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Abstract. Multimodal learning, here defined as learning from multi-
ple input data types, has exciting potential for healthcare. However,
current techniques rely on large multimodal datasets being available,
which is rarely the case in the medical domain. In this work, we focus on
improving the extracted image features which are fed into multimodal
image-text Transformer architectures, evaluating on a medical multi-
modal classification task with dual inputs of chest X-ray images (CXRs)
and the indication text passages in the corresponding radiology reports.
We demonstrate that self-supervised Momentum Contrast (MoCo) pre-
training of the image representation model on a large set of unlabelled
CXR images improves multimodal performance compared to supervised
ImageNet pre-training. In particular, MoCo shows a 0.6% absolute im-
provement in AUROC-macro, when considering the full MIMIC-CXR
training set, and 5.1% improvement when limiting to 10% of the train-
ing data.
To the best of our knowledge, this is the first demonstration of MoCo
image pre-training for multimodal learning in medical imaging.

Keywords: multimodal learning, multimodal BERT, image representa-
tion, self-supervised image pre-training, CXR classification

1 Introduction

Multimodal learning has recently gained attention for healthcare applications
[1], due to the rich patient representation enabled by combination of different
data sources e.g. images, reports, and clinical data. Recent works in multimodal
learning have mainly focused on Transformer [2] architectures, with similar ap-
proaches adopted in the medical domain [3]. Whilst the role of the joint pre-
training process has been widely explored [4], fewer works have focused on the
single modality components of the models. In particular, the role of the image
representation is frequently neglected. However, the task of multimodal represen-
tation learning is complex and one of the main challenges in the medical domain
is the lack of large-scale, labeled datasets, compared to the millions of images
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Fig. 1. Illustration of the multimodal CXR multi-label classification pipeline. The indi-
cation field and CXR image are dual input modalities, and the output is a set of positive
(green) or negative (red) predictions for 14 radiographic findings labels, as annotated in
the MIMIC-CXR dataset [13]–[15]. In this data, taken from the IU-Xray dataset [16],
ages (and other patient-identifiable information) is replaced by a placeholder, here in-
dicated by XXXX. The image encoder is the component that we investigate in this
paper, to discover a strategy for learning a good image representation.

available in computer vision tasks in the general domain. Therefore, we seek
to mitigate the complexity of multimodal learning by providing robust image
representation as input.

In the general multimodal domain, the “bottom-up top-down” [5] approach
is a popular image representation paradigm for multimodal Transformer archi-
tectures such as VisualBERT [6] and ViLBERT [7]. These models use Region
of Interest (RoI) feature maps extracted from Faster R-CNN [8], which is pre-
trained on large object detection datasets (e.g. VisualGenome [9]). Faster R-
CNN requires large scale datasets with bounding box annotations. The image
encoder is then frozen during fine-tuning of the Transformer model, based on the
strong assumption that pre-trained detectors extract representative features for
the downstream task. Other image representation strategies have been proposed.
In Pixel-BERT [10], the image representation is defined as the feature map of
the last convolutional layer of a convolutional neural network (CNN). Similarly,
the discrete latent space of a variational autoencoder (VAE) has been adopted
in DALL-E [11]. Alternatively, the Vision Transformer (ViT) [12] consists of
directly feeding raw pixel patches as the input for Transformer architectures.

In this paper, we are interested in multimodal CXR multi-label classifica-
tion of medical images supported by the medical history of the patient which
is available in free-text radiology reports (indication field), as shown in Figure
1. We use MIMIC-CXR [13]–[15], which is the largest open access multimodal
medical dataset, to evaluate our proposed methodology, for the task of Chest X-
Ray classification of 14 radiographic findings classes. In MIMIC-CXR, bounding
boxes are not available, making the “bottom-up top-down” [5] approach unsuit-
able for this task. To the best of our knowledge, there are two works performing
multimodal classification of CXR using the text indication section as an addi-
tional inference-time input: ChestBERT [3] and what we denote as “Attentive”
[17]. Following ChestBERT [3], the state-of-the-art for this task, we adopt the
multimodal bitransformer model (MMBT), which has a similar image represen-
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Table 1. Summary of the considered image pre-training strategies suited to CXR
image classification.

Method Ease of training Medical image
suitability

Supervised ImageNet
Supervised training on 1000
ImageNet classes.

No training required. Pre-
trained weights available for
standard CNN architectures.

Weak – trained on
natural images.

Autoencoder
Encoder-decoder architecture
trained on reconstruction loss.

