷ ( 9,:−1)

)
for 9 = 0, · · · , 8−1,

Ŷ
(8,0) − Ŷ (0,0) =

8−1∑
9=0

(
Ŷ
( 9+1,0) − Ŷ ( 9, |/

( 9 ) |)
)
+

8−1∑
9=0

|/ ( 9 ) |∑
:=1

(
Ŷ
( 9,:) − Ŷ ( 9,:−1)

)
.

42



Recall that X̂
( 9 )

= Ŷ
( 9+1,0) − Ŷ ( 9, |/

( 9 ) |)
and Ŷ

( 9,:) − Ŷ ( 9,:−1) = Y ( 9,:) − Y ( 9,:−1) , then

Ŷ
(8,0) − Ŷ (0,0) =

8−1∑
9=0

X̂
( 9 ) +

8−1∑
9=0

|/ ( 9 ) |∑
:=1

(
Y ( 9,:) − Y ( 9,:−1)

)
. (59)

Recall that Y ( 9,0) = Y ( 9−1, |/
( 9−1) |) , so we have

8−1∑
9=0

|/ ( 9 ) |∑
:=1

(
Y ( 9,:) − Y ( 9,:−1)

)
=

8−1∑
9=0

|/ ( 9 ) |∑
:=1

(
Y ( 9,:) − Y ( 9,:−1)

)
+

8∑
9=1

(
Y ( 9,0) − Y ( 9−1, |/ ( 9−1) |)

)

= Y (8,0) − Y (0,0) .

(60)

Substituting (60) to (59) gives

Ŷ
(8,0) − Ŷ (0,0) =

8−1∑
9=0

X̂
( 9 ) + Y (8,0) − Y (0,0) .

Recall that Ŷ
(0,0)

= Y (0,0) , then we can obtain

Ŷ
(8,0) − Y (8,0) =

8−1∑
9=0

X̂
( 9 )
. (61)

Define the new sequence U (8) such that

U (8) = X̂
(8) − E/ (8 )

[
X̂
(8) ]

, (62)

and {V (8) } to be the martingale with difference sequence U (8) and V (0) = 0. In order to apply Lemma

2.7 to martingale {V (8) }, we first give the bounds of


U (8)



2
and





∑8 E/ (8 )

[
(U (8) )2

����U (8−1)
]





2

. By the

definition of U (8) and Lemma 5.17, we have


U (8)



2
=




X̂ (8) − E/ (8 ) [X̂ (8) ]



2
≤



X̂ (8)




2
+



E/ (8 ) [X̂ (8) ]




2

≤ 40X + 40UX ≤ 80X.

In addition, 



E/ (8 )
[
(U (8) )2

����U (8−1)
]





2

=




E/ (8 ) [(U (8) )2]



2
=




V [
X̂
(8) ]




2

≤




E/ (8 )

[(
X̂
(8) )2]





2

≤ 1600UX2,

where the first inequality follows from the fact V
[
X̂
(8) ] � E/ (8 )

[(
X̂
(8) )2]

. Moreover, by triangle in-

equality, we have





∑
8

E/ (8 )

[
(U (8) )2

����U (8−1)
]






2

≤
∑
8





E/ (8 )
[
(U (8) )2

����U (8−1)
]





2

≤ g · 1600UX2

≤ �
′ log<
U

· 1600UX2 = 1600� ′X2 log<.
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Setting ' = 80X and f2 = 1600� ′X2 log<, Lemma 2.7 gives that

Pr

[
∃8
����



V (8)




2
≥ n/4,







∑
8

E/ (8 )

[
(U (8) )2

����U (8−1)
]






2

≤ f2
]

≤2|T | · exp
( −n2/48
1600� ′X2 log< + 20Xn/3

)
= 1/poly(<),

that is, with probability at least 1 − 1/poly(<),


V (8)



2
≤ n/4. (63)

Now we finish the proof. By equality (61) and the definition of U (8) (see (62)), we have




Ŷ (8,0) − Y (8,0)



2
=







8−1∑
9=0

X̂
( 9 )






2

=







8−1∑
9=0

(
U (8) + E/ (8 )

[
X̂
( 9 ) ] )






2

=







8−1∑
9=0

U (8) +
8−1∑
9=0

E/ (8 )

[
X̂
( 9 ) ]






2

=






V (8) +
8−1∑
9=0

E/ (8 )

[
X̂
( 9 ) ]






2

≤



V (8)




2
+

8−1∑
9=1




E/ (8 ) [X̂ ( 9 ) ]



2
. (By triangle inequality)

By inequality (63) and Lemma 5.17, we have that with probability at least 1 − 1/poly(<),



Ŷ (8,0) − Y (8,0)




2
≤ n

4
+ �

′ log<
U

· 40UX =
n

4
+ 40� ′

� log<
· n ≤ n

2
.

�

Now we prove Theorem 4. By algorithm ApproxSC, the returned graph � satisfies that |� (� ) | =
$ ( |T |n−2 log2<). Therefore, it remains to prove that SC(�,T) ≈n SC(�, T) with probability at least

1 − 1/poly(<). Specifically, we bound the ℓ2 norm of the difference matrix Ŷ
(8,0) − P by considering two

parts: the martingale Y (8,C) and the errors accumulated by Ŷ
(8,0) − Ŷ

(8−1, |/ (8−1) |)
, which correspond to

Lemma 5.15 and Lemma 5.18 respectively.

Proof of Theorem 4. By Lemma 5.15 and Lemma 5.18, we have that


Ŷ (g,0) − P



2
≤



Ŷ (g,0) − Y (g,0)




2
+



Y (g,0) − P




2
≤ n/2 + n/2 = n. (64)

Note that

Ŷ
(g,0)

= S0L(� (g) )†S)0 = S0L(� )†S)0 = SC(�,T)1/2
(
L(� )†

)
[T,T]

SC(�,T)1/2,

and P = SC(�,T)†/2SC(�,T)SC(�, T)†/2, then inequality (64) tells us that

SC (�, T)1/2
(
L (� )†

)
[T,T]

SC (�, T)1/2 ≈n SC (�, T)†/2 SC (�, T) SC (�, T)†/2 . (65)
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Multiplying the both sides of the LHS and RHS of (65) by SC(�,T)†/2 gives

P
(
L(� )†

)
[T,T]

P ≈n SC(�,T)†.

By Lemma 2.3, it holds that P
(
L(� )†

)
[T,T] P = SC(�,T)†, therefore,

SC(�,T)† ≈n SC(�, T)†,

that is,

SC(�,T) ≈n SC(�,T).
�

Finally, we prove Theorem 3. Since the algorithm ApproxSC only applies deletions and contractions

on the input graph, it follows that the resulting sparsifier is a minor. The correctness and the bound on

the number of edges follow from Theorem 4. Therefore, it remains to bound the computation cost.

Proof of Theorem 3. By Lemma 5.10, the number of iterations in the main while loop of the algorithm

ApproxSC (Line 4 of algorithm 4) is $ (U−1 log<) = $ (n−1 log5 =). By Lemma 5.2, 5.4, 5.5, the commu-

nication cost of each iteration is dominated by line 6 and line 7, which require solving $ (X−2 log=) =
$ (n−2 log5 =) Laplacian linear systems, and $ (dn−2

√
= log= log5 = + � log=) rounds of communication

in� .

Therefore, the total number of required Laplacian solvers is

$
(
n−1 log5 = · n−2 log5 =

)
= $

(
n−3 log10 =

)
.

The total overhead cost of communication in� can be bounded in the same way, that is,

$
(
n−1 log5 =

(
dn−2
√
= log= log5 = + � log=

))
= $

(
dn−3
√
= log= log10 = + �n−1 log6 =

)
.

�

6 Vertex and Edge Reductions

Herewe showour reductions via tree and eliminationbased preconditioners in Section 6.1 and Section 6.2

respectively. This will prove Lemmas 4.9 and 4.10.

6.1 Ultra-Sparsifier

We prove the high error reduction routine as stated in Lemma 4.9

Lemma 4.9. There is a routine UltraSparsify(�, :) in the CONGEST model that given a graph � with

= vertices and< edges, that d-minor distributes into the communication network� , which has = vertices,<

edges, and diameter � , along with a parameter : , produces in $ (=> (1) (d
√
= + �)) rounds a graph � such

that:

1. � is a subgraph of� ,
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2. � has at most = − 1 +<2$ (
√
log= log log=)/: edges.

3. L(�) � L(� ) � :L(�).

Furthermore, the algorithm also gives �̂,Z1, Z2,� such that

1. �̂ 1-minor distributes into � such that �̂ = SC(�,�) with |� | =<2$ (
√
log= log log=)/: .

2. There are operators Z1 and Z2 evaluable with$ (d
√
= log=+�) rounds of CONGEST communication

on� such that:

L (� )† = Z⊤1

[
Z2 0

0 L
(
�̂
)†

]
Z1

We follow the construction from [KMP10], which samples off-tree edges with any upper bound on

their stretches. To find the tree, we utilize the distributed version of the Alon-Karp-Peleg-West (AKPW)

low stretch spanning tree, due to Ghaffari, Karrenbauer, Kuhn, Lenzen, and Patt-Shamir [GKK+15]. They
work with a definition of distributed # -node cluster graphs that was the basis of our definition of dis-

tributed d-minor. We start by restating this definition, and describe how we simulate it when� is itself

embedded.

Definition 6.1. A distributed# -node cluster graph G = (V, E,L,T ,k ) is defined by a set of # clusters

V = {(1, . . . , (# } partitioning the vertex set + , a set of weighted multiedges, a set of cluster leaders L,
a set of cluster trees T , as well as a functionk that maps the edges E of the cluster graph to edges in �.

Formally, the tuple (V, E,L,T ,k ) has to satisfy the following conditions.

1. The clustersV = ((1, . . . , (# ) form a partition of the set of vertices+ .

2. For each cluster (8 , |(8 ∩ L| = 1. Hence, each cluster has exactly one cluster leader ℓ8 ∈ L ∩ (8 .
The ID of the node ℓ8 also serves as the ID of the cluster (8 and for the purpose of distributed

computations, we assume that all nodes E ∈ (8 know the cluster �� and the size =8 := |(8 | of their
cluster (8 .

3. Each cluster tree )8 = ((8 , �8 ) is a rooted spanning tree of the subgraph � [(8 ] of � induced by (8 .

The root of )8 is the cluster leader ℓ8 ∈ (8 ∩ L.

4. The functionk : E → � maps each edge of E to an (actual) edge of � connecting the clusters.

As a consequence of Lemma 4.3, we get that shortest paths can be ran on distributed # -node cluster

graphs of�

Lemma 6.2. Let� = (+, �) be a graph with = vertices and< edges that d-embed into the communication

network � = (+, �), and G = (V, E,L,T ,k ) be a distributed cluster graph for� .

Then we have the following algorithms:

1. For each cluster (8 , the cluster leader ℓ8 broadcasts $ (log=) bit message B8 to each vertex of (8 in

$ (d=1/2 log= + �) rounds.

2. Assume every vertex E ∈ (8 for each (8 ∈ V , the corresponding vertex E ′ ∈ + holds a value 5 (E). Then
computing minE∈(8 {5 (E)} at node ℓ8 for each (8 ∈ V needs $ (d=1/2 log= + �) rounds if the tree )8
with root ℓ8 is known.
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Proof. The definition of distributed # -node cluster graphs implies that G 1-minor distributes over � .

Lemma 4.6 then gives that G d-minor distributes over � , and this distributed mapping can be obtained

using$ (d=1/2 log=+�) rounds of computations. The broadcast, and the aggregation of minimums then

follow from Lemma 4.3. �

This in turn implies that the SplitGraph algorithm in [GKK+15] can be simulated on a graph that’s

d-minor distributed into � in $ (=> (1) (d=1/2 log= + �)) rounds. Putting it together gives our variant of

the AKPW low stretch spanning tree algorithm, with the main difference being that it’s ran on a d-minor

distributed over our overall communication network.

Lemma 6.3. Let� = (+, �) be a graph with = vertices and< edges that d-embeds into the communication

network � = (+, �), and G = (V, E,L,T , ?B8) be a distributed cluster graph for� .

It takes $ (=> (1) (d=1/2 log= + �)) rounds to construct a spanning tree ) of � , along with stretch upper

bounds that sum to

< · 2$ (
√
log= log log=) .

These upper bounds are sufficient for sampling the edges by stretch. The following was shown

in [KMP10], or Theorem 2.2.4 in [Pen13].

