

Barr, M., Somerville, D. and Dziallas, S. (2022) How the First Year of a Work-based
Degree in Software Engineering Prepares Students for Industry. In: 2022 IEEE Frontiers
in Education Conference (FIE), Uppsala, Sweden, 8-11 October 2022, ISBN
9781665462440

(doi: 10.1109/FIE56618.2022.9962449)

This is the Author Accepted Manuscript.

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must
be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating
new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.

There may be differences between this version and the published version. You are
advised to consult the publisher’s version if you wish to cite from it.

https://eprints.gla.ac.uk/273090/

Deposited on: 15 June 2022

Enlighten – Research publications by members of the University of Glasgow
http://eprints.gla.ac.uk

https://doi.org/10.1109/FIE56618.2022.9962449
https://eprints.gla.ac.uk/273090/
http://eprints.gla.ac.uk/

How the First Year of a Work-based Degree in
Software Engineering Prepares Students for Industry

Matthew Barr
School of Computing Science

University of Glasgow
Glasgow, Scotland

Matthew.Barr@glasgow.ac.uk

Derek Somerville
School of Computing Science

University of Glasgow
Glasgow, Scotland

Derek.Somerville@glasgow.ac.uk

Sebastian Dziallas
Computer Science

Fulbright University Vietnam
Ho Chi Minh City, Vietnam

sebastian.dziallas@fulbright.edu.vn

Abstract—This Practice Work-in-Progress paper presents a
work-based undergraduate degree program in Software En-
gineering, designed in consultation with industry. Work-based
learning is often seen as a means of ensuring university graduates
are equipped with the skills and knowledge required to succeed
in the workplace. The purpose of this study was to determine
the extent to which the program has prepared students for
working in industry. To this end, the students were surveyed after
they had completed their first semester, and returned to their
workplace for two months. Qualitative analysis of survey data
revealed the aspects of their first year courses that apprentices
valued most in the workplace. These aspects included exposure
to multiple programming languages and existing codebases, as
well as knowledge of Software Engineering tools and practices.
Underpinning many of the students’ responses, however, was the
increased confidence that their university instruction afforded
them in the workplace.

Index Terms—work-based learning, software engineering, ap-
prenticeships, higher education, confidence

I. INTRODUCTION

Introductory computing course sequences have received
substantial attention in the literature over the years [1], [2].
Examples include the Media Computation approach aimed at
non-majors [3], which was also later adopted for computing
majors [4], as well as courses with an emphasis on data analy-
sis [5] and games [6]. Prior work has also examined different
pedagogical approaches, including peer instruction and pair
programming [7]. However, in contrast to the traditional CS1-
CS2 course sequence, the first year presented here takes a
different approach.

Apprenticeships are a long-established form of learning
that remains prevalent in vocational and professional subject
areas. However, despite the practical and professional nature of
Computing Science - and Software Engineering, in particular
- this form of work-based learning has not typically been
associated with university-level CS education. This situation is
changing, not least in response to suggestions that university
courses do not adequately prepare graduates for the workplace
[8], [9]. Work-based degree programs, then, are intended to
better prepare students for the working world; however, such
programs are relatively untested in CS, and come with a partic-
ular set of challenges. For example, the taught material may
not align with workplace practices [10], workplace cultures
[11], or organisational development approaches [12]. Despite

these challenges, degree-level apprenticeships are increasingly
common across the UK [13]. Here, such programs may be
seen as a response to the issues identified in the government-
commissioned Shadbolt review of graduate employability [14],
which recommended “extending and promoting work expe-
rience” in university programs. Indeed, since the inception
of Degree Apprenticeships in England (’Graduate Apprentice-
ships’ in Scotland), this is how work-based degrees have been
framed: as a means of addressing the skills gaps reported
by employers and developing a skilled workforce [15]. A
Graduate Apprenticeship in Scotland, specifically, comprises
four years of study, with approximately 20% of the students’
time spent at university, and the remaining 80% spent in the
workplace.

The Graduate Apprenticeship described here is a work-
based undergraduate degree in Software Engineering, designed
from the ground up in consultation with industry (see [16]).
The first year of this program comprises two eight-week blocks
of university-based instruction, designed to equip students
with the skills and knowledge required to succeed in the
workplace. Outside of these blocks, students are based with
their employer, learning on the job and applying what they
have been taught at university. Partner employers recruit a
wide range of students with mixed levels of prior knowledge of
computer programming. Thus, we offer an optional summer
school that teaches the students basic Python programming,
with the aim of reducing the imbalance in prior knowledge
before the apprentices start the program [17]. Newly-recruited
apprentices are given a programming test [18] and the weaker
students encouraged to take the summer school.