Easy – does not re-
quire large batches.

SimCLR
Contrastive learning approach

Hard – requires high compute
power to handle the large
batches (> 103 images).

Flexible – can
train on relevant

medical image data

MoCo
Contrastive learning approach

Moderate – designed to
work with a small batch

size (∼ 102 images) & uses
efficient updating of the
large dynamic dictionary.

(no labels required)

tation to Pixel-BERT. Differently to the previously described multimodal BERT
models, MMBT does not include a joint pre-training step. More recently, Liao
et al [18] have shown a method of joint modality pre-training to be effective by
maximising the mutual information between the encoded representations of im-
ages and their corresponding reports. At inference time, the image only is used
for classification. However, we consider the situation where we may have limited
task-specific labelled multimodal (paired image and text) training data, but am-
ple unlabelled unimodal (imaging) data available for pre-training and therefore
we investigate image-only pre-training techniques.

For learning good visual representations, many self-supervised contrastive
learning strategies have shown promising results in the medical domain, for in-
stance Momentum Contrast (MoCo) contrastive training [19] [20] and Multi-
Instance Contrastive Learning (MICLe) [21] – an application of SimCLR [22] to
medical imaging. In particular, MoCo pre-training has shown superior results in
a similar chest X-Ray imaging classification task, outperforming other methods
using standard supervised pre-training on ImageNet [20]. Similarly, MedAug [23]
has extended the work of Sowrirajan et al [20], by considering different criteria
to select positive pairs for MoCo. However, the best approach in [23] (which tar-
gets mixed-view classification) is to create pairs from lateral and frontal views
of CXR, while we focus our work on frontal views only, making this method
unsuitable for our task. MoCo works by minimising the embedding distance be-
tween positive pairs – generated by applying different data augmentations to
an image – and maximising the distance to all other augmented images in the
dataset [19]. MoCo maintains a large dynamic dictionary of negative samples as
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a queue with fixed length (set as a hyperparameter) which is updated every step
by adding the newest batch of samples and removing the oldest. This allows the
model to have a large number of negative samples without the need for very
large batches, unlike other contrastive learning approaches (e.g. SimCLR [22]),
making MoCo a sensible choice when training on fewer GPUs1. In this work, for
the imaging component of MMBT we experiment with two strategies for training
a CNN image encoding: a) MoCo and b) a classic autoencoder (AE) strategy
(as in DALL-E [11], although the VAE is not required for our task).

In summary, our contributions are to:

1. Compare how different pre-training strategies of the image encoder perform
in the multimodal setup: autoencoder (AE), MoCo, and standard (super-
vised) ImageNet pre-trained weights; finding MoCo to perform best.

2. Explore how these strategies degrade when the multimodal transformer is
fine-tuned on a smaller subset of the training set, finding MoCo pre-trained
weights to perform better in a limited data scenario.

3. Extend the work of [20] – which demonstrates the effectiveness of MoCo
pre-training for image-only pleural-effusion classification – to a multimodal
multi-label classification problem.

4. Apply Gradient-weighted Class Activation Mapping (Grad-CAM) [24] to
evaluate the impact of the pre-training strategy on the image features that
activate the model, and report quantitative results on a small subset of the
ChestX-ray8 test set with annotated bounding boxes [25].

2 Method

Our proposed three step pipeline is shown in Figure 2. In particular, in this work,
we explore the effectiveness of different image representations for the model by
considering different pre-training strategies.

2.1 Model

The overall architecture for this work is based on the multimodal bitransformer
model (MMBT) [26] as shown in Figure 2c. This builds on the BERT architec-
ture [27], adapting it for multimodal data by introducing an additional visual
input. Both the textual and the visual input are projected into the input em-
bedding space and summed with the related positional and segment embedding;
the segment embedding is then available to the model to discriminate between
textual and visual inputs. The image embedding corresponds to the feature map
outputted from the last convolutional layer of ResNet-50. This is flattened to
obtain N = 49 embedding and projected by a single fully connected layer, indi-
cated as I = {I1 . . . IN}. The textual input is tokenised into M BERT subword

1 Due to the limited computing power, we decided to neglect the contrastive learning
approach proposed by [21], trained on 16–64 Cloud TPU cores.
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Fig. 2. Illustration of the proposed three step pipeline: a) MoCo pre-training of ResNet-
50; b) initialisation of ResNet-50 using the query-encoder weights; and c) fine-tuning
of MMBT on the 14 classes in MIMIC-CXR.

tokens, indicated as W = {W1 . . .WM}. A [CLS] token is used at the beginning
of the input sequence, and its final hidden vector is used as the multimodal input
sequence representation for classification. The [SEP ] token is used to separate
the two input modalities.