Lemma 6.4. Given a graph� , a tree) , upper bounds on stretches of edges of) w.r.t. � that sum to U , along

with a parameter : , there is an independent sampling / rescaling distribution computable locally from the

stretch upper bounds that gives a graph � such that with high probability

1. L(�) � L(� ) � :L(� )

2. � contains (rescaled) ) , plus $ (U log=/:) edges.

We then need to contract the tree so that its size becomes similar to the number of off-tree edges.

Lemma 6.5. Let � = (+, �) be a graph with = vertices and< edges that d-embed into the communication

network � = (+, �).
Let ) be a spanning tree of � and, = � − ) be the set of off-tree edges of � with respect to ) . There

is an algorithm to compute a graph �̂ that’s 1-embeddable into � satisfying the following conditions in

$ (d=1/2 log= + �) rounds:

1. �̂ contains $ ( |, |) vertices and edges.

2. There are operators Z1 and Z2 that can be evaluated in $ (d=1/2 log= + �) rounds with

L (� )† = Z⊤1

[
Z2 0

0 L
(
�̂
)†

]
Z1

Proof. We use the parallel elimination procedure from Section 6.3 of [BGK+14], specifically Lemma 26.

At a high level, it eliminates degree 1 and 2 vertices by random sampling a subset of vertices which have

degree 1 or 2, computing an independent set, and eliminating them. The algorithm requires $ (log=)
rounds in PRAM, and therefore can be implemented in $ (log=(d

√
= log= + �)) rounds in the CON-

GEST model by Lemma 4.3. The operators Z1,Z2 are computed as in Lemma 26 of [BGK+14]. �

We can combine these pieces to prove the main ultrasparsification claim.
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Proof of Lemma 4.9. The algorithm to prove Lemma 4.9 is as follows.

1. Compute a low-stretch tree using Lemma 6.3.

2. Sample edges using Lemma 6.4 with U =< · 2$ (
√
log= log log=) .

3. Compute the operators Z1,Z2 using Lemma 6.5.

We verify the conditions of Lemma 4.9. The approximation guarantees and number of off-tree edges are

given by Lemma 6.4

After eliminating degree 1 and degree 2 vertices, the resulting graph has size $ (U log=) by Lemma

6.5 Part 1, and Z1 and Z2 are computed by Lemma 6.5.

The round complexity in the CONGEST model follows by summing the round complexities in Lem-

mas 6.3, 6.4, 6.5. �

6.2 Elimination / Sparsified Cholesky

The main goal of this section is to prove Lemma 4.10, which allows the elimination of large subsets of

vertices under small error.

Lemma 4.10. There is a routine Eliminate(�,3, n) in the CONGEST model that given a graph � that

d-minor distributes into a communication network� , along with step count 3 and error n, produces in

$ ((n−6 log14 =)3 (d
√
= log= + �))

rounds a subset T and access to operators Z1 and Z2 such that

1. |T | ≤ ( 4950 )3 |+ (�) |.

2. The cost of applying Z1, Z
⊤
1 and Z2 to vectors is$ ((n−6 log14 =)3 (d

√
= log= +�)) rounds of commu-

nication on� .

3. L(�)† is (1 ± n)3 -approximated by a composed operator built from Z1, Z2, and the inverse of the of

the Schur complement of L(�) onto � , SC(L(�),�):

(1 − n)3 L (�)† � Z⊤1

[
Z2 0

0 SC (L (�) , �)†
]
Z1 � (1 + n)3 L (�)†

To prove the above the above lemma, we present a distributed implementation of the Schur Com-

plement Chain (SCC) construction due to Kyng, Lee, Peng, Sachdeva, and Spielman [KLP+16]. The key
components to this construction are (i) an algorithm that finds a large near-independent set � , and

approximates the inverse of the matrix restricted to entries in � and (ii) a procedure for spectrally ap-

proximating the Schur complement with respect to � = + \ � . We next discuss how to implement these

components in the CONGEST model.
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Finding large U-DD sets. When doing Gaussian elimination, the goal is to find a large subset of

vertices � such that we can approximate the inverse of L[�,� ] by an operator Z that can be constructed

efficiently. Ideally, � forms an independent set. Unfortunately, we are not able to find a large independent

set but we can instead find a large, almost-independent set, as made precise in the following definition.

Definition 6.6 (U-DD). A matrixM is U-diagonally dominant (U-DD) if

∀8, M8,8 ≥ (1 + U)
∑
9 :9≠8

M8, 9 .

An index set � is U-DD if M [�,� ] is U-DD.

The algorithm due to [KLP+16] for finding U-DD sets in a Laplacian proceeds as follows: (i) pick a

random subsets of vertices and (ii) and discard all those that do not satisfy the condition in Definition 6.6.

The pseudocode for computing such sets is given in Algorithm 6. In the CONGEST model, the way the

set is “stored” is that each vertex remembers whether it is in the set.

Algorithm 6: Find an U-DD subset � of L

1 procedure DDSubset(L, U)
2 Sample each index of {1, . . . , =} independently with probability 1

4(1+U) and let � ′ be the
resulting set of sampled indices.

3 Set

� =

{
8 ∈ � ′ : |L8,8 | ≥ (1 + U)

∑
9 ∈� ′, 9≠8

|L8, 9 |
}
.

4 if |� | < =
8(1+U) then

5 Goto Step 1.

6 return � .

We have the following lemma.

Lemma 6.7. Let � = (+, �) be a graph that d-minor distributes into the communication network � =

(+, �). Let L be the Laplacian matrix associated with� and let U ≥ 0 be a parameter. ThenDDSubset(L, U)
computes an U-DD subset � of L of size =/(8(1 + U)) in $ (d

√
= log= + �) rounds.

Proof. In [LPS15, Lemma 5.2] (and more generally in [KLP+16]), it is shown that Algorithm 6 computes

an U-DD subset � of size =/(8(1 + U)). To bound the round complexity of the algorithm, consider the

following distributed implementation:

1. Include each index of {1, . . . , =} in � ′ with probability 1
4(1+U) .

2. Each node corresponding to 8 ∈ � ′ sums up the values |L8, 9 | of the indices 9 corresponding to its

neighbors in� , and then decides whether |L8,8 | ≥ (1 + U)
∑

9 ∈� ′, 9≠8 |L8, 9 | and if so declares itself as

belonging to � .

3. The size of � is computed by an (arbitrarily decided) leader vertex, which aggregates the sum of

the following values over all vertices E in� : 1 if E is in � and 0 otherwise.
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4. The leader checks whether |� | < =/(8(1 + U)). If the latter holds, then the leaders informs all the

vertices in� to repeat the previous steps. Otherwise, the algorithm terminates.

In the CONGEST model, Step 1 requires no communication between the nodes: each root vertex of

supervertices does the sampling independently. In Step 2, each node computes an aggregate of values

stored by its neighbors in � , which by Lemma 4.3 takes $ (d
√
= log= + �) rounds. It is well-known

that Steps 3 and 4 can be carried out in $ (�) rounds by routing the messages via a BFS tree rooted at

the leader. Together with the fact that Algorithm 6 terminates in at most 2 iterations in expectation

(see [LPS15, Lemma 5.2]), it follows that the distributed implementation takes$ (d
√
= log= + �) rounds

in expectation. �

Jacobi Iteration on U-DD matrices. Using an U-DD set � , we will construct an operator Z that

approximates L−1[�,� ] and can be applied efficiently to any vector. An important observation is that we

can write L[�,� ] = X [�,� ] + Y [�,� ] , where X [�,� ] is a diagonal matrix and Y [�,� ] is a Laplacian matrix.

We have the following lemma.

Lemma 6.8. Let � = (+, �) be a graph that d-minor distributes into the communication network � =

(+, �). Let L be the Laplacian matrix associated with � and let � be a subset of of + such that L[�,� ] is
U-DD for some U ≥ 4. Then Jacobi(L[�,� ], ·, n) gives a linear operator Z that over vectors given on the

root vertices of the supervertices such that for any vector ®1 given by storing ®1E� on +�→�
<0? (·), returns in

$ ((d
√
= + �) log(1/n)) rounds Z ®1 stored on the same vertices, for some matrix Z such that

L[�,� ] � Z (−1) � L [�,� ] + n · SC(L, � ).

Note that the matrix Z is only used in the analysis, and is never explicitly constructed by the al-

gorithm. We first give the pseudocode of this algorithm in the centralized setting, and then show its

distributed implementation.

Algorithm 7: Solve L [�,� ] · ®G� = ®1� up to n accuracy

1 procedure Jacobi(L[�,� ], ®1� , n)
2 Set L[�,� ] = X [�,� ] + Y [�,� ] such that X [�,� ] is diagonal and Y [�,� ] is a Laplacian.
3 Set : to be an odd integer that is greater than log(3/n).
4 Set ®G (0)� = X−1[�,� ]

®1� .
5 for 8 = 1, . . . , : do

6 Set ®G (8)
�

= −X−1[�,� ]Y [�,� ] ®G
(8−1)
�
+ X−1[�,� ] ®1� .

7 return ®G (:)
�

.

To measure the quality of the operator produced by Jacobi procedure, we observe that : iterations

produce the operator

Z (:) :=
:∑
8=0

X−1[�,� ]

(
−Y [�,� ]X−1[�,� ]

)8
(66)
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by induction. Concretely, suppose we have

®G (:−1)� =

:−1∑
8=0

X−1[�,� ]

(
−Y [�,� ]X−1[�,� ]

)8 ®1� ,
then substituting this into the step in Line 6 gives

®G (:)
�

= −X−1[�,� ]Y [�,� ] ®G
(:−1)
�

+ X−1[�,� ] ®1�

= X−1[�,� ]
®1� +

(
−X−1[�,� ]Y [�,� ]

) :−1∑
8=0

X−1[�,� ]

(
−Y [�,� ]X−1[�,� ]

)8 ®1�
= X−1[�,� ]

®1� +
:∑
8=1

X−1[�,� ]

(
−Y [�,� ]X−1[�,� ]

)8 ®1� =

:∑
8=0

X−1[�,� ]

(
−Y [�,� ]X−1[�,� ]

)8 ®1� .
We next review two lemmas from [KLP+16] that help us prove the approximation accuracy of the

Jacobi iteration on L[�,� ] . The first shows that U-DD matrices admit good diagonal preconditioners. The

second gives a way to bound the error produced by Jacobi.

Lemma 6.9 ([KLP+16], Lemma 3.6.). Let L[�,� ] be an U-DD matrix which can be written in the form

X [�,� ] + Y [�,� ] where X [�,� ] is diagonal and Y [�,� ] is a Laplacian. Then U
2Y � X .

Lemma 6.10 ([KLP+16], Lemma E.1.). Let L[�,� ] be an U-DD matrix with L[�,� ] = X [�,� ] + Y [�,� ] where
0 � Y [�,� ] � VX for some 0 < V < 1. Then, for any odd : and Z (:) as defined in Eq. (66), we have

X [�,� ] + Y [�,� ] � (Z (:) )−1 � X [�,� ] + (1 + X)Y [�,� ],

where

X = V:
1 + V

1 − V:+1 .

Proof of Lemma 6.8. Let Y [�,� ] be the matrix generated when calling Jacobi with L [�,� ] . Since L[�,� ]
is an U-DD matrix, by extending Y [�,� ] with zero entries, we have Y � L. This in turn implies that

Y [�,� ] = SC(Y , � ) � SC(L, � ).
Lemma 6.9 gives that U

2Y � X . As U ≥ 4, we can invoke Lemma 6.10 with V = 1/2, which in gives

that (1 + V)/(1 − V:+1) ≤ 3. Therefore, our choice of : = log(3/n) gives the desired error guarantee.

To bound the round complexity of the algorithm, consider the following distributed implementation of

Jacobi:

1. Store the values ®1� (D), X [�,� ] (D,D), Y [�,� ] (D,D) at +�→�
<0? (D). Store the off-diagonal entries of

Y [�,� ] , together with their weights, in the endpoints of mapped edges ��→�
<0? (4): this is possible

because Y [�,� ] is a Laplacian.

2. Set : = log(1/n) and ®G (0)� (D) = X−1[�,� ] (D,D) · ®1� (D) for each D ∈ � .

3. For 8 = 1, . . . , : do
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(a) For each D ∈ � set

®G (8)� (D) ← X−1[�,� ] (D,D) · ®1� (D) − X−1[�,� ] (D,D)
∑

E∈� :Y [�,� ] (D,E)≠0
Y [�,� ] (E,D) ®G (8−1) (E)

using the matrix-vector multiplication primitive from Corollary 4.4, with results stored on

all root vertices,+�→�
<0? (D).