On the Graduate Apprenticeship program, the taught mate-
rial is intended to ensure that students are productive in the
workplace as soon as possible, covering a range of professional
SE practices in the first teaching block. The material is
delivered via two concurrent modules: one that focuses on
programming languages and concepts, and another that focuses
on the fundamentals of working as a SE professional. The
programming module is novel in that it does not concentrate
on any single programming language, drawing instead on ex-
amples of many different technology stacks, and working with
existing codebases. The professional practice module covers
ethical issues, design life cycles, development methodologies,

and security factors - material not typically taught until later
in a SE degree.

The purpose of this work is to determine the extent to
which the first teaching block prepared students for working in
industry, and to better understand which aspects of the taught
material have proved most beneficial in the workplace. It is
important that we evaluate our approach, to inform our own
practice: flipping a CS degree around to focus on work-based
learning is new territory for us. Furthermore, our block-based
approach is far from traditional: most apprenticeship programs
are delivered using a ‘day release’ model, whereby students
are typically at university or college one day each week [16]. It
is also notable that we ‘front load’ our teaching, with a greater
proportion of the students’ time spent at university in the first
18 months of the program. The more usual approach - certainly
in the UK - is to evenly distribute the 20% of apprentices’ time
spent at university over the entire duration of the program. In
terms of both content and delivery, this program, therefore,
represents an innovative – and largely untested – approach to
teaching Software Engineering. An evaluation of our approach,
then, is of interest to any CS educator tasked with designing (or
re-designing) a work-based degree program. Indeed, there are
implications for the design of more traditional CS programs,
too.

II. METHODS

An online survey was distributed to first year students on
the program after they had completed their first semester and
returned to their workplace for two months. Ethical approval
for evaluating the program in this way was obtained from the
College Ethics Committee. The survey was structured around
the two modules’ Intended Learning Outcomes (ILOs), with
students asked how their attainment of each ILO had helped
them in the workplace. The first year cohort comprised 48
students; 42 (88%) students provided responses. Participants
were assigned pseudonyms to ensure anonymity. In line with
the process of thematic analysis established by Braun & Clarke
[19], students’ free-text responses were first coded by one of
the authors. These initial codes were then reviewed and refined
in discussion with all three authors, before being grouped
into themes. Following another round of discussion - which
resulted in the consolidation of codes related to SE tools into
a single group - the themes were more precisely defined and
named.

III. RESULTS AND DISCUSSION

We identified themes related to programming, practices in
the workplace, and students’ confidence. These themes are
reflected in the headings below.

A. Programming

During the module on programming languages and con-
cepts, students learn to write object-oriented programs and
are exposed to multiple programming languages. In doing
so, the apprentices are encouraged to understand the under-
lying similarities between programming languages, as well

as the differences (“Common programming misconceptions
or aspects of more obscure languages which may not map
directly to commonly used languages” – Bob). The idea that
this experience prepared apprentices for programming in the
workplace (“[It] allowed me to understand languages much
faster.” – Lisa) is one of the strongest themes identified in the
data. As one apprentice put it:

Most programming languages share the same ba-
sic concepts and my workplace uses a range of
languages, therefore it’s incredibly useful to focus
on these concepts so that you can understand new
languages quickly. – Muhammad

However, the same student does suggest that still more
languages could be introduced to the course, specifically those
used in the apprentices’ workplaces:

I think the course addressed most of the concepts
that I could think of but I would maybe say it
could dip a little bit into the specifics of some
languages, perhaps the languages which are most
common among the class. – Muhammad

This is a fair comment, of course. However, it should
be noted that the languages used for examples provided in
class are informed by a pre-sessional survey, which asks
apprentices to identify the languages they believe they’ll be
using in the workplace. It is not possible to include everything
- some proprietary technologies are difficult to incorporate,
for example - but most respondents understood the value of a
course that included examples in multiple languages, even if
their specific language was not the focus. For example:

[The course] gave me a basic knowledge of coding
that I could transfer to the language I use in work
easier and with less adjustment period. [...] It has
helped me use a language and software that is not
covered in university. – Frank
It helped me with being able to understand the
concept of what a program is doing, as I’ve maybe
not done the concept in one language but have seen
it in another so I can follow along with what is going
on. – Ahmed
Similarities and differences in programming lan-
guages allowed me to look at different codes that
I don’t recognize from university and break it down
based on my understanding of programming lan-
guages in general to get a grasp on what I am looking
at. – Arlene

Apprentices also reported that the course helped equip them
to deal with the multiple languages encountered in a single
workplace:

Not all code I have seen in the workplace is from the
same language. So having the ability to figure out
what the code is doing based on similarities to other
language is very useful. [...] Although understanding
the differences is also crucial as knowing that tech-
niques that works for one language may not work

for others is useful in developing a larger knowledge
of programming in general. – Daniel

Students are also introduced to how to navigate large code-
bases, as the codebases they encounter in their companies are
substantially larger than those first-year undergraduate students
typically come across. For instance, they explore the structure
of projects on GitHub and make small changes to existing
open source projects. Students commented that having this
prior experience prevented them “from being overwhelmed”
(Nadia) and allowed them to “make a difference very quickly
in my company” (Sven).