2.2 Self-supervised Image Pre-training

We experiment with two self-supervised strategies: an Autoencoder (AE) and
Momentum Contrast (MoCo).

The AE consists of a ResNet-50 encoder and decoder. The model is trained by
minimising the reconstruction loss, defined as the mean squared error between
the input and the reconstructed image. Following pre-training, the decoder is
discarded and the ResNet-50 encoder weights are used as initialization for the
MMBT image encoder.

As shown in Figure 2a, MoCo employs two ResNet-50 models – a query
encoder and a key encoder – each followed by a MultiLayer Perceptron (MLP)
projection head composed by two fully connected layers. The model is then
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trained by optimising the Info Noise Contrastive Estimation (InfoNCE) loss
function [28]. Due to the large dictionary, training of the key encoder through
backpropagation is computationally intractable; instead, network parameters are
updated using momentum updates in tandem with the query encoder. Following
pre-training, the weights of the query encoder (without the MLP head) are used
to initialise the ResNet-50 image encoder, shown in Figure 2b.

3 Experiments & Results

3.1 Experimental Setup

Dataset: We evaluated our method on MIMIC-CXR [13]–[15], which contains
377,110 CXR images with the associated radiology reports from 65,379 patients.

Using the CheXpert labeler [29], 14 different labels have been automatically
extracted from the radiology report: Atelectasis, Cardiomegaly, Consolidation,
Edema, Enlarged Cardiomediastinum, Fracture, Lung Lesion, Lung Opacity, No
Finding, Pleural Effusion, Pleural Other, Pneumonia, Pneumothorax, Support
Devices. The CheXpert labeler assigns a value of whether the label has a positive,
negative, or uncertain mention in the report, or is not discussed (missing). For
each label, we re-formulate the task as a multi-label binary classification task:
positive vs. others (negative, uncertain, missing).

In this study, we select only images from a frontal view, either anteroposterior
(AP) and posteroanterior (PA). Following the official MIMIC-CXR split, this
yields 208,794 training pairs, 1,695 validation pairs and 2,920 test report/image
pairs. As presented in [3], the text modality corresponds to the indication field
(i.e. scan request text) extracted from the radiology reports. This is the part
that would be available at imaging time and describes relevant medical history.

The self-supervised pre-training of the image encoder is performed on the
CheXpert dataset [29] which consists of 224,316 CXR images from 65,240 pa-
tients; we ignore the available annotations and treat this dataset as a large
unlabelled dataset. Input images are resized by matching the smaller edge to
224 pixels and maintaining the original aspect ratio.

Model Implementation & Training: For the self-supervised pre-training, we
adopt the AE and MoCo implementations available from the PyTorch Light-
ning library2. During pre-training, the input images are resized by matching the
smaller edge to 224 pixels and maintaining the original aspect ratio. Similar to
Sowrirajan et al [20], we employ the following data augmentation techniques:
random rotation (−10◦ ≤ θ ≤ 10◦), random horizontal flipping; and random
crop of 224 × 224 pixels. The same data augmentations are also applied during
the fine-tuning step.

At the fine-tuning stage, we adopt the MMBT implementation made avail-
able by the authors of ChestBERT [3]3, which uses the MultiModal Framework

2 https://pytorch-lightning-bolts.readthedocs.io/en/latest/self_

supervised_models.html
3 https://github.com/jacenkow/mmbt

https://pytorch-lightning-bolts.readthedocs.io/en/latest/self_supervised_models.html
https://pytorch-lightning-bolts.readthedocs.io/en/latest/self_supervised_models.html
https://github.com/jacenkow/mmbt
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(MMF) [30]. We use the same training parameters as [3]: models are trained us-
ing a batch size of 128 and Adam optimiser with weight decay, with the learning
rate set to 5× 10−5, and a linear warm-up schedule for the first 2000 steps, and
micro F1 score computed on the validation set was used as the early stopping
criterion and a patience of 4000 steps, up to a maximum of 14 epochs. Each
experiment was repeated 5 times using different random seeds to initialise the
model weights and randomise batch shuffling.

Baselines: The chosen method is compared with two unimodal baselines, to
verify the improvement brought by inputting both visual and textual modalities
at once. Moreover, we compare MMBT with another multimodal approach which
we denote “Attentive” [17], to justify the architecture design chosen for our
multimodal experiments.