4. Every vertex D ∈ � returns ®G (:)� (D).

The complexity of the algorithm is dominated by the number of rounds to implement Step 3, which

is given by Corollary 4.4. As there are : = log(1/n) iterations, we have that Step 3 requires$ (log(1/n))
rounds in� .

By Lemma 4.3 and using the fact that weights of the network, and hence the solution vector’s magni-

tudes, are polynomially bounded, we can simulate the algorithm in the original communication network

� in$ ((d
√
= log= + �) log(3/n)) rounds. �

Approximating Schur complements using low congestion random walks. We next show that

U-DD sets are useful when approximating Schur complements. A key ingredient to our construction is

the following combinatorial view of Schur complements.

It is well known that SC(L,T) is a Laplacian matrix of a graph on vertices in T = + \ � . For

our purposes, it will be useful interpret SC(L, T) in terms of random walks. To this end, given a walk

, = D0, . . . , D; of length ℓ in � with a subset of vertices T , we say that, is a terminal-free walk if

D0, Dℓ ∈ T and D1, . . . , Dℓ−1 ∉ T .

Lemma 6.11. For any undirected, weighted graph � and any subset of vertices T , the Schur Complement

SC(�, T) is given as a union over all multi-edges corresponding to terminal-free walksD0, . . . , Dℓ with weight∏
0≤8<: ®FD8D8+1∏

0≤8≤:
∑

D8 E∈� (�) ®FD8 E

The theorem below allows us to efficiently sample from this distribution of walks while paying a

small cost in the approximation quality.

Lemma 6.12 (Theorem 3.1 in [DGGP19]). Let� = (+, �) be an undirected, weighted graph with a subset

of vertices T . Let n ∈ (0, 1) be an error parameter and ` = Θ(n−2 log=) be some parameter related to the

concentration of sampling. Let � be an initially empty graph, and for every edge 4 = (D, E) ∈ � , repeat `
times the following procedure, where a random step from a vertex is taken proportional to the edge weights

of its adjacent edges.

1. Simulate a random walk starting from D until it hits T at vertex C1.

2. Simulate a random walk starting from E until it hits T at vertex C2.

3. Let ℓ be the total length of this combined walk (including edge 4). Add the edge (C1, C2) to � with

weight
1

`
∑ℓ−1

8=0 (1/ ®FD8 ,D8+1)
.
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The resulting graph � satisfies L(� ) ≈n SC(L(�),T) with high probability.

The main idea to make use of the above theorem is to compute an U-DD set � using Lemma 6.7 as

this ensures that the random walks in the graph are short in expectation. However, since we are dealing

withweighted graphs, theremight be scenarioswhere the expected congestion of an edge is prohibitively

large, which makes it difficult to recursively repeat the algorithm. To alleviate this, we add new vertices

to the terminals, whenever they have too much congestion. Note that because � is distributed over �

as a minor, we can only accommodate small vertex congestion due to the need for each root node to

inform the entire supervertex. As a result, our resulting congestion depends on the average degree, and

we resolve this via calling sparsification (Corollary 4.5) at each step.

Let, be the family of walks generated in Lemma 6.12. For 4 ∈ �, let cong, (4) denote the number of

walks from, that use the edge 4. Algorith 8 below computes, . Note that it can also be run implicitly

to generate the congestion on every edge without exceeding the communication limit on any edges: we

simply pass around the congestion on every edge.

Algorithm 8: Generate random walks from each edge until they hit terminals

1 procedure RandomWalk(�,T , `)
2 Set, ← ∅
3 for 4 = (D, E) ∈ � (�) in parallel do

4 for 8 = 1, . . . , ` in parallel do

5 Generate a random walk, (D, 8) from D until it hits T at vertex C1.

6 Generate a random walk, (E, 8) from E until it hits T at vertex C2.

7 Set, (4, 8) =, (D, 8) ∪ (D, E) ∪, (E, 8) and, =, ∪ {, (4, 8)}.

8 return, .

Implementation of randomwalks. We implement the randomwalks in lines 5 and 6 of RandomWalk as

in Algorithm 8 as follows. When a non-terminal vertex gets a randomwalk edge into it, first we do a sum

aggregation so that the leader of the corresponding cluster / super-vertex knows how many out-edges

to compute. Below, we will ensure that all non-terminal vertices have low congestion as intermediate

vertices of random walks, so we will focus on sampling a single out-edge. To do this, the vertex aggre-

gates the sum of weights of out-edges, which we will call,C>C0; . Now, the leader samples a random real

number A ∈ [0,,C>C0; ]. Finally, the leader vertex does a binary search on the label of the out-edge and

aggregates sums to figure out which out-edge corresponds to the sample A . All these steps can be done

by Lemma 4.3.

We now move on to giving the distributed random walk based algorithm that approximates Schur

complements. Psuedocode of this routine is in Algorithm 9.

Here, we discuss subtleties in the distributed implementation of Algorithm RandomWalk and Ran-

domWalkSchur (Algorithms 8 and 9) in the CONGEST model.

Lemma 6.13. Let � = (+, �) be a graph that d-minor distributes into the communication network � =

(+, �). Let � be an U-DD set, T = + \ � , n ∈ (0, 1) be an error parameter and W ≥ 1 be a congestion

parameter. Then the procedure RandWalkSchur(�,T , n, W, U) outputs in $ (UWn−2 log=(d
√
= log= + �))
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Algorithm 9: Distributed Approximate Schur complements using random walks

1 procedure RandWalkSchur(�, T , n, W, U)
2 Initialize T̂ ← T
3 Set � ← ∅ and ` ← $ (n−2 log=)
4 Implicitly compute the expected congestion of, = RandomWalk(�,T , `) by propagating

the expected congestion on vertices and edges evenly to neighbors for $ (U log=) steps.
5 for all vertices D with E[cong, (D)] > W , in parallel do

6 Add D to T̂ , T̂ ← T̂ ∪ {D}.
7 Set, ← RandomWalk(�, T̂ , `) (with walks explicitly generated).

8 Initialize the minor distribution of � into � by associating each terminal C with all vertices

involved in all random walks that ended at C , and building)�→� (C) to be a spanning tree

of all edges used, plus )�→� (D) of all vertices on these walks.

9 for, (4, 8) ∈, do

10 Let (C1, C2) be the endpoints of the walk, (4, 8).
11 Let ℓ be the length of, (4, 8).
12 Set � = � ∪ (C1, C2, F (C1, C2)) with ®F (C1, C2) := 1/(`∑ℓ−1

8=0 (1/ ®FD8 ,D8+1)).
13 return � , T̂ .

rounds a graph � along with its UW log=-minor distribution into� such that with high probability,

L(� ) ≈n SC(L(�), T̂ )

for some (slightly larger) superset T̂ ⊇ T of size at most = − |� | +$ (U<n−2 log=/W).

Proof. The spectral guarantee L(� ) ≈n SC(L(�), T̂ ) follows directly from Lemma 6.12. To bound the

size of T , first note that by definition T = + \ � and thus |T | = = − |� |. Next, as � is an U-DD set,

the expected length of a random walk that starts at an endpoint of any edge in� and hits a vertex in T
is $ (U). Our algorithm simulates $ (<n−2 log=) random walks for each edge, thus the total congestion

generated by these walks is $ (U<n−2 log=).
The latter gives that there can be at most $ (U<n−2 log=/W) vertices whose expected congestion is

larger than W , and RandWalkSchur adds these vertices to the set T . It follows that |T̂ | ≤ = − |� | +
$ (U<n−2 log=/W). For each vertex D, the congestion incurred by other edges are independent random

variables bounded by the length of the walks, which is$ (log=). So by a Chernoff bound, the congestion

of all edges with expected congestion less than W > $ (log2 =) is at most $ (W) with high probability. So

after line 4 of Algorithm 9 adds all vertices with high expected congestion into the terminals (to form

T̂ ), all subsequent vertices in+ \ T̂ have vertex congestion at most $ (W) in the second random walk in

line 7 with high probability.

We next study the round complexity. To this end, recall that the expected length of each walk in,

is $ (U log=) with high probability.

When we are only passing the congestion of a vertex to neighbors, that is, running the walks im-

plicitly, each round can be executed in one round of message passing as described in Lemma 4.3. As we

execute ` = $ (n−2 log=) rounds for each edge, we have that the round complexity of the congestion

estimation part of RandomWalk is $ (Ud (
√
= + �)n−2 log2 =).
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For the explicit generation, we aggregate, for all non-terminal vertices of � , the walks that reach

them, to the root node of the corresponding super vertex in� . Then we broadcast these walks outward,

we simulate the choice of a random edge by total weights of edges in subtrees (which we compute via

Lemma 4.2). As the node congestions are at most 2W , Lemma 4.3 lets us perform these propagations in

� in$ (UWn−2 log=(d
√
= log= + �)) rounds.

Finally, to create the minor distribution of� , the graph with the new random walk edges, into� , we

extend the terminals to include the supervertices of all intermediate (non-terminal) vertices. As the non-

terminals have at most $ (W) walks through them, the resulting mapping is still a dW-minor distribution

into � . �

We remark that in this scheme, the end points of the new edges in � cannot actually know these

edges in a centralized manner (e.g. aggregate them at root vertices). Instead, such walks are only passed

to the vertices in� that correspond to the first and last edges of the corresponding walk. This is because

we can only guarantee low node congestion of intermediate vertices. Note that that in turn necessitates

us sparsifying the graph at every intermediate step as well.

Vertex Sparsifier Chain. Bringing together the above algorithmic components leads to an algorithm

for computing a vertex sparsifier chain, whose pseudocode is given in Algorithm 10 below.

Algorithm 10: Eliminate a large subset of vertices for 3 rounds

1 procedure Eliminate(�,3, n)
2 Set L(0) ← L and T̂0 = + .
3 Compute a spectral sparsifierM (0) ≈n L(0) (Corollary 4.5).
4 for 0 < 8 ≤ 3 iteratively do

5 Let �8 be an U-DD set ofM (8−1) (Lemma 6.7).

6 Construct an operator (Z (8) )−1 that approximatesM
(8−1)
[�,� ] (Lemma 6.8).

7 Compute M̃
(8+1) ≈n SC(M8−1, T̂8) (Lemma 6.13) with T̂8 = T̂8−1 − �8 +*8 , where *8 is the

set of extra vertices added to ensure low congestion.

8 Compute an n-spectral sparsifierM (8+1) of M̃
(8+1)

. (Corollary 4.5)

9 Let Z1, Z2 be stored implicitly as the product of matrices using the Cholesky factorization

(Lemma 2.2).

10 return M (3) , Z1, Z2.

Proof of Lemma 4.10. We start by analyzing the round complexity of the algorithm. By Corollary 4.5,

there is a distributed algorithm for computing a sparsifier with $ (= log5 =n−2) edges in $ (n−2 log7 =)
rounds. We call RandWalkSchur with W = 1000 · 2 · Un−2 log6 =, where 2 is a large enough constant.

By Lemma 6.7, we find a 4-DD set of size =/(8(1 + 4)) = =/40. These together imply that the number of

vertices in� (8) after 8 steps in our algorithm is

=8 ≤
(
1 − 1

40
+ 1

1000

)
=8−1 ≤

(
1 − 1

50

)
=8−1 .

By induction, =3 ≤ ( 4950 )3=.
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In an iteration of the algorithm, the dominating cost is (1) approximating the Schur complement

and (2) computing the spectral sparsifier. By our choice of U and W and Lemma 6.13, the number of

rounds required to implement the first one is $ (n−4 log7 =(d
√
= log= + �)). The second one introduces

a$ (n−2 log7 =) overhead, which then gives a round complexity of$ (n−6 log14 =(d
√
= log= +�)) per one

step in Eliminate. Thus after 3 steps, the round complexity is:

$ ((n−6 log14 =)3 (d
√
= log= + �)).