Many of the apprentices appreciated that working with
existing codebases reflected the reality of what they would
be doing in the workplace, for example:

You aren’t going to be writing new systems every-
day, it’s more likely that you will be fixing problems
or making adjustments to an existent codebase so
learning how to make additions to large codebases
has been extremely useful in understanding the im-
pact of my work and role. – Jose
This was incredibly useful as workplace codebases
come in different shapes and sizes, having the expe-
rience of navigating large codebases and the basics
of how to add to a codebase was crucial. – Brett

B. Practices

Students also reported understanding practices that are com-
monly used in industry. One example here was recognizing the
importance of writing clean code:

Knowing the ’professional’ way of doing things
helped me get in the mindset of coding with cleanli-
ness and standards in mind, rather than just writing
a lot and cleaning it up after. – Michal

This was even the case in contexts where there were no
explicit standards:

I asked a mentor about the standards in my company,
and was surprised to realise we didn’t have any,
however in practice we limit our line length and have
name conventions for our classes. – James

It is also interesting to note that these first-year apprentices
recognised the value of readable code (“It helped me to
understand why people in my team use comments and have
clean code” – Karen), which novice programmers typically do
not [20]:

In my workplace readability of code is very impor-
tant as there are a lot of different developers that
have to work with the code, so if it is difficult to
read then developers from different teams or even
within the team may struggle to understand what the
function of the code is, so learning about readability
is a lot of help. – Jacob
Learning about easy-to-read code has massively
helped my progress in the workplace as I didn’t have
much prior experience with coding. Easy-to-read
code helps developers to pick up work on codebases

they may not have written originally and understand
what they are then working on. – Susan

The university courses also covered agile development
principles and software development tools, which apprentices
found to be useful:

Learning about development methodologies has
been extremely relevant to my role in [company].
Most of the development methodologies we covered
in university exist in some capacity here, which has
been very helpful in understanding how my team
work to produce an end-product for stakeholders. –
Susan
[It was] useful to learn about git, IDEs etc. which I
have begun to use. – Omar

In particular, understanding industry development practices
has enabled apprentices to make a contribution in the work-
place from the outset, engaging in what might be termed
‘legitimate peripheral participation’ [21]:

My workplace uses the principles of Agile quite
extensively so understanding the detail and theory
has helped a lot in the reasons why we work the
way we do and how I can better contribute. – Jose

Another common topic was related to testing. Prior work
found that many apprentices were writing unit tests in their
workplaces [22] and we found that in these data as well. For
example:

Very useful – a lot of my initial changes were
in adding small unit tests and doing this with the
background given in the testing sections was far
easier. – Michal

C. Confidence

A significant theme was related to students’ confidence.
Begel & Simon have previously observed that: “Asking ques-
tions, however, reveals to your co-workers and managers that
you are not knowledgeable, an exposure that most new devel-
opers felt might cause their manager to reevaluate why they
were hired in the first place.” [23] However, the apprentices
here seemed confident to ask questions:

Again having an understanding of these at a basic
level enabled me to identify specific areas I didn’t
fully understand and therefore have the ability to ask
the right questions when it came to the workplace.
– Nadia

Students also described feeling more confident about ap-
proaching problems in different programming languages, as
they had previously experienced different languages in their
studies (“it allowed me to approach other languages I had
not seen before with confidence” – Lucas). Other examples
included:

Had to make changes to the front end of a web app
written in JavaScript using the React framework -
was much less intimidated having been exposed to
similar concepts in multiple languages. – Grant

Seeing the broad similarities in basic concepts be-
ing used across languages really helped me when
starting on a C# project while only knowing Java -
knowing that I didn’t have to learn an entirely new
way of doing it and just had to use the same concepts
but with different syntax made it less scary! – Michal

This improved confidence extended also to the tools en-
countered in the workplace, for example:

Also helped me feel more confident when using
software such as Jira as I wasn’t seeing it for the
first time in a work environment. – Frank