• BERT [27] - using a BERT model only (similar to the backbone of MMBT)
a unimodal text classifier is trained, without the CXR image.

• ResNet-50 [31] - using ResNet-50 only (similar to the network used for
the image representation in MMBT) a unimodal image classifier is trained,
without text information.

• Attentive [17] - this model follows a two stream approach where a) the
CXR image is processed by a ResNet-50 model and b) the indication field
is encoded by BioWordVec embeddings [32] followed by two sequential bi-
directional Gated Recurrent Units (GRUs) [33]. The visual and textual fea-
ture representations are then fused using two multimodal attention layers.

Metrics & Experiments: We report the F1 score and the Area Under the
Receiver Operating Characteristic (AUROC), multiplying all metrics by 100 for
ease of reading. To assess whether a pre-training strategy helps in a limited
training data scenario, the same experiments are conducted using only a 10%
random sample of the original training set.

3.2 Comparison of Self-Supervised Pre-training Strategies

Here we compare MMBT with the baselines, adopting different pre-training
strategies for the image encoder, as described in Section 2.2. The AE and MoCo
pre-trained ResNet-50 are compared against: (1) random initialization – to ver-
ify the benefit of starting from pre-trained weights; (2) ImageNet initialization
– widely adopted in computer vision.

Results: As shown in Table 2 (top), both unimodal baselines (text-only BERT
and image-only ResNet-50) obtain lower classification scores compared to the
multimodal approaches (Attentive and MMBT); with MMBT achieving the best
results, as previously reported in [3]. However, in the limited data scenario (Table
2 (bottom)), the gap between unimodal and multimodal approaches is reduced
when considering the standard ImageNet initialization. This suggests that the
image modality is not processed effectively by the multimodal architectures,
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Table 2. Results on the MIMIC-CXR test set, comparing different ResNet-50 pre-
training strategies. The models are fine-tuned on the full training set (top) and on 10%
of the training set (bottom).

100% Training Set

Model
Image Pre-Training F1 AUROC
Method Dataset Macro Micro Macro Micro

BERT - 24.4±1.0 40.2±0.5 71.5±0.3 82.1±0.4

ResNet-50 Supervised ImageNet 27.2±0.6 48.4±0.9 75.8±1.2 85.3±0.8

ResNet-50 MoCo CheXpert 28.5±0.7 49.5±0.6 76.3±0.3 85.5±0.1

Attentive Supervised ImageNet 29.3±0.5 51.1±0.6 76.3±0.5 85.9±0.5

Attentive MoCo CheXpert 31.9±0.3 53.2±0.5 77.8±0.6 86.4±0.4

MMBT Random Initialization 32.0±1.2 49.7±0.7 76.1±0.3 85.2±0.3

MMBT Supervised ImageNet 34.3±2.1 54.7±0.7 79.8±1.1 87.4±0.8

MMBT AE CheXpert 34.5±1.2 52.4±0.3 77.9±0.4 86.3±0.4

MMBT MoCo CheXpert 36.7±1.4 55.3±0.6 80.4±0.3 87.6±0.4

10% Training Set

Model
Image Pre-Training F1 AUROC
Method Dataset Macro Micro Macro Micro

BERT - 21.3±2.7 36.6±1.7 67.4±0.4 79.7±1.3

ResNet-50 Supervised ImageNet 22.1±0.9 42.1±0.7 68.0±1.9 79.7±3.4

ResNet-50 MoCo CheXpert 23.6±1.1 43.8±1.8 70.8±0.9 81.3±0.9

Attentive Supervised ImageNet 21.7±0.9 42.1±1.4 65.1±1.1 78.9±0.6

Attentive MoCo CheXpert 22.8±1.0 44.3±1.9 70.2±0.5 82.7±0.4

MMBT Random Initialization 25.1±2.1 40.7±3.0 69.6±0.7 81.6±0.6

MMBT Supervised ImageNet 26.4±2.1 44.3±1.5 69.0±0.4 79.3±1.8

MMBT AE CheXpert 27.6±1.2 44.2±1.1 70.5±0.4 82.1±0.3

MMBT MoCo CheXpert 28.5±2.4 48.8±1.1 74.1±0.7 84.5±0.9

which motivates us to investigate how to improve the image representations to
maintain the benefit of using both modalities with limited data.

