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Abstract

Background

Fatigue is a common and burdensome symptom in Rheumatoid Arthritis (RA), yet is

poorly understood. Currently, clinicians rely solely on fatigue questionnaires, which are

inherently subjective measures. For the effective development of future therapies and

stratification, it is of vital importance to identify biomarkers of fatigue. In this study, we

identify brain differences between RA patients who improved and did not improve their

levels of fatigue based on Chalder Fatigue Scale variation (ΔCFS� 2), and we com-

pared the performance of different classifiers to distinguish between these samples at

baseline.

Methods

Fifty-four fatigued RA patients underwent a magnetic resonance (MR) scan at base-

line and 6 months later. At 6 months we identified those whose fatigue levels improved

and those for whom it did not. More than 900 brain features across three data sets

were assessed as potential predictors of fatigue improvement. These data sets

included clinical, structural MRI (sMRI) and diffusion tensor imaging (DTI) data. A

genetic algorithm was used for feature selection. Three classifiers were employed in

the discrimination of improvers and non-improvers of fatigue: a Least Square Linear

Discriminant (LSLD), a linear Support Vector Machine (SVM) and a SVM with Radial

Basis Function kernel.

Results

The highest accuracy (67.9%) was achieved with the sMRI set, followed by the DTI set

(63.8%), whereas classification performance using clinical features was at the chance level.

The mean curvature of the left superior temporal sulcus was most strongly selected during

the feature selection step, followed by the surface are of the right frontal pole and the surface

area of the left banks of the superior temporal sulcus.
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Conclusions

The results presented evidence a superiority of brain metrics over clinical metrics in predict-

ing fatigue changes. Further exploration of these methods may support clinicians to triage

patients towards the most appropriate fatigue alleviating therapies.

Introduction

Fatigue is a highly complex symptom, which is challenging to measure and study. There are

around 690,000 RA patients in UK, 80% of whom report suffering from relevant fatigue [1].

This symptom is described as a principal burden of the disease [2], with an impact over the

quality of life even greater than pain [3]. Consequences of fatigue include an impact upon

daily activities, general health, mental health, work and relationships among others [3].

Due to its multidimensional nature, a considerable number of questionnaires to evaluate

fatigue have been created [4, 5]. These questionnaires may include single-item assessments,

multi-item assessments to evaluate different aspects or fatigue domains and the may assess

fatigue during different times (current moment, past week or past month). Despite the large

number of fatigue questionnaires, these are subjective measurement instruments.

Therapeutic options do exist. In particular, exercise, cognitive behavioural therapy (CBT)

and education are recommended; moreover, we have recently evidenced a fatigue alleviating

effect of anti-TNF pharmacological therapy [6]. However, in practice, these interventions only

provide clinically meaningful gains in subgroups of patients [7, 8]. Unfortunately, clinical

characteristics inadequately distinguish these subgroups, knowledge which would otherwise

inform therapeutic decision making. Consequently, patients and clinicians are frustrated by

the considerable challenge of selecting the correct therapy for the correct patient.

The absence of biological measures and the lack of understanding of the mechanisms

underlying fatigue are undoubtedly a major obstacle in the development of new therapies. The

discovery of objective biomarkers of fatigue is critical to successful development of therapies.

In addition, a prediction model of fatigue may support stratification of patients, saving time

and frustration to both the clinician and patients, as being cost-effective for health services by

a priori selecting therapeutic strategies which might be preferentially responsive for individual

patients.

Given that central symptoms appear prominently associated with fatigue [9], neuroimaging

may be a valuable tool to study fatigue and potentially identify biomarkers which may guide

clinician’s therapeutic decision making. In spite of this possibility, few studies have employed

these techniques to investigate fatigue in the field of chronic inflammatory diseases [10]. Yet,

these studies are restricted to traditional univariate analysis (for instance t-test, chi-square or

Wilcoxon test) to test for differences between groups. Therefore, these findings are group-

based and hence of limited clinical application. In addition, no studies have employed neuro-

imaging to predict fatigue outcome. This information would be a vital asset in stratification of

therapy, currently undoable as clinicians rely only on clinical measures.