The professional practice module was also reported to have
given apprentices the confidence to challenge ethical and
professional behaviour in the workplace:

It helps me understand my companies policies and
why they are there, along with helping me to identify
any breaches and feel confident enough to address
them. – Arlene

IV. CONCLUSION

Based on these data, it appears that our initial eight-
week block of teaching successfully prepares students for the
workplace. This is achieved by exposing students to multiple
programming languages to develop a deeper conceptual un-
derstanding, and by requiring students to work with existing
codebases from the outset. Covering development practices in-
cluding agile, software development tools, and testing method-
ologies has also been important in preparing apprentices for
work. By demystifying the concepts and practices encountered
in the workplace, students are equipped not only with the
requisite skills and knowledge but also the confidence required
to apply these in the workplace. We will continue to refine
the modules described here, adding additional programming
languages to the repertoire of examples and introducing some
larger codebases. In doing so, our underlying purpose will
be to nurture the confidence that our students indicate is so
important in the workplace. We believe that this evidence for
the efficacy of our approach to delivering the apprenticeship
degree may be of interest to others developing programs in
Software Engineering.

We are also excited about the emerging theme of student
confidence in the workplace, as recent research has linked
students’ self-efficacy to persistence in the field [24]. The
participants in this work described feeling more confident in
approaching problems in the workplace. In contrast, Begel
and Simon, in their work on novice software developers in
industry, noted that recent graduates experienced a power
inequality and social anxiety that prevented them from seeking
help from colleagues [23]. They observe that many of their
participants only asked questions “after flailing for a long
time and spending many hours ineffectually trying to solve a
problem.” [23] While the program described in this paper is not
the first to emphasize student confidence [25], we believe that
future work then has the potential to identify specific aspects
that support student confidence in the classroom and in the
workplace.

REFERENCES

[1] B. A. Becker and K. Quille, “50 Years of CS1 at SIGCSE: A Review
of the Evolution of Introductory Programming Education Research,”
in Proceedings of the 50th ACM Technical Symposium on Computer
Science Education. Minneapolis MN USA: ACM, Feb. 2019, pp. 338–
344.

[2] A. Luxton-Reilly, Simon, I. Albluwi, B. A. Becker, M. Giannakos, A. N.
Kumar, L. Ott, J. Paterson, M. J. Scott, J. Sheard, and C. Szabo, “Intro-
ductory programming: A systematic literature review,” in Proceedings
Companion of the 23rd Annual ACM Conference on Innovation and
Technology in Computer Science Education. Larnaca Cyprus: ACM,
Jul. 2018, pp. 55–106.

[3] M. Guzdial, “A Media Computation Course for Non-majors,” in Pro-
ceedings of the 8th Annual Conference on Innovation and Technology in
Computer Science Education, ser. ITiCSE ’03. New York, NY, USA:
ACM, 2003, pp. 104–108.

[4] B. Simon, P. Kinnunen, L. Porter, and D. Zazkis, “Experience report:
CS1 for majors with media computation,” in Proceedings of the Fifteenth
Annual Conference on Innovation and Technology in Computer Science
Education - ITiCSE ’10. Bilkent, Ankara, Turkey: ACM Press, 2010,
p. 214.

[5] R. E. Anderson, M. D. Ernst, R. Ordóñez, P. Pham, and B. Tribelhorn,
“A Data Programming CS1 Course,” in Proceedings of the 46th ACM
Technical Symposium on Computer Science Education. Kansas City
Missouri USA: ACM, Feb. 2015, pp. 150–155.

[6] J. D. Bayliss and S. Strout, “Games as a ”flavor” of CS1,” in Proceed-
ings of the 37th SIGCSE Technical Symposium on Computer Science
Education - SIGCSE ’06. Houston, Texas, USA: ACM Press, 2006, p.
500.

[7] A. Salguero, J. McAuley, B. Simon, and L. Porter, “A Longitudinal
Evaluation of a Best Practices CS1,” in Proceedings of the 2020 ACM
Conference on International Computing Education Research. Virtual
Event New Zealand: ACM, Aug. 2020, pp. 182–193.

[8] K. Min, J. Jackman, and D. Gemmill, “Assessment and evaluation of
objectives and outcomes for continuous improvement of an industrial
engineering program,” International Journal of Engineering Education,
vol. 29, no. 2, p. 520–532, Jan 2013.

[9] E. O. Navarro, A Survey of Software Engineering Educational
Delivery Methods and Associated Learning Theories. University
of California, Apr 2005, no. UCI-ISR-05-5. [Online]. Available:
https://isr.uci.edu/sites/isr.uci.edu/files/techreports/UCI-ISR-05-5.pdf

[10] P. Tynjala and P. Hakkinen, “E-learning at work: Theoretical under-
pinnings and pedagogical challenges,” Journal of Workplace Learning,
vol. 17, p. 318–336, 2005.