Table 2 shows a consistent improvement from adopting MoCo initialization of
the image encoder (ResNet-50), which demonstrates that MMBT benefits from
such domain-specific image pre-training strategy. The margin of improvement
from ImageNet increases with a limited training set, aligned with the results
in [20]. Compared to Sowrirajan et al [20] — who showed the benefit of MoCo
pre-training only on pleural effusion classification, using an image-only CNN –
we broaden the paradigm to multimodal classification of 14 different classes.
Furthermore, we report the AUROC scores for each class in Table 4. This shows
that MoCo pre-trained MMBT yields the highest scores for most classes, when
fine-tuned on the full MIMIC-CXR training set, and more obviously when fine-
tuned on a 10% random subset of the training set.

On the contrary, AE seems to be a less effective pre-training strategy. This
might be attributed to the reconstruction loss, which encourages the model to
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Table 3. IoU results computed on the ChestX-ray8 test set, containing bounding box
annotations. We evaluate only on the five classes that overlap with MIMIC-CXR.

Image Pre-Training IoU
Method Dataset Atelectasis Cardiomegaly Effusion Pneumonia Pneumothorax

Supervised ImageNet 1.3 3.8 5.9 0.0 0.1
MoCo CheXpert 2.6 16.0 11.9 1.8 2.7

focus on the intensity variation of CXRs rather than other meaningful features
(e.g. shapes and textures) to discriminate between different classes.

Table 2 shows a consistent improvement achieved by adopting MoCo pre-
trained weights also for the image encoder of the Attentive model and the image-
only ResNet-50. This confirms that both unimodal and multimodal models ben-
efit from the MoCo pre-training of the image encoder.

3.3 Model Explainability

To investigate the impact of pre-training on the learned features, we visually
assess the quality of the activation maps obtained by two of the pre-training
strategies: supervised ImageNet pre-training and MoCo pre-training on CheX-
pert. First, we fine-tune the fully connected layer of the ResNet-50 architecture
on the full training set of MIMIC-CXR, while freezing the remaining pre-trained
weights. Second, we apply Grad-CAM [24] to the final 7×7 activation map, com-
puted before the fully connected layer. Finally, we assess if the generated maps
highlight the correct anatomical location of the pathology, by computing the
Intersection over Union (IoU) between the bounding boxes – annotated in the
ChestX-ray8 dataset [25] – and the regions in the activation map that contribute
positively to the classification of a target label. In this final step, we only con-
sider the subset of ChestX-ray8 labels overlapping with those in MIMIC-CXR:
Atelectasis, Cardiomegaly, Pleural Effusion, Pneumonia, Pneumothorax.

The mean IoU scores for each class are reported in Table 3. Although the
overlap between the positive areas of the activation maps and the bounding
boxes is low for both pre-training strategies, it can be observed that MoCo pre-
training outperforms ImageNet for each class. This suggests that, when adopting
MoCo pre-training, the CNN learns more meaningful features of CXRs that can
be effectively exploited by the model for the downstream classification task.
This is shown visually in Figure 3, where MoCo pre-trained ResNet-50 focuses
more accurately to the areas matching with the bounding boxes. However, both
pre-training strategies frequently focus on incorrect areas in the images.

4 Conclusion

In this work we have demonstrated the benefit of domain-specific self-supervised
MoCo pre-training of the MMBT image encoder for multimodal multi-label CXR
classification. To the best of our knowledge, this is the first study to compare
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Fig. 3. Examples of CXRs taken from ChestX-ray8 dataset with the corresponding
bounding box annotations highlighted in red. Grad-CAM is computed on the last 7×7
activation map, before the fully connected layer of ResNet-50, for both ImageNet and
MoCo pre-training. The green regions show the activations thresholded at 0 i.e. all
positive activations (activations can also be negative). The left side images are selected
having an IoU score greater than 0.15 between the bounding box and the positive
regions, using MoCo pre-trained weights; the right side images are selected with an
IoU score lower than 0.15.

how different self-supervised pre-training strategies affect multimodal perfor-
mance in the medical domain. Our results show that the choice of image encoder
plays a substantial role, especially with limited annotated data, where ResNet
pre-trained using MoCo achieves the best performances. In future research, it
would be interesting to combine unsupervised unimodal pre-training, as demon-
strated in this paper, followed by an unsupervised multimodal pre-training step,
as demonstrated in [18], to see if a cumulative improvement could be obtained.
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A Per-Class Results

Table 4. Per-class AUROC scores using different ResNet-50 initializations. The models
are fine-tuned on the full training set (top) and on 10% of the training set (bottom).