The error is (1 ± n)3 because we do 3 rounds of elimination, and each round accumulates (1 ± n)-
multiplicative error by using Lemma 6.8 to bound the quality of the inverse of Z (8) , Lemma 6.13 to bound

the quality of the Schur complement, and Corollary 4.5 to spectrally sparsify the Schur complement, each

of which accumulates error n/4. �

7 Implications in Graph Algorithms

In this section we use Theorem 1 to give improved algorithms for maximum flow, min-cost flow, and

shortest paths with negative weights in the CONGEST model (Theorems 7, 8, and 9). Our goal is to

show that our distributed Laplacian solver can be used to achieve improved complexities for these three

problems, so we provide pseudocode in Algorithms 12, 13, 14 (full details of these algorithms are given

in Appendix C), and analyze the runtimes in the distributed setting. Our runtimes come from using the

Laplacian system solver in Theorem 1 to implement an interior point method until the graph has a low

amount of residual flow remaining, which we then route with augmenting path [GU15] or shortest path

with positive weights [CM20], both taking $̃ (=1/2�1/4 + �) rounds per iteration. In the remainder of

this section, we formalize this reasoning. There are several additional technical pieces, as the algorithms

of [Mad16, CMSV17] require changing the graph by adding edges, etc. Throughout, we assume that

our Laplacian system solvers are exact – it is justified in the papers [Mad16, CMSV17] that solving to

accuracy 1/poly(<,* ), where * is the maximum weight / capacity suffices to implement the interior

point methods.

In Section 7.3, we simulate Cohen’s flow rounding algorithm [Coh95] in theCONGESTmodel. Given

an B − C flow ®5 , it returns an integral B − C flow ®5 ′ in $ (
√
< log< · � · log(1/Δ)) rounds such that the

flow value of ®5 ′ is at least ®5 ’s flow value. In Section 7.4, we implement maximum flow [Mad16] in the

CONGEST model, which takes $̃
(
<3/7* 1/7(=> (1) (=1/2 + �) + =1/2�1/4) +<1/2�

)
rounds. In Section 7.5,

it takes $̃
(
<3/7=1/2 (=> (1) + �1/4) +<1/2�

)
rounds to execute the min-cost flow [CMSV17] that consists

of Laplacian solver, flow rounding and single-source shortest path [CM20] in the CONGEST model. In

addition, shortest paths with negative weights can be implemented in the same rounds since it utilizes

min-cost flow to make edges non-negative and then compute the shortest paths [CM20].

7.1 Flow Preconditioned Minor

In this subsection, we define flow preconditioned minor. Compared with the definition of d congestion,

this definition does not bound the size of the pre-image of vertex mapping function +�→�
<0? . Instead, we

only allow a bounded number of vertices of� that maps to more than one vertex of � .

Definition 7.1. Let � = (+, �) be a minor of � = (+� , �� ) (as Definition 4.1). We say this minor is

(d, U)-flow-preconditioned if:
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1. Each edge of � appears as the image of the edge map ��→�
<0? (·), or in one of the trees connecting

supervertices, )�→� (E�) for some E� , at most d times.

2. There is a set * ⊂ + with |* | = U such that the following two conditions hold:

(a) (�→� (E�) = +� and )�→� (E�) is a spanning tree of � with depth at most the diameter of

� for each E� ∈ * .

(b) |(�→� (E�) | = 1 for each E� ∈ + \* .

We say a (d, U)-flow-preconditionedminor mapping is stored distributedly, or that� is a (d, U)-flow-
preconditioned minor distributed over � if it’s stored by having all the images of the maps recording

their sources (the same as Definition 4.1).

Lemma 7.2. Let� = (+, �) be a graph with = vertices and< edges that (d, U)-flow-preconditioned minor

distributes into a communication network � = (+, �) with = vertices, < edges, and diameter � . In the

CONGEST model, the following operations can be performed using $ (CU�) rounds of communication on

� :

1. Each +�→�
<0? (E�) sends $ (C log=) bits of information to all vertices in (�→� (E�).

2. Simultaneously aggregate the sum/minimum of $ (C log=) bits, from all vertices in (�→� (E�) to
+�→�
<0? (E�) for all E� ∈ + (�).

Proof. Both operations can be achieved by running a BFS or a reverse BFS on )�→� (E�) for each E� ∈
+ . �

We say a vector ®G ∈ R+ on� is distributed on� if for each E� , all the vertices of (�→�
<0? (E�) records

®GE� .
We say a vector ®5 ∈ R� defined on edges of� is distributed to� if for each 4 ∈ �, the two endpoints

of ��→�
<0? (4) records ®54 . Sometimes, we treat a vector ®5 ∈ R� defined on edges of� as a matrix, denoted

asM ®5 , such thatM ®5 ,DE =
®5DE if (D, E) is an edge in �, otherwiseM ®5 ,DE = 0.

Lemma 7.3. Let � = (+, �) be a communication network = vertices, < edges, and diameter � . Let P
be a collection of paths/cycles of � such that every edge of � is used for at most d times for some d =

$ (poly(<)), and for every two consecutive edges (D, E), (E,F ) of some path in P, E knows that (D, E), (E,F )
are two consecutive edges of some path/cycle of P . Then the following operations can be performed using

$ (d<1/2 log< + �) rounds of communication on� :

1. Every path/cycle of P is associated with a unique ID such that for each edge 4 ∈ � in the path/cycle,

the two endpoints of ��→�
<0? (4) know the ID.

2. Let ®5 be an edge vector of� . Compute the sum of ®5 for each path/cycle of P and let the two endpoints

of ��→�
<0? (4) know the result for each edge 4 in the path/cycle.

Proof. We view P as a graph such that every vertex and edge appears once by treating each appearance

of the same vertex/edge as a new vertex/edge. The resulted graph, denoted as � , is a graph of $ (d<)
vertices and edges that corresponds to a set of edge disjoint paths.
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We sample each vertex of � with probability log</<1/2. At most $ (d<1/2 log<) vertices are sam-

pled with high probability, and for each simple path of length <1/2 that corresponds to an induced

subgraph of � , at least one vertex of the simple path is sampled. Each sampled vertices performs a BFS

on� until it reaches another sampled vertex or an endpoint of some path in� . We aggregate the result

of the BFS (the visit of sampled vertices or endpoints of some path in �) to an arbitrary vertex of �

in $ (d<1/2 log< + �) rounds, and the IDs for paths/cycles of length at least<1/2 can be assigned and

broadcast to each vertex in these paths/cycles in$ (d<1/2 log< + �) rounds.
Then, all the paths/cycles that do not contain any sampled vertex initiate a BFS from each vertex

in the paths/cycles such that if two BFS collide, only the one initiated by small vertex ID is kept. Since

every path/cycle that does not contain any sampled vertex is of length at most$ (<1/2), this step can be

done in $ (<1/2) rounds, and afterwards the IDs for these paths/cycles can be computed and broadcast

to each vertex on these paths/cycles in $ (<1/2) rounds.
Hence, the first operation can be done in$ (d<1/2 log< +�) rounds. The second operation can also

be done in$ (d<1/2 log< +�) rounds using sampled vertices in a way similar as the first operation. �

7.2 Basic Operations on Flow Preconditioned Minor

In the rest of this section, we will use the following basic operations on flow preconditioned minor in

our algorithms: (Let � = (+, �) be a communication network, and � = (+, �) be a graph that is a

flow-preconditioned minor distributed to� .)

1. Local Edge Vector Operation: Let ®5 (1) , ®5 (2) , . . . , ®5 (C) be C edge vectors of � that are distributed

on � . Compute ®5 that is an edge vector of � distributed on � such that ®54 is a function of
®5 (1)4 , ®5 (2)4 , . . . , ®5 (C)4 for each edge 4 ∈ �.

2. Local Vertex Vector Operation: Let ®G (1) , ®G (2) , . . . , ®G (C) be C vertex vectors of � that are distributed

on � . Compute ®G that is a vertex vector of � distributed on � such that ®GE� is a function of

®G (1)
E�
, ®G (2)

E�
, . . . , ®G (C)

E�
for each vertex E� ∈ + .

3. Norm Operation: For a vertex vector ®G ∈ R+ or an edge vector ®5 ∈ R� on � distributed to � and

a ? > 1, compute ?-norm of ®G or ®5 and broadcast the result to each vertex of� .

4. Coordinate Selection Operation: For an edge vector ®5 ∈ R� of � distributed on � and an integer

: , identify top : coordinates of ®5 with largest absolute value.

5. Matrix VectorMultiplicationOperation: For an edge vector ®5 ∈ R� of� and a vertex vector ®G ∈ R+
on� both distributed to� , compute M ®5 ®G that is distributed to� .

We prove the following lemma to bound the number of rounds to perform each basic operation.

Lemma 7.4. Let � = (+, �) be a communication network with = vertices and< edges, and � = (+, �) be
a graph that is (d, U)-flow-preconditioned minor distributed to� . Then, we have

1. an algorithm to perform a local vertex vector operation or a local edge vector operation in$ (1) rounds;

2. an algorithm to perform a norm operation in $ (�) rounds;
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3. an algorithm to perform a coordinate selection operation for ®5 in $ (� · poly(log V)) rounds, where
V =

max4∈� | ®54 |
min

4,4′∈�: ®54≠ ®54′
| ®54− ®54′ |

;

4. an algorithm to perform a matrix vector multiplication operation in $ (d + U�) rounds.

Proof. The local vertex vector operation or local edge vector operation can be computed locally by each

vertex of� .

The norm operation can be computed by a BFS on � such that every � by aggregating the sum of

®GE� for each E� ∈ + .
The coordinate selection operation can be computed by binary searching :-th largest absolute value

of ®54 among all the 4 ∈ � and counting the number of coordinates with absolute value greater than or

equal to the value binary searched.

The matrix vector multiplication operation can be implemented by computing ®5DE ®GE at one endpoint
of ��→�

<0? (DE) in (�→�
<0? (D) and taking the sum of

∑
E:DE∈� ®5DE ®GE for each D by )�→�

<0? (D). The number of

rounds required is by Lemma 7.2. �

7.3 Flow Rounding

We simulate the flow rounding algorithm by Cohen [Coh95] in the CONGESTmodel as a subroutine for

maximum flow and min-cost flow. The algorithm by Cohen [Coh95] is summarized as Algorith 11.

Lemma 7.5 (Proposition 5.3 of [Coh95]). Let� = (+, �) be a graph with = vertices and< edges, 5 : � →
R
≥0 be a B-C flow function, and Δ be a real value such that 1/Δ is a power of 2 and 5 (4) is an integral

multiplication of Δ for every 4 ∈ �. Then

1. Algorithm FlowRounding rounds 5 on edge 4 ∈ � to ⌊5 (4)⌋ or ⌈5 (4)⌉ such that the resulted flow

has the total flow value not less than 5 .

2. If the total flow value of 5 is integral and there is an integral cost function 2 : � → Z
≥0, then

Algorithm FlowRounding rounds 5 on edge 4 ∈ � to ⌊5 (4)⌋ or ⌈5 (4)⌉ such that the resulted flow

has the total flow value not less than 5 , and the total cost not more than 5 .

In this section, we present two distributed simulations of Cohen’s algorithm, one for maximum flow

rounding, and another one for min-cost flow rounding. The underlying reason of two algorithms is that

the strategy of choosing path directions (Line 8-11 of Algorithm 11) are different: the former one always

choose direction that does not decrease the flow value, and later one always chooses the direction that

does not increase total cost.

Lemma 7.6. Let � = (+, �) be a communication network with = vertices, < edges and diameter � , � =

(+, �) be a flow network containing two vertices B and C such that � is a (d, U)-flow-preconditioned minor

distributed to � , Δ be a real value such that 1/Δ is an integer that is a power of 2, and (for two vertices

B, C ∈ + ) ®5 : be a B-C flow function on � such that 5 (4) is an integral multiplication of Δ for every 4 ∈ �,
and ®5 is distributed to� . Then

1. There is a distributed algorithm which runs in$ ((d
√
<(log<)2 +�) · log(1/Δ)) rounds to compute

an integer B-C flow function 5 ′ : � → Z+ such that the flow value of 5 ′at least that of 5 and 5 ′(4) ∈
{⌊5 (4)⌋, ⌈5 (4)⌉} for every 4 ∈ �.
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Algorithm 11: Flow Rounding

1 procedure FlowRounding(�, B, C, 5 , 2, Δ)
2 if the total flow of 5 is not integral then

3 Add an edge from C to B with flow value the same as total flow.

4 while Δ < 1 do

5 � ′← {(D, E) ∈ � : 5 (D, E)/Δ is >33}
6 Find an Eulerian partition of � ′ (ignoring the directions of the edges)
7 for every cycle of the Eulerian partition of � ′ do
8 if cycle contains the edge (C, B) then
9 Traverse the cycle such that edge (C, B) is a forward edge.