Machine learning (ML) methods integrated with neuroimaging are gaining importance to

support clinical diagnosis. As opposed to group level comparison analysis, machine learning

methods enable identification of fine-grained patterns, which are key for single subject diagno-

sis [11]. This work is the first study to apply machine learning techniques in the search for

brain indicators which may predict longitudinal changes in fatigue and so aid patient stratifi-

cation in patients with RA.
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Methods

Participants

The data used in this work was acquired in Aberdeen Biomedical Imaging Centre. The main

eligibility criteria for enrolment include: a) patients diagnosed with RA, according to the 2010

American College of Rheumatology/European League Against Rheumatism (ACR/EULAR)

criteria [12] and b) patients suffering from clinically relevant fatigue, defined as a score above

3 on the Chalder Fatigue Scale (CFS) [13] and reported fatigue for more than 3 months. Those

patients with contraindications to MRI scanning (e.g. pacemakers, artificial eyes, artificial

joints), claustrophobia, alternative medical justifications for their fatigue (e.g. beta-blocker

treatment, a recent history of cancer) and left-handed patients were excluded. The reason for

the latter is that the brain of left-handed people may work differently during motor skills tasks

due to lateralization. Finally, 60 patients met eligibility criteria and thus, underwent a full clini-

cal assessment, before going through the MR scan. Prior to enrolling in the study all subjects

provided written informed consent after the study protocol had been fully explained to them.

The study was approved by the North of Scotland Research Ethics Committee (NoSREC)

before being conducted in accordance with the principles of the declaration of Helsinki 1964

and later revisions. The whole procedure was repeated after 6 months, with no fatigue specific

intervention in the meanwhile, in 54 out of the 60 initial patients who returned for a second

visit. In the second visit, patients were stratified based on Chalder Fatigue Scale score variation

(ΔCFS) into improvers (ΔCFS� 2; n = 22; mean age 54.9 ± 13.5; 15 female) and non-improv-

ers of fatigue (ΔCFS < 2; n = 32; mean age 55 ± 10.0; 26 female). This cut-off is based on a

review where a minimum change of 0.7–1.4 points was considered a clinical improvement of

fatigue. Therefore, we consider a change above 2 points of clinical relevance [14].

Data acquisition

Patients were asked to lie supine in a 3 Tesla Philips Achieva X-series MRI scanner for a brain

scan. Structural MRI data was acquired by a T1-weighted fast-field echo 3D structural scan

with the next parameters: repetition time (TR) = 8.2 ms, echo time (TE) = 3.8 ms, inversion

time (TI) = 1018 ms, flip angle (FA) = 8˚, field of view (FOV) = 240 mm, matrix size = 240 x

240 with 160 slices, voxel size = 0.94 x 0.94 x 1 mm3.

Diffusion tensor images (DTI) were acquired along 16 gradients directions (b = 800 s/mm2,

number of excitations = 2) along with an unweighted (b = 0) image with an overall of 17 vol-

umes. DTI images were recorded as a series of 66 axial slices, using a single-shot spin echo pla-

nar imaging (EPI) sequence with the next parameters: TR = 7151 ms, TE = 55 ms, FA = 90˚,

FOV = 224 x 224 mm2, slice thickness = 2.0 mm with no gap, voxel size = 2 x 2 x 2 mm3, matrix

size = 224 x 224 x 132.

Preprocessing

T1-weighted images were pre-processed using FreeSurfer. Some of the processing steps

include: 1) motion correction and averaging, 2) registration to the Talairach coordinates, 3)

intensity normalization, 4) skull stripping using a hybrid watershed/surface deformation algo-

rithm to remove brain tissue from non-brain tissue such as skull, eyeballs and skin, 5) auto-

matic volume labelling to assign each voxel to one of 57 regions of interest (ROIs), 6) intensity

normalization using just the brain volume as the input, 7) white matter (WM) segmentation to

separate WM from anything else, 8) fill and cut subcortical mass to fill in any holes, remove

any islands and brain stem and separate hemispheres, 9) surface between grey and WM, and

the pial surface are generated and refined.
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DTI data were pre-processed using a Tract-Based Automatic Analysis (TBAA). First, diffusion

tensor imaging (DTI) data were registered to create a single study specific template (SST). This

SST tackles the bias from group differences. Then, the SST was registered to the NTU-DSI-122

template, which gathers a total of 76 fiber tracts. After that, sampling coordinates were trans-

formed by reversing the process, from the NTU-DSI-122 template to each individual DTI dataset.