100% Training Set

Model Attentive MMBT

Image Pre-Training
Supervised MoCo Random Supervised AE MoCo
ImageNet CheXpert Init. ImageNet CheXpert CheXpert

Atelectasis 73.5±1.0 72.8±0.9 71.8±0.6 75.2±0.8 74.2±0.7 74.9±0.7

Cardiomegaly 77.1±0.5 79.1±0.5 80.0±0.4 81.3±0.9 81.6±0.4 82.4±0.4

Consolidation 72.3±1.1 75.0±0.6 71.3±0.8 77.2±1.8 74.3±0.6 76.5±0.6

Edema 82.2±0.7 82.8±0.5 80.9±0.8 83.6±1.1 82.7±0.4 84.2±0.4

Enlarged Card. 67.0±1.6 68.7±0.9 68.4±0.6 73.3±2.1 71.4±1.8 75.0±1.8

Fracture 66.7±3.0 69.7±1.6 68.7±1.8 70.0±1.2 70.7±0.8 72.3±0.8

Lung Lesion 68.9±2.2 71.0±0.9 69.6±0.6 74.5±3.0 70.2±0.6 76.7±0.6

Lung Opacity 68.9±0.4 70.8±0.9 66.9±0.6 71.8±0.5 69.4±0.5 72.0±0.5

No Findings 80.4±0.4 80.9±0.9 79.7±0.8 82.5±1.2 81.2±0.6 82.6±0.6

Pleural Effusion 86.7±0.9 86.8±0.6 82.6±0.3 87.6±0.6 85.0±0.2 87.6±0.2

Pleural Other 78.8±1.7 80.2±2.3 89.4±1.2 86.1±4.4 81.6±1.9 86.1±1.9

Pneumonia 70.8±0.9 74.1±1.5 69.7±0.9 74.6±0.6 71.8±0.6 76.7±0.6

Pneumothorax 84.8±0.8 86.9±0.9 87.4±1.2 87.9±0.4 86.9±1.0 87.7±1.0

Support Devices 90.4±0.2 91.1±0.2 89.3±0.2 91.7±0.6 90.1±0.3 91.7±0.3

Average 76.3±0.5 77.8±0.6 76.1±0.3 79.8±1.1 77.9±0.4 80.4±0.3

10% Training Set

Model Attentive MMBT

Image Pre-Training
Supervised MoCo Random Supervised AE MoCo
ImageNet CheXpert Init. ImageNet CheXpert CheXpert

Atelectasis 66.9±1.5 69.3±1.3 64.6±0.4 65.5±0.9 67.2±0.4 71.4±1.3

Cardiomegaly 67.3±0.5 72.4±0.8 71.8±0.5 70.7±0.7 74.0±1.3 77.0±0.9

Consolidation 61.3±0.3 68.0±0.8 66.3±1.1 64.0±1.3 67.7±0.8 71.3±1.0

Edema 76.1±1.0 78.4±1.4 74.5±0.6 76.5±1.1 77.1±0.8 80.7±1.3

Enlarged Card. 58.5±2.5 63.3±1.8 62.6±3.3 62.8±1.8 61.5±5.0 67.8±3.0

Fracture 52.2±3.4 51.8±3.0 61.6±4.5 58.7±4.0 60.1±2.4 62.4±2.6

Lung Lesion 56.7±1.0 64.5±2.9 64.8±2.2 60.7±2.0 65.8±2.0 67.2±1.4

Lung Opacity 60.4±0.7 65.7±0.6 61.7±0.8 62.2±1.7 62.2±0.8 67.2±1.1

No Findings 72.1±1.4 75.2±1.2 74.5±0.8 74.1±0.6 75.8±0.9 78.7±0.6

Pleural Effusion 80.0±0.9 82.6±0.7 73.0±0.8 79.2±0.9 76.8±0.4 84.7±0.3

Pleural Other 60.0±1.3 62.2±3.6 61.2±1.2 65.0±6.7 62.1±3.2 67.6±3.3

Pneumonia 57.6±1.5 64.1±1.3 66.4±1.5 60.4±1.4 66.0±0.7 68.6±2.0

Pneumothorax 68.4±3.7 78.7±2.8 84.6±2.0 79.9±2.0 85.0±0.6 84.7±0.8

Support Devices 78.0±1.9 86.5±2.0 87.1±0.6 86.0±0.9 86.9±0.5 88.8±1.2

Average 65.1±1.1 70.2±0.5 69.6±0.7 69.0±0.4 70.5±0.4 74.1±0.7
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