10 else if cost function 2 exists then

11 Traverse the cycle such that the sum of costs on forward edges is no more than

the sum of costs on backward edges.

12 else

13 Traverse the cycle arbitrarily.

14 for every edge (D, E) � ′ do
15 if (D, E) is a forward edge w.r.t the traversal of the path containing (D, E) then
16 5 (D, E) ← 5 (D, E) + Δ
17 else

18 5 (D, E) ← 5 (D, E) − Δ

19 Δ← 2Δ

20 return 5 .

2. If the total flow value of 5 is integral and there is an integral cost function 2, then there is a distributed

algorithm$ ((d
√
<(log<)2+�) · log(1/Δ)) rounds to compute an integer B-C flow function 5 ′ : � →

Z
+ such that the resulted flow has the total flow value not less than 5 , and the total cost not more than

5 .

Proof. We first extend � such that (�→� (B) = (�→� (C) = + . The resulted � is a (d + 2, U + 2)-flow-
preconditioned minor distributed on � . Then in $ (1) rounds, we can add edge (C, B) to � by letting

��→�
<0? (C, B) = EE for an arbitrary vertex E ∈ + . The resulted� is still a (d + 2, d + 2)-flow-preconditioned

minor distributed on� .

Throughout the algorithm, we view the flow function as a vector on �, denoted as ®5 , that is distribu-
red to� .

For a ®5 and a fixedΔ, � ′which is an edge set of� can be identified in$ (1) rounds. Nowwe show that

an Eulerian partition of � ′ can be determined in $ ((U + 2)�) rounds. By the first and second condition

of the lemma, for any vertex E� ∈ + , the number of edges in � ′ incident to E� is always even. Hence,

to construct an Eulerian partition of � ′, we only need to pair all the incident edges in � ′ for each vertex

of + . This pairing process can be done in $ (1) rounds for all the vertices E� such that |+�→� (E�) | = 1.

For each vertex E� ∈ + such that+�→� (E�) = + , we simulate the following algorithm in $ (�) rounds
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such that the pairing process are simulated:

• Run a reverse BFS on )�→�
<0? (E�) such that for each E� ∈ + : Let � ′

E�
be the union of the edges

sent to E� from all the children of E� in )�→� (E�) and all the edges in � ′ incident to E� whose

images by ��→�
<0? are edges incident to E� . If |� ′

E�
| is even, then pair all the edges in � ′

E�
arbitrarily,

otherwise, send one edge of � ′
E�

to the parent of E� in )�→� (E�), and pair the remaining edges

of � ′
E�

arbitrarily.

In addition, since for every vertex E� of )�→� (E�), every child of E� with respect to )�→� (E�) sends
the information of at most one edge to E� , the Eulerian partition of � ′ corresponds to a union of cycles

of� such that every edge of� is used at most d + 2 times.

Lemma 7.3 gives that for each cycle in the Eulerian partition, aggregating the required information

takes $̃ (<1/2 log< + �) rounds. And since all the cycles are edge disjoint for � , the traversal of each

cycle of the Eulerian partition can be determined in $ (d
√
< log< + �) rounds, and the direction of the

traverse of each cycle can be broadcasted to each edge of the cycle in$ (d
√
< log< + �) rounds.

Hence, simulating one iteration of the while loop on Line 4 of Algorithm FlowRounding takes

$ (d
√
< log< + �) rounds. So the overall number of rounds needed for Algorithm FlowRounding is

$ ((d
√
< log< + �) · log(1/Δ)). �

7.4 Maximum Flow

In this subsection, we present a distributed exactmaximumflow algorithm for flow networkwith integral

capacity in $̃
(
<3/7* 1/7=> (1) (=1/2�1/4 + �) +<1/2

)
rounds in the CONGEST model, where * is upper

bound of the capacities among all the edges. Based on the distributed Laplacian solver, our algorithm

simulate the sequential exactmaximumflow algorithmbyMadry [Mad16]. Madry’s sequential algorithm

is briefly summarized in Algorithm 12, and the details are given in Section C.1.

Theorem 6 ([GU15, CM20]). Let� be a (undirected or directed) graph with = vertices,< edges and undi-

rected diameter � , B be a vertex of � , and ®F be an edge vector such that for any edge (D, E) of � , vertices
D and E know FD,E. Assume in every round, two vertices can send $ (log=) bit information to each other if

there is an edge between them in� no matter the direction of the edge. Then there is a distributed SSSP algo-

rithm that in $̃ (=1/2�1/4 +�) rounds computes the distances with respect to ®F from B to all of its reachable

vertices as well as an implicit shortest path tree rooted at B such that every vertex knows its parent in the

shortest path tree.

In our distributedmaximumflow and min-cost flow algorithm, the graph which we run single source

shortest path (SSSP) algorithm on is different to the communication network, because the algorithms we

want to simulate [Mad16, CMSV17] add additional vertices and edges to the graph. Hence, we show that

this SSSP algorithm can be simulated efficiently if the graph is a flow preconditioned minor distributed

to the communication network.

Corollary 7.7. Let� = (+, �) be a communication network with= vertices and< edges, and� = (+, �) be
a (undirected or directed) graph with = vertices,< edges and diameter � that is (d, U)-flow-preconditioned
minor distributed to� . Then there is a distributed SSSP algorithm that, for any given source vertex B� ∈ + ,
performs $̃ (d (=1/2�1/4 + �) · U2) rounds.
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Algorithm 12:MaxFlow (�0, B, C , * , � )

Input: directed graph�0 = (+, �0, ®D) with each 4 ∈ �0 having two non-negative integer

capacities D−4 and D+4 ; |+ | = = and |�0 | =<; source B and sink C ; the largest integer

capacity* ; target flow value � ≥ 0;

1 Add< undirected edges (C, B) with forward and backward capacities 2* to�0;

2 for each 4 = (D, E) ∈ �0 do
3 Replace 4 by three undirected edges (D, E), (B, E) and (D, C) whose capacities are D4 ;
4 Let the new graph be� = (+, �);
5 Initialize the flow vector ®5 ← ®0 and dual vector ®~ ← ®0;
6 Update ®5 and ®~ by solving two Laplacian linear systems on� and a constant number of local

vertex/edge vector operations;

7 Compute the congestion vector ®d by a constant number of local edge vector operations;

8 repeat

9 if ‖ ®d ‖3 is at most one computed threshold then

10 Update ®5 and ®~ by solving two Laplacian linear systems on� and a constant number of

local vertex/edge vector operations;

11 Update ®d by a constant number of local vertex/edge vector operation;

12 else

13 Determine the set (∗ that contains the<4[ edges with the largest |d4 | by a coordinate

selection operation;

14 Update graph� via replacing each edge in (∗ by a path and setting some quantities;

15 until $̃ (<3/7* 1/7) times;

16 while there is an augmenting path from B to C w.r.t. ®5 for� do

17 Augment an augmenting path for ®5 using the shortest path from B to C in the residual graph;
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Proof. We assume that excluding the U vertices of � that are mapped to all the vertices of � , at most

one vertex is mapped to any vertex of + . This is without loss of generality, because if multiple vertices

are mapped to the same vertex of � , then any communication between these vertices are free. In the

following, we will call vertices of� that are mapped to all the vertices of� simulated vertices.

We first explain how the SSSP algorithm of [CM20] can be modified to work as an B-C shortest path

algorithm in a setting where only the source (start) vertex B and the sink (target) vertex C (and their

incident edges) are simulated vertices. In particular, we argue that the algorithm can be simulated in

$̃ (d (=1/2�1/4 + �)) rounds (where the multiplicative d factor simply comes from the fact that every

edge of� is used at most d times for edges in�).

The algorithm of [CM20] consists of eight steps. In Steps 1 and 2, vertices sample themselves with

certain probabilities. These steps require no communication and therefore can also be carried out in

our setting in which source and sink are just simulated. We slightly modify Step 1 to ensure that the

vertex C is never sampled. This does not affect the correctness of the algorithm if we are only interested

in computing the shortest path from B to C as shortest paths are simple and thus C will never be an inner

vertex on this shortest path.

In Steps 4 and 7, certain auxiliary graphs are created implicitly in the sense that each vertex only

knows its incident edges in the auxiliary graph and their respective edge weights. Therefore these steps

also require no communication and therefore can also be carried out in our setting in which source and

sink are just simulated.

To implement the rest of the algorithm we will rely on the following observation: whenever a step

of the algorithm is performed solely by broadcasting or aggregating values via a global BFS tree of the

network, then this step immediately can be carried out in our setting with the two simulated vertices as

well. This is the case in Steps 5 and 6 of the algorithm.

In Step 8, a certain number of iterations of the Bellman-Ford algorithm is performed on a graph

that in addition to the edges of the input graph contains edges from B to certain other vertices. Similar

to [CM20], we carry out the first iteration of the Bellman-Ford algorithm – in which the neighbors of B

set their tentative distance to the weight of the edge from B – by a global broadcast in $ (�) rounds.
In [CM20], the remaining iterations of Bellman-Ford are carried out in the standard way where vertices

directly communicate with their neighbors. For our modification of [CM20] we do the same, but ignore

the vertex C for these iterations. In the end, we explicitly need to ensure that the simulated vertex C

also gets to know its distance from B. We achieve this by additionally performing one iteration of the

Bellman-Ford iteration in which only the incoming edges of C (and the corresponding neighbors of C) are

considered. This can be carried out in $ (�) rounds by broadcasting. This works because the incoming

neighbors of C (which are part of the communication network and are not just simulated by it) already

know their distance from B at this stage due to the previous iterations of Bellman-Ford.

This leaves only Step 3 of the algorithm. In Step 3, Lemma 2.4 of [FN18] is applied to compute

approximate distances from each vertex of a set ( (where ( includes the vertex B, but not the vertex C .).

Essentially this Lemma amounts to running a “weighted” version of the breadth-first-search algorithm

for each vertex of ( (which is repeated $ (log(=, )) times with a certain weight rounding applied to

the edges in each iteration). The start times of these BFS algorithms are chosen with random delay to

guarantee that the congestion at each vertex is low. For the BFS starting at vertex B, the first iteration

can be carried out by broadcasting the random delay of B. The neighbors of B (knowing the weight of

the edge from B) then know when the “weighted” BFS of B reaches them and can continue with it at the

respective time. This gives an additional additive term of $̃ (�) in the running time, which does not

affect the asymptotic bounds stated in Lemma 2.4 of [FN18]. This concludes our discussion of the B-C
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shortest path algorithm.

Now observe that with the same approach we can obtain an SSSP algorithm in a setting where the

source vertex B is the only vertex simulated by the network: we simply need to remove the special

handling we had for vertex C in our approach above.

Note that these two algorithmic primitives are sufficient to compute SSSP in a setting where there

are U simulated vertices: Let ( denote the set of vertices consisting of B� and the simulated vertices. First,

perform an SSSP computation from each vertex B ∈ ( ignoring the other vertices of ( (i.e., perform the

SSSP computation in the graph� \(∪{B}). Then, perform an B-C shortest path computation for each pair

of vertices B, C ∈ ( , ignoring the other vertices of ( (i.e., perform the B-C shortest path computation in the

graph� \( ∪ {B, C}). Now each vertex E can reconstruct its distance from B� by the information it stored

so far as the shortest path from B� to E can be subdivided into subpaths between vertices of ( containing

no other vertices of ( . Overall, we perform$ (U) SSSP computations with at most one simulated vertex

and$ (U2) B-C shortest path computations with at most two simulated vertices. Finally, note that as soon

as each vertex E knows its distance from B� an implicit shortest path tree (in which each vertex knows its

parent in the tree) can be reconstructed by performing a single iteration of the Bellman-Ford algorithm.

For the U simulated vertices, we perform this final step in $ (U�) rounds by broadcasting via a global

BFS tree. �

Theorem 7. Let � = (+, �) be a communication network with = vertices,< edges, and diameter � ,�0 be

a graph and 2 be an integral capacity function for each edge of�0 with maximum capacity* satisfying one

of the following two conditions:

1. �0 is the same as� , and for each edge (D, E) ∈ �, D and E know the capacity of edge (D, E).

2. �0 is a directed graph obtained by associating each edge of � a direction such that for each edge

(D, E) ∈ �, D and E know the direction of edge (D, E) and its capacity.