Finally, the generalized FA (GFA), a measure of the microstructural differences of the 76 fiber

tracts, is sampled according to the transformed coordinates in native space.

Feature extraction

As a result of the pre-processing step, 52 subcortical measures and 68 cortical parcellations (34

per hemisphere) were extracted (S2 Table in S1 File). For each of the subcortical segmenta-

tions, volume in mm3 were calculated. In addition, eight statistic measures were calculated for

each of the cortical parcellations, including: 1) total surface area (mm2), 2) total gray matter

volume (mm3), 3) average cortical thickness (mm), 4) standard deviation of cortical thickness

(mm), 5) integrated rectified mean curvature (mm-1), 6) integrated rectified gaussian curva-

ture (mm-2), 7) folding index (unitless) and 8) intrinsic curvature index (unitless). An overall

of 596 structural features (52 subcortical and 544 cortical) were calculated.

Each of 76 fiber tracts or diffusion tensors extracted in the pre-processing step can be

described by 3 eigenvalues, expressing magnitude, degree and orientation of diffusion anisot-

ropy. For each diffusion tensor, 4 parameters were calculated based on the eigenvalues: frac-

tional anisotropy, mean diffusivity, longitudinal diffusivity and radial diffusivity. As a result of

the 4 aforementioned measures for each of the 76 diffusion tensors (S3 Table in S1 File), 304

diffusion features were gathered.

Feature selection

As the dimensionality of the data grows, data analysis and prediction algorithms become

increasingly complex or even incorrect [15]. The final aim of feature selection is to select the

best subset of features in a certain prediction problem, reducing dimensionality, improving

the learning performance and decreasing the computational cost. A genetic algorithm (GA)

[16] was employed to identify a subset of features able to distinguish between improvers and

non-improvers of fatigue. GAs are inspired by Charles Darwin’s theory of natural evolution,

where the fittest individuals from a population survive, having more chances to reproduce and

then, transmit their genetic material to their offspring. This process is repeated until reaching

a generation with the fittest individuals.

This process can be extrapolated to a feature selection problem. Here, an individual of the

population represents a possible solution to the prediction problem (optimal subset of fea-

tures). Each individual is characterized by a set of genes (features). Genes are gathered in a

string known as chromosome (possible solution). A GA conceives new generations of the pop-

ulation, where individuals offer a better solution to the problem each time. The algorithm per-

forms the following steps (Fig 1, B):

1. Initial population. The process starts selecting a set of chromosomes that defines the initial

population. A population size of 10 times the number of dimensions was stablished [17].

2. Fitness function. This function is defined to evaluate the probability of the individual to be

chosen for reproduction. Fitter chromosomes will have a higher fitness value. A Least

Squared Linear Discriminant (LSLD) was employed in this work. Then, in each iteration,

the GA selects the feature combination which minimizes the mean squared error of the

LSLD over the training data.
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3. Selection operator. During the selection step, m individuals (parents) are chosen for repro-

duction based on their fitness scores. There are several selection methods [18]. Here, a

ranking-based approach is employed, where chromosomes are arranged according to their

fitness values. A subset of 10% of the population is selected.

4. Crossover operator. The aim is to transfer the genetic material from generation to genera-

tion [19]. The new offspring inherits genes from both “parents”. A random crossover

approach is the selected method in this work [20].

5. Mutation operator. This operator allows a wide search space by changing randomly a cer-

tain number of bits. In this work, 1% of the genes were randomly mutated.

6. Termination criterion: The whole process is repeated until a certain termination criterion is

reached. Here, the process terminates after 100 generations, where the optimal combination

of features is returned.