[11] U. Backes-Gellner, Benefits of Apprenticeship Training and Recent
Challenges - Empirical Results and Lessons from Switzerland and
Germany. Swiss Leading House, Feb 2014, no. 97. [Online]. Available:
https://econpapers.repec.org/paper/isoeducat/0097.htm

[12] P. Dillenbourg, “Over-scripting cscl: The risks of blending collaborative
learning with instructional design.” in Three worlds of CSCL. Can
we support CSCL? Open Universiteit Nederland, 2002, p. 61–91,
publisher: Heerlen, Open Universiteit Nederland. [Online]. Available:
https://telearn.archives-ouvertes.fr/hal-00190230

[13] A. Powell, “Apprenticeship statistics: England,” House of Commons
Library, Tech. Rep., 2018.

[14] N. Shadbolt, “Shadbolt review of computer sciences degree accreditation
and graduate employability,” Department for Business, Innovation &
Skills, London, UK, Tech. Rep., 2016.

[15] S. Smith, M. Caddell, E. Taylor-Smith, C. Smith, and A. Varey, “Degree
apprenticeships - a win-win model? a comparison of policy aims with
the expectations and experiences of apprentices,” Journal of Vocational
Education & Training, vol. 73, no. 4, p. 505–525, 2021.

[16] M. Barr and J. Parkinson, “Developing a work-based software
engineering degree in collaboration with industry,” in Proceedings of
the 1st UK & Ireland Computing Education Research Conference, ser.
UKICER. Association for Computing Machinery, Sep 2019, p. 1–7.
[Online]. Available: https://doi.org/10.1145/3351287.3351292

[17] D. Somerville, Q. Cutts, M. Barr, and J. Parkinson, Addressing mixed
levels of prior knowledge by individualising learning pathways in
a Degree Apprenticeship Summer School. New York, NY, USA:
Association for Computing Machinery, Jan 2020, p. 1–5. [Online].
Available: https://doi.org/10.1145/3372356.3372370

[18] R. Bockmon, S. Cooper, J. Gratch, and M. Dorodchi, “(re)validating
cognitive introductory computing instruments,” in Proceedings of
the 50th ACM Technical Symposium on Computer Science
Education, ser. SIGCSE ’19. New York, NY, USA: Association
for Computing Machinery, Feb 2019, p. 552–557. [Online]. Available:
https://doi.org/10.1145/3287324.3287372

[19] V. Braun and V. Clarke, “Using thematic analysis in psychology,”
Qualitative Research in Psychology, vol. 3, no. 2, p. 77–101, Jan 2006.

[20] S.-N. A. Joni and E. Soloway, “But my program runs! discourse rules
for novice programmers,” Journal of Educational Computing Research,
vol. 2, no. 1, pp. 95–125, 1986.

[21] S. Dziallas, S. Fincher, M. Barr, and Q. Cutts, “Learning in context:
A first look at a graduate apprenticeship,” in 21st Koli Calling
International Conference on Computing Education Research, ser. Koli
Calling ’21. Association for Computing Machinery, Nov 2021, p.
1–11. [Online]. Available: https://doi.org/10.1145/3488042.3490020

[22] M. Barr and D. Somerville, “Preparing software engineering apprentices
for industry,” in Proceedings of the 2020 ACM Conference on
International Computing Education Research, ser. ICER ’20. New
York, NY, USA: Association for Computing Machinery, Aug 2020, p.
310. [Online]. Available: https://doi.org/10.1145/3372782.3408116

[23] A. Begel and B. Simon, “Novice Software Developers, All over Again,”
in Proceedings of the Fourth International Workshop on Computing
Education Research, ser. ICER ’08. New York, NY, USA: ACM, 2008,
pp. 3–14.

[24] J. Gorson and E. O’Rourke, “Why do cs1 students think they’re
bad at programming? investigating self-efficacy and self-assessments at
three universities,” in Proceedings of the 2020 ACM Conference on
International Computing Education Research, ser. ICER ’20. New
York, NY, USA: Association for Computing Machinery, 2020, p.
170–181. [Online]. Available: https://doi.org/10.1145/3372782.3406273

[25] S. Rosenthal and T. R. Chung, A Data Science Major: Building
Skills and Confidence. New York, NY, USA: Association for
Computing Machinery, 2020, p. 178–184. [Online]. Available:
https://doi.org/10.1145/3328778.3366791

	IEEE.pdf
	273090