Then there is a distributed algorithm to compute exact B-C maximum flow for two vertices B and C of�0 in

$̃
(
<3/7* 1/7=> (1) (=1/2�1/4 + �) +<1/2

)
rounds in the CONGEST model.

Proof. We simulate Algorithm12. By [Mad16], the accuracy required throughout the algorithm is 1/poly(<).
Without loss of generality, we assume all the values throughout multiplied by 2W are integers for some

W = $ (log<). Throughout the algorithm, we set (�0→� (B) = (�0→� (C) = + , and for each vertex

E ∈ + \ {B, C}, (�0→� (E) = E .
In line 1, we need to add< parallel (C, B) edges each with capacity* . This step can be simulated in

$ (1) rounds by specifying an arbitrary vertex in E� ∈ + such that< parallel (C, B) edges are mapped to

selfloops of E� .

In line 3, every edge (D, E) with capacity U of�0 is replace by three edges (D, E), (B,D) and (E, C) with
capacity U . Let � denote the graph after line 3. We always make sure that ��→�

<0? (B, D) = (D,D) and
��→�
<0? (E, C) = (E, E). Hence,� is a (3, 2)-flow-preconditioned minor distributed to� .

In line 14, if we replace an edge (D, E) of� by a path (D, E1, E2, . . . , Eℓ, E), thenwe consider the following
two cases:
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1. If ��→�
<0? (D, E) is a selfloop of some vertex G in � , then add all the new vertices E1, E2, . . . , Eℓ such

that+�→�
<0? (E8) = G , and all the new edges are also selfloops on G .

2. If ��→�
<0? (D, E) corresponds to an edge of � , then add all the new vertices E1, E2, . . . , Eℓ such that

(�→� (E8) = {+�→�
<0? (D)}, and add edges such that ��→�

<0? (Eℓ, E) = ��→�
<0? (D, E) and the remaining

edges to be selfloops on +�→�
<0? (D).

Hence, we maintain the invariant that� is (3, 2)-flow-preconditioned minor distributed to� .

Note that the execution of each line takes a constant number of basic vector operations in Lemma 7.4

or solves a constant number of Laplacian systems on graph� (excepting replacing an edge by a path in

line 14, which can be done in$ (1) rounds). By Lemma 7.4, each basic vector operation can be simulated

in $ (� log<) rounds.
To solve a Laplacian system, we first eliminate all the vertices that are added in line 14. Since all these

vertices are of degree 2, this elimination can be done locally in each vertex of� , and the resulted graph

is $ (1)-minor distributed to � . By Theorem 1, the Laplacian system can be solved in => (1) (=1/2 + �)
rounds. Then we obtain the solution of Laplacian system with respect to � by adding the eliminated

vertices back locally.

Since the repeat part takes $ (<3/7* 1/7) iterations, the total number of rounds required to simulate

all progress steps is $̃ (<3/7+> (1)* 1/7(=1/2 + �)).
By Lemma 7.6, the flow rounding takes$ (log< · (<1/2 log2< +�)) rounds. After the flow rounding,

the difference between the flow value and maximum flow value is at most$ (<3/7* 1/7). By Corollary 7.7,
each iteration of finding an augmenting path takes $̃ (� + =1/2�1/4) rounds. Hence, the additional aug-
menting step takes $̃ (<3/7* 1/7(=1/2�1/4 + �)) rounds. �

7.5 Unit Capacity Minimum Cost Flow

In this subsection, we present a distributed minimum cost unit capacity flow algorithm with integral

cost in $̃
(
<3/7+> (1) (=1/2�1/4 + �)

)
rounds in the CONGEST model. Based on the distributed Laplacian

solver, our algorithm simulate the algorithm by Cohen et al. [CMSV17]. The sequential algorithm is

briefly summarized in Algorithm 13, and the details of the algorithm are given in Section C.2.

Theorem 8. Let � = (+, �) be a communication network with = vertices and < edges, �0 be a directed

unweighted graph also defined on+ such that each edge (D, E) of�0 is an edge of � if the direction is ignored,

and D and E in the communication network know the direction of edge (D, E) and its cost. Then, given �0

and a demand vector ®f , there is a distributed algorithm to compute the minimum cost flow for graph �0

with respect to ®f in

$̃ (<3/7+> (1) (=1/2�1/4 + �)poly(log, ))
rounds in the CONGEST model.

Proof. We simulate Algorithm 13 and the accuracy required throughout the algorithm is 1/poly(<).
Without loss of generality, we assume all the values throughout the algorithm multiplied by 2W are

integers for some W = $ (log<).
To build graph �1 in line 1, we add vertex E0DG to the graph such that (�1→� (E0DG) = + , and for all

the vertices E ∈ + , (�1→� (E) = {E}. For each edge (D, E) of�1 with D, E ∈ + , we let ��1→�
<0? (D, E) = (D, E).
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Algorithm 13:MinCostFlow (� , ®f ,, )

Input: directed graph�0 = (+0, �0, ®20) with each edge having unit capacity and cost ®20; |+0 | = =
and |�0 | =<; integral demand vector ®f ; the absolute maximum cost, ;

1 Create a new vertex E0DG with f (E0DG) = 0 and add parallel edges (E, E0DG ) or (E0DG, E) according
to d (E) and degree of E in�0, and denote the resulted graph as�1 = (+1, �1, ®21);

2 Initialize the bipartite graph� = (% ∪&, �, ®2) with % ← +1 and& ← {4DE | (D, E) ∈ �1} where
4DE is a vertex corresponding to edge (D, E) ∈ �1;

3 Add a new vertex E0 and undirected edges (E0, E) for every E ∈ % to� ;

4 Initialize the resistance vector ®A , flow vector ®5 , dual vector ®B , measure vector ®a and congestion

vector ®d by a constant number of local vector operations;

5 for 8 = 1 to 1200
√
3<2/7 log4/3, do

6 Reset the resistances of the auxiliary edges (E0, E) for each E ∈ % by a constant number of

local vector operations;

7 for 9 = 1 to<1/7 do
8 while ‖ ®d ‖ ®a,3 > 400

√
3<3/7 log1/3, do

9 Increase the energy via resetting the resistance A4 and measure a4 for 4 ∈ � by a

constant number of local vector operations;

10 Update the flow vector ®5 and dual vector ®B by solving two Laplacian linear systems in

L(�) and a constant number of local vector operation;

11 Round the solution to be integral by calling FlowRounding and obtain ®" ;

12 repeat

13 Construct the directed graph
−→
�" of� w.r.t. ®" by a constant number of local edge vector

operations;

14 Compute the shortest path c in
−→
�" ;

15 Augment ®" using the augmenting path c ;

16 until $̃ (<3/7) times;

17 return ®" ;

For edge (E, E0DG) or (E0DG, E), we let ��1→�
<0? (E, E0DG) to be a selfloop on E . The construction of�1 can be

done locally, and the resulted graph is a (2, 1)-flow-preconditioned minor distributed to� .

To construct� , for each vertex 4DE ∈ & , we map 4DE to be one of D and E of� arbirarily. For vertices

of % , the mapping is the same as that of�1. For each edge (D, 4DE) of� , if+�→�
<0? (D) = +�→�

<0? (4DE), then
we map edge (D, 4DE) to a selfloop on+�→�

<0? (D), otherwise, (+�→�
<0? (D),+�→�

<0? (4DE)) is an edge of� , and

we set ��→�
<0? (D, 4DE) to be the edge (+�→�

<0? (D),+�→�
<0? (4DE)). Hence, the first two lines can be simulated

in $ (1) rounds, and the resulting graph� is a (2, 1)-flow-preconditioned minor distributed to � .

To simulate Line 3, we add an additional vertex E0 to� such that (�→� (E0) = + , and add edges (E0, E)
for each E ∈ % by setting ��→�

<0? (E0, E) be a selfloop on E if E ∈ + , and ��→�
<0? (E0, E) be a selfloop on an

arbitrary vertex of+ if E = E0DG . The resulting graph� is a (3, 2)-flow-preconditioned minor distributed

to � .
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For lines 5-10 of Algorithm 13, the execution of each line takes a constant number of basic vector op-

erations in Lemma 7.4 or solves a Laplacian system on graph� . To solve a Laplacian system, since all the

vertices of& have two incident edges, we eliminate vertices of& in$ (1) rounds, and the resulting graph
is $ (1)-minor distributed to � . By Theorem 1, every Laplacian system can be solved in => (1) (=1/2 + �)
rounds. Based on the parameter setting, lines 5-10 can be simulated in $̃ (<3/7+> (1) (=1/2+�)poly(log, ))
rounds.

Before the flow rounding, we add B and C such that (�→� (B) = (�→� (C) = + , and add edges by

adding selfloops on vertices of + . The resulting graph is a (5, 4)-flow-preconditioned minor distributed

to � . By Lemma 7.6, line 11 can be simulated in $̃ (<1/2 + �) rounds.
To simulate lines 12-16, all the operations except finding shortest path can be simulated in a way

similar to that of lines 5-10. To find the shortest path from % ∩ �" to & ∩ �" , we add an additional

vertex E ′, and edges (E ′, E) for each E ∈ % ∩ �< with weight zero to � . The resulted graph is a (4, 3)-
flow-preconditioned minor distributed to � . By Corollary 7.7, the shortest path can be computed in

$̃ (� + =1/2�1/4) rounds. The total number of rounds for lines 12-16 is $̃ (<3/7(� + =1/2�1/4)) rounds.
Hence, the total number of rounds required is

$̃ (<3/7+> (1) (=1/2 + �)poly(log, )) + $̃ (<1/2 + �) + $̃ (<3/7 (� + =1/2�1/4))
=$̃ (<3/7+> (1) (=1/2�1/4 + �)poly(log, )).

�

7.6 Negative shortest path

We now give a distributed algorithm for computing single source shortest path with negative weights.

It is a direct use of the reduction from shortest paths with negative weights to min-cost flow by Cohen

et al. [CMSV17]. Pseudocode of this algorithm is in Algorithm 14.

Algorithm 14: ShortestPaths (� , B,, )

Input: directed graph� = (+, �,F ) with |+ | = = and |� | =<; source B; the absolute maximum

weight, ;

/* Reduction to a weighted perfect ®1-matching problem */

1 Let the bipartite graph be�12 = (+1 ∪+2, �12,F12) with+1 = {E1 | E ∈ + }, +2 = {+2 | E ∈ + },

�12 = {D1E2 | DE ∈ �} ∪ {E1E2 | E ∈ + } andF12(D1E2) =
{
−FDE DE ∈ �
0 D = E

;

2 ( ®5 , ®~) ← MinCostFlow(�12, ®1,, );
3 for each edge (D, E) ∈ � do

4 F ′DE ← FDE + ~D − ~E ;
5 Compute the shortest paths with source B on� = (+, �,F ′);

Theorem 9. Let � = (+, �) be a communication network with = vertices and < edges, and F : � →
{−,,−, + 1, . . . ,−1, 0, 1, . . . ,, } be an integral weight function. For a vertex B ∈ + , there is a distributed
algorithm to compute the shortest path from B to all the other vertices that has a shortest path from B in

$̃ (<3/7+> (1) (=1/2�1/4 + �)poly(log, ))
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rounds in the CONGEST model.

Proof. The strategy of Algorithm 14 is that transferring the given� to a bipartite graph�12 and calling

the Algorithm MinCostFlow on �12 to obtain the dual solution ®~, which is utilized to transform the

original edge weights in� to be non-negative, and then using the single source shortest path algorithm

with non-negative weights on the new instance� ′ = (+, �,F ) to compute the shortest paths.

In a constant number of rounds, we can construct�12 based on� that is a (1, 0)-flow-preconditioned
minor distributed to � . By Theorem 8 and Corollary 7.7, Algorithm 14 can be simulated in the desired

number of rounds. �
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A Lower Bound

Theorem 2. In the CONGESTmodel of computation, solving Laplacian systems to accuracy n ≤ 1
2 requires

at least Ω̃(=1/2 + �) rounds of communication.

Proof. Note first that any low-accuracy solver with accuracy n ≤ 1
2 can be boosted to a solver with preci-

sion ñ at the cost of increasing the running time by a factor of $ (log ñ−1) (see Lemma 1.6.8. in [Pen13]).