Classification

Classification was performed using three different classifiers to distinguish between improvers

and non-improvers of fatigue: a least square linear discriminant (LSLD), a soft-margin SVM

and a Gaussian SVM.

Fig 1. Nested CV procedure for model development and evaluation. (A) The outer loop consists of a 5-fold CV, used to evaluate the final model on the held

out test set. This CV procedure is repeated 100 times. (B) The feature selection step consists of a genetic algorithm to select the optimal features in the

classification problem. (C) The inner loop, consists of a 5-fold CV, employed to tune the parameters of the SVM.

https://doi.org/10.1371/journal.pone.0269952.g001
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Least square linear discriminant. The aim of a Linear Discriminant Analysis (LDA) is to

combine L features of a dataset of N instances, to distinguish effectively between C classes. The

decision function can be expressed as follows:

y ¼
XL

n¼1

wnxn þ b

Where x is the input vector, b is a bias term and w is a feature weight vector, which repre-

sents the contribution of each feature to the prediction. The Least Squares Linear Discriminant

(LSLD) is optimized by minimizing the mean square error [21].

Support vector machines. A support vector machine (SVM) classifier seeks to find a

hyperplane with the maximum distance between the closest points to the hyperplane itself

[22]. Then, this hyperplane is just defined by the training instances, which fall just in the fron-

tier of the margin, known as support vectors. Originally, SVM was a linear algorithm, but

modifications to deal with non-linearly separable classes have been introduced. These modifi-

cations are the ones employed in this work and include the soft-margin formulation, which

allows certain errors; and the Radial Basis Function (RBF) kernel, which builds nonlinear clas-

sifiers [23].

Model performance

Each model was validated following a 5-fold cross-validation (CV) strategy given the size of

the dataset. In the case of the SVM classifiers, a nested-CV was implemented consisting of a

5-fold inner CV to select the optimal parameters of the SVM. This inner loop follows a grid

search for the regularization constant C ranging from 2−4 to 24 both for soft-margin and RBF

SVMs and a gamma γ ranging from 2−4 to 24 for the RBF SVM. Once the optimal SVM model

is selected during the inner CV, the outer CV is used to evaluate the classification performance.

This nested CV offers an unbiased assessment of the model and prevents overestimation. Fig 1

illustrates the followed procedure. Furthermore, this whole procedure was repeated 100 times,

to avoid bias and increase robustness.

For each model, we report the following measures of predictive performance: balanced

accuracy (referred as accuracy (Acc) for the remainder of this work), sensitivity (Sens), speci-

ficity (Spec), positive (PPV) and negative predictive value (NPV), mean receiver operating

characteristic (ROC) curves with 95% confidence intervals (CI) and area under the curve

(AUC).

An important parameter of the GA is the length of each chromosome, that is, the length of

the desired feature set. This parameter was set to 8 features. In practice, the selection of this

parameter ought to be identified during the training step to avoid overfitting. Nonetheless, this

step increases significantly the computational time of our proposed method. Regarding this

computational time, a large initial population size to avoid premature convergence was priori-

tized, since it provides a better chance of significantly improving the feature selection process

[24] and a high number of generations. Even so, the performance of our framework (Fig 1) for

different combinations of this parameter was additionally explored to evaluate most selected

features.

Results

Classification performance

Fifty four fatigued RA patients attended both visits. According to the fatigue scores at the sec-

ond visit, 22 patients improved their fatigue levels and 32 remained with the same fatigue
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levels. Standard clinical characteristics are provided in Table 1. Blood and questionnaire-

related measures are summarized in S1 Table in S1 File.

Three different classifiers (LSLD, linear SVM and RBF SVM) were applied to each modality

(sMRI, DTI and clinical) in order to distinguish between fatigue improvers and non-improv-

ers. Fig 2, A) shows the ROC curves and corresponding AUC values for each classifier and

modality during the CV step. All three classifiers performed similarly (< 3% difference), yet

LSLD reached the highest accuracy in all cases. Classification performance using the sMRI fea-

tures resulted in an accuracy of 64.3%, with 67.3% sensitivity and 61.2% specificity. DTI fea-

tures reached 59.1% accuracy with 60% sensitivity and 58.3% specificity. The set of clinical

features achieved 46.8% accuracy, 41.9% sensitivity and 51.8% specificity. S4 Table in S1 File

provides detailed information of the classification performance for each algorithm and

modality.

Predictive features

The most selected features during the CV procedure across 100 iterations and thus, those fea-

tures with the greatest predictive power between improvers and non-improvers of fatigue were

extracted for each modality. Fig 2 displays these features, along with the percentage of selection

during the CV and trend according to a 2 sample t-test analysis.

Structural MRI. Three features stood up for the 100 iterations of the CV process (Fig 2,

sMRI, B-C), including the mean curvature of the left superior temporal sulcus (selected 83.4%

of the times), the surface area of the right frontal pole (59.6%) and the surface area of the left

banks of superior temporal sulcus (46%).

Diffusion tensor imaging. Two DTI features were consistently selected during the CV

process (Fig 2, DTI, B-C). These are the fractional anisotropy of the left arcuate fasciculus

(selected 78% of the times) and the radial diffusivity of the corpus callosum of the dorsal lateral

prefrontal cortex (45%). Associated ROIs for each WM tract bundle according to the list of 76

WM tracts defined by Chen and colleagues [25] are listed in S3 Table in S1 File.

Clinical. Although no clinical feature clearly stood up in the CV process (Fig 2, Clinical,

B), gender (76.8%), Chalder Fatigue Scale (73.6%) and daily pain (66.6%) measured during the

first visit were the most selected ones.

Varying the length of the “chromosome”

Fig 3, A) shows the classification accuracy at 95% CI during CV for three classifiers for each

modality (sMRI, DTI and clinical) with the length of the chromosome during the feature selec-

tion step ranging from 1 to 20 features. Further measures of predictive performance and results

for subgroups of features are summarized in supplementary material.

Best performance for sMRI was achieved using 10 features as length of chromosome (Acc:

67.9%; Sens: 73.4%; Spec: 62.4%). The performance of the model decreased with chromosome

Table 1. Clinical characteristics for the total number of subjects (n = 54) and improvers (n = 22) and non-improvers (n = 32) of fatigue subgroups.

RA (n = 54) Improvers(n = 22) Non-improvers (n = 32)

Age (years), mean ± std 55 ± 11.4 54.9 ± 13.5 55 ± 10.1

Male/Female 13/41 7/15 6/26

Disease duration (years), mean ± std 11.5 ± 9.4 10.2 ± 6.6 12.5 ± 11

Weight (kg), mean ± std 74.2 ± 16.6 75.8 ± 15.9 73 ± 17.3

DAS: Disease Activity Score. VAS: Visual Analogue Scale. CFS: Chalder Fatigue Scale

https://doi.org/10.1371/journal.pone.0269952.t001
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Fig 2. Classification results and most selected features. A) ROC curves and AUC values for three classifiers for 100 iterations of the CV

procedure. B) Number of times each feature is selected during the feature selection for 100 iterations of the 5-fold CV procedure. C) Group:

type of measure. Rate: frequency of repetition. Trend: +/- according to if the feature is increased/decreased in non-improvers compared to

improvers of fatigue. Fa: fractional anisotropy. Rd: radial diffusivity. CFS: Chalder Fatigue Scale.

https://doi.org/10.1371/journal.pone.0269952.g002
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lengths smaller than 8 features. Best performance for DTI modality was reached using 3 fea-

tures (Acc: 63.8%; Sens: 66.5%; Spec: 61.1%). Highest accuracies for DTI were achieved with

small chromosome lengths, ranging between 3 and 8 features. For clinical features, highest

accuracy was reached using one feature (Acc: 47.9%; 47.4%; 48.3%). All results were in the

chance level. LSLD was the classifier performing best for all modalities.