This is done by running$ (log ñ−1) iterations of the iterative refinement method, which in each iteration

performs one matrix-vector product, one vector substraction, one vector addition, and one call to the

77



low-accuracy solver. Excluding the call to the low-accuracy solver, all of these operations can be per-

formed in a constant number of rounds. The running time of the iterative refinementmethod is therefore

dominated by the $ (log ñ−1) calls to the low-accuracy solver. We thus assume in the following that we

are given a high-accuracy solver with accuracy n = 1/poly(=), which as just argued requires only an

overhead of $ (log=) in the number of rounds compared to a low-accuracy solver.

To prove the lower bound we use the framework of Das Sarma et. al. [DSHK+12] who established

an Ω(
√
=/(log=) + �) lower bound for the following verification problem: Given a subgraph � of the

communication network � (which has = nodes and diameter �) and two nodes B and C , the network

needs to decide whether B and C are connected (i.e., lie in the same connected component). In their

lower bound construction, the distance between B and C in � is $ (log=). We show that any algorithm

for solving Laplacian Systems up to small enough error n = 1/poly(=) can be used to give B and C the

information whether they are connected in � in additional dist� (B, C) = $ (log=) rounds. In particular,

we exploit that such a solver can be used to compute an approximation to the effective B-C resistance.

Define the weighted graph � ′ (which we view as a resistor network) as having the same nodes and

edges as� and resistances A4 = 1 for every edge 4 ∈ � (� ) and A4 = = for every edge 4 ∉ � (� ). Let jB,C be
the =-dimensional vector is 1 at the coordinate corresponding to B, −1 at the coordinate corresponding
to C , and 0 otherwise. It is well known (see, e.g., [CKM+11, Vis12]) that res� ′ (B, C) = q (B) − q (C) for any
vector q satisfying L(� ′)q = jB,C , where q (B) and q (C) are the values of the coordinates corresponding
to B and C , respectively. Let ®q ′ be an approximate solution with error n to the linear system L(� ′) ®q = ®jB,C ,
i.e., 


 ®q ′ − L (� ′)† ®jB,C




L(� ′)
≤ n ·



 ®jB,C

L(� ′)† . (67)

Henceforth let q = L (� ′)† ®jB,C . Thus, (67) is equivalent to the statement


 ®q ′ − q



L(� ′)

≤ n ·
√
res� ′ (B, C) . (68)

It is well-known that for any Laplacian matrix L with integer resistances from 1 to ' = poly(=) this
first eigenvalue is _1 (L) = 0 the second eigenvalue is bounded by _2 (L) ≥ 1

poly(=) and thus for any vector
®G the following bounds relating the matrix norm to the infinity norm hold:

‖®G ‖∞ ≤ ‖®G ‖2 ≤
1√

L†



2

‖®G ‖L =
1

_2 (L)
‖ ®G ‖L ≤ poly(=) ‖ ®G ‖L (69)

The combination of (68) and (69) together with the estimate res� ′ (B, C) ≤ =' gives


 ®q ′ − q



∞
≤ n · poly(=) . (70)

By setting n to a small enough value inversely polynomial in =, (70) implies

res� ′ (B, C) − 0.25 ≤ q ′(B) − q ′(C) ≤ res� ′ (B, C) + 0.25 .

In the rest of the proof, we argue that knowing the value q ′(B) −q ′(C) (which can be made known to

both B and C in dist� rounds) suffices to decidewhether B and C are connected in� . If B and C are connected

in � , then – since effective resistances obey the triangle inequality – the effective B-C resistance in � ′ is
upper-bounded by the length of the shortest path between B and C in � , i.e., res� ′ (B, C) ≤ = − 1. If B and C
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are not connected in � , then let ( be the connected component containing ( and let 41, . . . , 4: (for some

: ≤ < ≤ =2) be the edges leaving ( in � . By the Nash-Williams inequality (see, e.g., [LP16], chapter

2.5), the effective B-C resistance is at least

res� ′ (B, C) ≥
1∑:

8=1
1

A (48 )
=

1∑:
8=1

1
(1+n)2=3

≥ (1 + n)2= .

Thus, B and C are connected in � if and only if q ′(B) − q ′(C) ≤ = − 0.5. �

B Building Blocks for Distributed Minors

Here we give the deferred proofs from Section 4.1. All of our algorithms are based on placing about
√
=

special vertices, picked randomly so that any vertex is within a distance of about
√
= from these, and

then aggregating information at these special vertices globally via a DFS tree in about
√
= + � rounds.

For this, it is useful to define a tree decomposition scheme for the set of overlapping trees used to

connect the supervertices.

Lemma B.1. There is an algorithm SpecialVertices that takes an input a forest � specified with mappings

of vertices and edges into a graph � such that each vertex of � appears in at most d trees of � , and each

edge of � is used in at most d trees of � , and returns after $ (d
√
=) rounds of communication a collection

of$ (d
√
= log=) special vertices of � , labeled at their mapped vertices in� , such that with high probability,

for each ) in � , we have:

1. either the diameter of ) is at most
√
=,

2. or for any vertex of ) ,

(a) it can reach at most 2 special vertices, without going through more special vertices.

(b) its distance in ) to closest special vertex is at most $ (
√
=).

Algorithm 15: Partition all trees of a forest into low diameter pieces via special vertices

1 procedure SpecialVertices (� ,� )

2 Sample  by including each vertex in each tree of � with probability log=/=1/2.
3 for$ (

√
=) rounds do

4 Each vertex propagate to all its neighbors whether taking that edge towards it leads to a

vertex in  .

5 Add all vertices that can reach special vertices in three or more directions to  .

Proof. Consider SpecialVertices in Algorithm 15.

The congestion bound gives that the total number of vertices among the trees is at most$ (d=). This
means picking$ (d

√
= log=) random vertices from⋃

E� ∈+ (�)
(�→� (E�),
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ensures that with high probability, the maximum distance to a special vertex along any tree path is

$ (
√
=) with high probability.

This means that in $ (
√
=) rounds of propagation, we can find, for each edge in each tree, whether

there is a special vertex in either direction. Formally, the local operation at each vertex is to check

whether there are 2 or more directions from it that lead to special vertices: if there are, then all edges

entering this vertex are part of paths that reach special vertices. Otherwise, all except that one direction

that the path from a special vertex came from can be continued, so we push ‘possible’ along all except

that direction.

By declaring all vertices with three or more edges leaving it that lead to special vertices as special

themselves. As this only adds in the lowest common ancestors of the previous special vertices, it only

increases the number of special vertices by a constant factor. This step is also completely local, so the

total cost is dominated by the propagation steps. �

This partition routing allows us to root all of the trees.

Proof. (of Lemma 4.2) We first run the partition scheme SpecialVertices on the forest that’s the unions

of the spanning trees of the supernodes of � . Lemma B.1 gives that each resulting piece consisting of

edges reachable to each other without going through special vertices have diameter at most $ (
√
=). So

$ (
√
=) rounds of propagation lets the root vertex inform all nodes in its piece. In this number of rounds,

we also propagate the ID of these special vertices, as well as distances to them, to all vertices in each

piece using another$ (
√
=) rounds of communication.

Note this in particular allows the two special nodes on each piece to know their distance to each

other. The amount of information aggregated at each special vertex may be large. Aggregating these

information centrally along the BFS tree of� then allows us to find the distance from the root vertex to

all the special vertices in their piece in a centralized manner. Once this information is propagated back,

each edge can just be oriented towards the direction of the special vertex closer to the root, giving the

desired orientations. �

This direction to the root is necessary for propagating information that cannot be duplicated, such

as the sum of values. Using it, we can prove our main communication tool, Lemma 4.3.

Proof. (of Lemma 4.3) Once again we run the partition scheme SpecialVertices. Lemma B.1 ensures

that all paths hit one such vertex after at most$ (
√
=) steps. After that, we root the tree using Lemma 4.2.

For the push case, we repeatedly push information from vertices to their neighbors. Each such step

costs$ (d) due to the vertex congestion bound. By the bound above, after$ (
√
=) such steps (which costs

a total of $ (d
√
=) rounds, this information either reached all nodes in the corresponding supernode, or

some special vertex.

Getting all info on special nodes to a center node (along with the ID of E� that they originated

from) over a BFS tree takes $ (d
√
= log= + �) rounds, after which they can also be re-distributed to all

special nodes. Then by the distance bound from Lemma B.1 another$ (d
√
=) rounds of propagations to

neighbors passes the information to everyone.

The aggregation of sum or minimum follows similarly. We repeat$ (d
√
=) rounds of all non-special

vertices propagating their sum, or min, up to their parents. In case of sum, once a value ‘floats’ to its

parent, it’s set to 0 at the current vertex so we do not over count. Finally, all the information at the special

vertices are aggregated via the global BFS tree, and passed to the corresponding root vertices. �
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Proof. (of Lemma 4.6) Let

(�1→�2 : + (�1) → + (�2)∗

+�1→�2
<0? : + (�1) → + (�2)
)�1→�2 : + (�1) → � (�2)∗

�
�1→�2
<0? : � (�1) → � (�2)

be the maps from �1 to�2, and similarly, let the mapping from �2 to � be:

(�2→� : + (�2) → +
(
�
)∗

+�2→�
<0? : + (�2) → +

(
�
)

)�2→� : + (�2) → �
(
�
)∗

��2→�
<0? : � (�2) → �

(
�
)

We will construct the mapping from � to � from these. The edge and vertex maps are directly by

composition:

+�1→�
<0?

(
E�1

)
= +�2→�

<0?

(
+�1→�2
<0?

(
E�1

))
�
�1→�
<0?

(
4�1

)
= �

�2→�
<0?

(
�
�1→�2
<0?

(
4�1

))
The edge mapping is a direct transfer of the pre-images, locally per edge. While the vertex label propa-

gation is via one round of communication along new supervertex, via Lemma 4.3.

So we can focus on the construction of new supervertices and their spanning trees. For E�1 ∈ + (�1),
we let

(�1→�
(
E�1

)
=

⋃
E�2 ∈(�1→�2 (E�1)

(�2→�

(
E�2

)

with corresponding spanning tree a subset of the edges

⋃
E�2 ∈(�1→�2 (E�1)

)�2→�
(
E�2

)
.

To compute this union we have each root vertex of each supervertex corresponding to some E�2

inform the entire supervertex of the new ID in �1. As each vertex of �2 corresponds to the image of at

most d1 E
�1s, this mapping takes$ (d1d2 (

√
= log= + �)) iterations.

Then the edges of� with the new labels (of vertex ID from�1) gives the corresponding supervertices.

That is, (�1→� (E�1) is simply the set of vertices that received the label E�1 after we propagated from the

root vertices of�2 in� .

We then need to find spanning forests among these unions of trees. We do so with a variant of Brou-

vka’s algorithm, combined with parallel tree contraction. Specifically, we iterate the following $ (log=)
times:
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1. Each remaining vertex (in each of the super vertices) pick a random priority.

2. Each vertex identify highest priority neighbor, computed on the minor with some edges already

contracted using Lemma 4.3.

3. Contract either:

(a) all the leaf vertices (degree 1 nodes),

(b) a vertex disjoint subset of edges with both end points having degree 2.

In the second case of contracting edges with both endpoints having degree 2, we can find an independent

set of such edgeswhose total size is at least a constant factor of all such edges by simply picking a random

subset with probability 1/5, and dropping the ones where another end point is picked.

This procedure reduces the number of vertices in each component a constant factor in expectation.

This is because the first step ensures the edges found form a tree with edge count at least half the number

of vertices. Then parallel tree contraction [MR89] ensures that either the number of leaves, or the number

of edges with both end points degree 2 is at least a constant factor of the tree size. Contracting the larger

set of these then gives the desired constant factor progress, so it terminates in $ (log=) rounds.
Note that in subsequent rounds, the edges already identified to be part of)�1→� (E�) form a spanning

forest, and we’re working on the minor with this forest contracted. This means we need to invoke

Lemma 4.3 repeatedly to do the neighborhood aggregations on this contracted graph. �

Proof. (of Corollary 4.7) We want to simplify � into a sequence of subgraphs that have simple 1-minor

distributions into � . After that, we can invoke Lemma 4.6 to make progress.

We repeat the same tree contraction procedure used for finding spanning forests in Lemma 4.6 above.

It gives that at each step, we’re computing�/� for a set of vertex disjoint stars � .