Fig 3. Classification results and feature selection varying the length of the chromosome. A) Accuracy with 95% CI for each classifier for different

chromosome length (no. of features). B) Number of times (0–500) that a feature is selected during the 100 iterations of the 5-fold CV for different

chromosome lengths for the LSLD (best performing classifier). For summarizing purposes, the ten most selected features for each modality are displayed.

CC: corpus callosum. DLPFC: dorsolateral prefrontal cortex. HADS: Hospital Anxiety and Depression Scale. Lh: left hemisphere. Rh: right hemisphere.

https://doi.org/10.1371/journal.pone.0269952.g003
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Number of times that each feature is selected during the 100 iterations of the 5-fold CV for

each value of chromosome length was extracted (Fig 3B). For the case of sMRI, the mean cur-

vature of the left superior temporal sulcus was exceedingly the most selected in all cases, fol-

lowed by the surface are of the right frontal pole and the surface area of the left banks of the

superior temporal sulcus. For the DTI, the left arcuate fasciculus was clearly the most selected

feature for all cases of chromosome length, followed by the corpus callosum of the dorsolateral

prefrontal cortex (DLPFC) and the left frontal-striatum of the DLPFC. In the case of clinical

features, the disease duration, visual analog scale and depression score as measured by the

Hospital Anxiety and Depression Scale (HADS) were the most selected, although all features

were selected at least once in different iterations.

Discussion

Our results show the superiority of MR metrics in the prediction of fatigue changes, compared

with commonly used clinical measures. This is the first study employing machine learning in

neuroimaging data to predict fatigue outcome in rheumatoid arthritis subjects. In addition, it

is the largest neuroimaging database in RA to date.

Prediction of fatigue changes

All three classifiers performed very similarly in the discrimination of improvers and non-

improvers of fatigue (<3% of difference), with LSLD performing best in all cases. Best predic-

tion accuracy (64.3%) was reached using sMRI features, with 67.3% sensitivity and 61.2% spec-

ificity. Since sensitivity is greater than specificity, sMRI features seem to work better when

predicting improvers than non-improvers of fatigue. With regard to DTI features, a modest

accuracy of 59.1% was achieved, with 60% sensitivity and 58.3% specificity. Performance accu-

racy for the clinical set was in the chance level (46.8%), with 49.1% sensitivity and 51.8% speci-

ficity. Therefore, clinical features are not useful in this predictive problem, independently of

the selection frequency during the feature selection step. Given that the clinician relies just on

clinical data when prescribing a treatment for fatigue, and clinical data showed no predictive

power, these results indicate a future asset in terms of therapeutic decision making support.

Whereas a chromosome length of 8 features was set during the feature selection step using

the genetic algorithm, we also evaluated how variation of this parameter can modify the classi-

fication performance. For the sMRI set, accuracy increased from 64.3% to 67.9% when choos-

ing 10 features. In the case of DTI features, accuracy raised from 59.1% to 63.8% when using 3

features instead of 8 features. Performance for the clinical set were all in the chance level.

Identification of brain regions related to fatigue changes

Structural MRI. The following regions were highlighted in the discrimination between

improvers and non-improvers of fatigue: curvature of the left superior temporal sulcus, the

surface area of the right frontal pole and the surface area of the left bank superior temporal sul-

cus. It is worth noting that the frequency of these features was exceedingly high compared

with the rest of the features. This may point out to a high relation between these brain regions

and the fatigue pathology.

There is little work related to the investigation of the brain contributions to fatigue in RA

patients using MRI. However, brain regions have been found to be related to fatigue in other

chronic inflammatory diseases. Fatigue reduction was found to be correlated with cortical

thinning of the superior temporal polysensory area in ankylosing spondylitis [26]. In Chronic