Given such a � , we can then construct a 1-minor distribution of�/� into � by:

1. Having the center vertex generate the new vertex ID.

2. Propagate this ID to vertices in the corresponding supervertex in� .

3. Have edges that declared themselves part of � pass this info from one end point to the other.

4. All leaf supervertices then pull this new vertex ID into their root vertex.

after which invoking Lemma 4.6 gives the minor. This halves the number of �

C Max flow and Minimum Cost Flow Algorithm

In this section, we give the missing details of the max flow algorithm and minimum cost flow algorithm

as Section 7.
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C.1 Max Flow Algorithm

In this section, we give the missing subroutines of Algorithm 16. The subroutines Augmentation, Fix-

ing and Boosting are shown in Algorithm 17, 18 and 19 respectively.

Algorithm 16:MaxFlow (�0, B, C , * , � )

Input: directed graph�0 = (+, �0, ®D) with each 4 ∈ �0 having two non-negative integer

capacities D−4 and D+4 ; |+ | = = and |�0 | =<; source B and sink C ; the largest integer

capacity* ; target flow value � ≥ 0;

/* Preconditioning Edges */

1 Add< undirected edges (C, B) with forward and backward capacities 2* to�0;

/* Initialization */

2 for each 4 = (D, E) ∈ �0 do
3 replace 4 by three undirected edges (D, E), (B, E) and (D, C) whose capacities are D4 ;
4 Let the new graph be� = (+, �);
5 Initialize ®5 ← ®0 and ®~ ← ®0;
/* Progress Step */

6
®̃
5 ,
®̂
5 , ®̂~ ← Augmentation(�, B, C, � );

7 Compute ®d by letting d4 ← 5̃4
min{D+4−54 ,D−4 +54 } ;

8 ®5 , ®~ ← Fixing

(
�,
®̂
5 , ®̂~

)
;

9 [ ← 1
14 − 1

7 log<* −$ (log log(<* )), X̂ ← 1

<
1
2 −[

;

10 for C = 1 to 100 · 1
X̂
· log* do

11 if ‖ ®d ‖3 ≤ <
1
2 −[

33(1−U) then
12 X ← 1

33(1−U) ‖ ®d ‖3
;

13
®̃
5 ,
®̂
5 , ®̂~ ← Augmentation(�, B, C, � );

14 Compute ®d by letting d4 ← 5̃4
min{D+4−54 ,D−4 +54 } ;

15 ®5 , ®~ ← Fixing

(
�,
®̂
5 , ®̂~

)
;

16 else

17 let (∗ be the edge set that contains the<4[ edges with the largest |d4 |;
18 � ← Boosting

(
�, (∗,* , ®5 , ®~

)
;

19 ®5 ← FlowRounding(�, ®5 , B, C);
20 while there is an augmenting path from B to C with respect to ®5 for� do

21 augment an augmenting path for ®5 ;
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Algorithm 17: Augmentation (� , B, C , � )

1 For each 4 ∈ �, let A4 ← 1
(D+4−54 )2 +

1
(D−4 +54 )2 andF4 ← 1

A4
;

2 Solve Laplacian linear system L(�) ®̃q = � · ®jB,C where ®jB,C is the vector whose entry is −1 (resp.
1) at vertex B (resp. C) and 0 otherwise;

3 For each 4 = (D, E) ∈ �, let 5̃4 ← q̃E−q̃D
A4

and 5̂4 ← 54 + X 5̃4 ;
4 For each E ∈ + , let ~̂E ← ~E + Xq̃E;
5 return

®̃
5 ,
®̂
5 , ®̂~;

Algorithm 18: Fixing

(
�,
®̂
5 , ®̂~

)

1 For each 4 = (D, E) ∈ �, let A4 ← 1(
D+4−5̂4

)2 + 1(
D−4 +5̂4

)2 , F4 ← 1
A4

and

\4 ← F4

[
(~̂E − ~̂D ) −

(
1

D+4−5̂4
− 1

D−4 −5̂4

) ]
;

2 ®5 ′← ®̂5 + ®\ ;
3 Let

®̂
X be ®\ ’s residue vector;

4 For each 4 ∈ �, let A4 ← 1
(D+4−5 ′4 )2 +

1
(D−4 +5 ′4 )2 and F4 ← 1

A4
;

5 Solve Laplacian linear system L(�) ®q ′ = −®̂X ;
6 For each 4 = (D, E) ∈ �, let \ ′4 ←

q′E−q′D
A4

;

7 For each 4 ∈ �, 54 ← 5 ′4 + \ ′4 ;
8 For each vertex E ∈ + , ~E ← ~̂E + q ′E ;
9 return ®5 , ®~;

Algorithm 19: Boosting
(
�, (∗, * , ®5 , ®~

)
1 for each edge 4 = (D, E) ∈ (∗ do
2 V (4) ← 2 + ⌈ 2*

min{D+4−54 ,D−4 +54 } ⌉;
3 replace 4 with path D { E that consists of V (4) edges 41, · · · , 4V (4) oriented towards E and

V (4) + 1 vertices E0 = D, E1, · · · , EV (4)−1, EV (4) = E ;
4 41, 42 ← 4;

5 for 3 ≤ 8 ≤ V (4), let D+48 ← +∞ and D−48 ←
(

1
D+4−54 −

1
D−4 +54

)−1
(V (4) − 2) − 54 ;

6 for each 1 ≤ 8 ≤ V (4), let 548 ← 54 ;

7 ~E0 ← ~D ;

8 ~EV (4 ) ← ~E ;

9 ~E1 ← ~E ;

10 ~E2 ← ~E + 1
D+4−54 −

1
D−4 +54 ;

11 for 3 ≤ 8 ≤ V (4), set ~E3 , · · · , ~EV (4 )−1 such that ~E8 − ~E8−1 = − 1
V (4)−2

(
1

D+4−54 −
1

D−4 +54

)
;

12 Update� ;
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C.2 Unit Capacity Minimum Cost Flow Algorithm

We give the detailed unit capacity minimum cost flow algorithm (see Algorithm 20) proposed by Co-

hen et al. [CMSV17] in this subsection. The subroutines Initialization, Perturbation, Progress and

Repairing are shown in Algorithm 21, 22, 23 and 24 respectively.

Algorithm 20:MinCostFlow (� , ®f ,, )

Input: directed graph�0 = (+0, �0, ®20) with each edge having unit capacity and cost ®20; |+0 | = =
and |�0 | =<; integral demand vector ®f ; the absolute maximum cost, ;

1 � = (% ∪&, �), ®1, ®5 , ®~, ®B, ®a, ̂̀, 2d , 2) , [ ← Initialization(�0, ®f);
2 Add a new vertex E0 and undirected edges (E0, E) for every E ∈ % to� ;

3 for 8 = 1 to 2) ·<1/2−3[ do

4 for each E ∈ % do

5 set resistance of edge (E0, E) for each E ∈ % to be AE0E ← <1+2[
0 (E) , where

0(E) ← ∑
D∈&,4=(E,D) ∈� a4 + a4 ; ⊲ 4 = (E,D) is 4’s partner edge that is the unique edge

sharing one common vertex from & .

6 for 9 = 1 to<2[ do

7 while ‖ ®d ‖ ®a,3 > 2d ·<1/2−[ do

8 ®d, ®~, ®B, ®a ← Perturbation(�, ®d, ®5 , ®~, ®B, ®a);
9 ®5 , ®B, ®d, ̂̀← Progress(�, ®f, ®5 , ®a);

10 Repairing (� , ®5 , ®~);
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Algorithm 21: Initialization (� , ®f)
1 Create a new vertex E0DG with f (E0DG) = 0;

2 for each E ∈ +0 do
3 C (E) ← f (E) + 1

2deg
�0

8= (E) − 1
2deg

�0
>DC (E);

4 if C (E) > 0 then construct 2C (E) parallel edges (E, E0DG) with costs ‖®20‖1 ;
5 else if C (E) < 0 then

6 construct |2C (E) | parallel edges (E0DG, E) with costs ‖®20‖1;
7 Let the new graph be�1 = (+1, �1, ®21);
8 Initialize the bipartite graph� = (% ∪&, �, ®2) with � ← ∅, % ← +1 and& ← {4DE | (D, E) ∈ �1}

where 4DE is a vertex corresponding to edge (D, E) ∈ �1;
9 for each (D, E) ∈ �1 do
10 let � ← � ∪ {(D, 4DE), (E, 4DE)} with 2 (D, 4DE) = 21 (D, E) and 2 (E, 4DE) = 0, and set

1 (D) ← f (D) + deg�1
8= (D), 1 (E) ← f (E) + deg�1

8= (E) and 1 (4DE) ← 1;

11 For each E ∈ % , set ~E ← ‖®2‖∞, and for each E ∉ % , set ~E ← 0;

12 For each 4 = (D, E) ∈ �, set 54 ← 1
2 , B4 ← 24 + ~D − ~E and a4 ← B4

2‖®2 ‖∞ ;

13 Set ̂̀← ‖®2 ‖∞, 2d ← 400
√
3 · log1/3, , 2) ← 32d log, and [ ← 1

14 ;

14 return� , ®1, ®5 , ®~, ®B , ®a , ̂̀, 2d , 2) and [;

Algorithm 22: Perturbation (� , ®d , ®5 , ®~, ®B , ®a)
1 for each E ∈ & do

2 let 4 = (D, E) and 4 = (D, E);
3 ~E ← ~E − B4 ;
4 a4 ← 2a4 ;

5 a4 ← a4 + a4 54
54

;

Algorithm 23: Progress (� , ®f , ®5 , ®a)
1 For each 4 ∈ �, let A4 ← a4

5 24
;

2 Solve Laplacian linear system L(�) ®̂q = ®f ;
3 For each 4 = (D, E) ∈ �, let 5̂4 ← q̂E−q̂D

A4
and d4 ← | 5̂4 |

54
;

4 X ← min
{

1
8‖ ®d ‖ ®a,4

, 18

}
;

5 Update 5 ′4 ← (1 − X) 54 + X 5̂4 and B ′4 ← B4 − X
1−X (q̂E − q̂D);

6 For each 4 ∈ �, let 5 #4 ← (1−X) 54B4
B′4

;

7 Obtain the flow vector ®f ′ corresponding to the residue ®5 ′ − ®5 #;
8 For each 4 ∈ �, let A4 ← B′24

(1−X) 54B4 ;

9 Solve Laplacian linear system L(�) ®̃q = ®f ′;
10 For each 4 = (D, E) ∈ �, let 5̃4 ← q̃E−q̃D

A4
;

11 Update 54 ← 5 #4 + 5̃4 and B4 ← B ′4 −
B′4 5̃4
5 #4

;
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Algorithm 24: Repairing (� , ®5 , ®~)
1 Let ®1+ be the demand vector corresponding to the current flow ®5 ;
2 For each E ∈ % ∪& , set 1≤E ← min(1E, 1+E );
3 For each E ∈ % ∪& , if 5 (� (E)) > 1≤E , set ®5 on � (E) such that 5 (� (E)) = 1≤E , and let the resulting

vector be ®5 ≤ ;
4 Add source B and sink C to� , and connect B to each E ∈ % with 5 ≤BE ← 5 ≤ (� (E)), and connect

each E ∈ & to C with 5 ≤EC ← 5 ≤ (� (E)) in� ;
5 ®" ← FlowRounding(�, ®5 ≤, B, C);
6 Remove B, C and related coordinates on ®5 ≤ and ®" from � ;

7 for 8 = 1 to $̃ (<3/7) do
8 construct graph

−→
�" = (% ∪&, �" , 2̃" ) using � , ®" and ®̃2 such that for each 4 = (D, E) ∈ �,

2̃4 = 24 − ~D − ~E and �" = {(D, E) ∈ � | D ∈ %, E ∈ &} ∪ {(D, E) | D ∈ &, E ∈ %,"DE ≠ 0},
2̃" (D, E) =

{
2̃DE, D ∈ %, E ∈ &
−2̃DE, D ∈ &, E ∈ % ;

9 set �" ← {E ∈ % ∪& | " (E) < 1E};
10 compute a shortest path c in

−→
�" from % ∩ �" to & ∩ �" ;

/* D−→
�"
(%,D) is the distance from % to D in

−→
�" */

/* Edges that are reachable in
−→
�" from % ∩ �" have non-negative weights 2̃4 */

11 for D ∈ % ∪& do

12 if D can be reached from % in
−→
�" then

13 if D ∈ % then

14 ~D ← ~D − D−→�"
(%,D);

15 else

16 ~D ← ~D + D−→�"
(%,D);

17 augment ®" using the augmenting path c ;

18 return ®" ;
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