Fatigue Syndrome (CFS), a disorder which causes prominent fatigue, fatigue was significantly

related with brain activity and superior temporal cortices [27]. The frontal lobe has been
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associated with performance on a wide variety of tasks including multi-tasking and prospective

memory. The only fatigue related RA study to date found greater levels of functional connec-

tivity between the medial prefrontal gyri and Dorsal Attention Network (DAN) in those

patients with higher levels of fatigue [28]. Frontal lobe has also been reported in many studies

of fatigue in other chronic diseases. Studies in Chronic Fatigue Syndrome reported correla-

tions of fatigue with medial prefrontal regions [29], dorsolateral prefrontal and dorsomedial

prefrontal cortex [29, 30], lateral prefrontal cortex [30], right prefrontal cortex [31], right infe-

rior frontal cortex [27] and superior frontal gyrus [32]. Several studies in Multiple Sclerosis

(MS) have linked fatigue with abnormalities in the frontal pole. Fatigued MS patients showed a

significant atrophy of superior frontal gyrus compared with non-fatigued MS patients [33].

Fatigue-related behavioural abnormalities in MS has also been associated with increased acti-

vation in frontal areas including superior, medial, middle and inferior regions [33]. Further-

more, cognitive fatigue was related to right frontal lobe lesions in traumatic brain injury [34].

The high number of reports related to this region suggests a strong link of the frontal lobe with

cognitive fatigue in chronic inflammatory diseases.

Diffusion tensor imaging. Brain regions of greater structural integrity, as measured by

increased FA, were identified within the fatigue improver group, concretely the left arcuate fas-

ciculus. Reduced RD was found in corpus callosum of DLPFC within the non-improvers

group.

Although few studies have employed DTI to study cognitive fatigue, there is still some evi-

dence supporting our findings. Arcuate fasciculus has not been directly reported as related

with fatigue in other studies. Nevertheless, it has been associated with symptoms which might

have relation with fatigue, such as disease severity in CFS [35] or depression in MS [36]. Dor-

solateral prefrontal cortex (DLPFC) is related to executive functions such as working memory,

cognitive flexibility, planning and reasoning. Decreased diffusivity in the DLPFC was found in

traumatic brain injury (TBI) patients, another disease characterized by fatigue [37]. Primary

fatigued MS subjects showed regional atrophy in the DLPFC in an MRI study [38].

Limitations and further research

Our predictive model has proven to identify fatigue changes and revealed those features con-

sistently selected across different values of chromosome length. However, a limitation of our

work is that we predefined this parameter. In future work, we will learn to identify the best

value for the chromosome length as part of the training step. This is particularly important

since as demonstrated, the classification performance vary according to the chromosome

length.

An inherent limitation of this work lies in using the Chalder Fatigue Scale (CFS) to stratify

subjects into improvers and non-improvers of fatigue, which is a self-rated score question-

naire. This tool gathers both physical and mental scores. Nonetheless, it may give a general

overview rather than capturing the severity of fatigue in depth. Additionally, since CFS is a

self-assessment questionnaire, the final fatigue score may be biased for the subjective individ-

ual perception of fatigue. Still, CFS has been the chosen tool in this work as it has been widely

applied and validated in the current literature.

Whereas all patients were taking usual care (no interventions for fatigue), medication was

different between them. Nonetheless, none of the patients were taking antidepressants, which

are known to induce neurological changes. However, a slight variability might be included due

to different types of medication. Other limitation is that although patients were stratified

between improvers and non-improvers of fatigue, changes of fatigue were different between

subjects. Whereas those patients reporting better scores in the CFS during the second visit
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were classified as fatigue improvers, some patients reported slight changes compared to others

with greater changes. A regression strategy instead of a classification approach might provide

greater clinically relevant information about the progression of each patient.

Given the complexity of collecting and scanning patients, imaging datasets are generally

quite small. Several tens of scans cost thousands of pounds and require months to collect.

Additionally, given the multifactorial nature of fatigue it is challenging to recruit a homoge-

neous group, which is the reason of our rather ample inclusion criteria. Therefore, a bigger

sample with exclusion criteria considering further illnesses such as endocrine pathology, fibro-

myalgia or sleep apnea syndrome among others might lead to more robust results. Still, this is

the biggest neuroimaging database of RA patients to date.

In addition, we acknowledge that although our imaging methods are appropriate to search

for objective biomarkers of fatigue, diffusion tensor imaging is not a method used in daily

practice for diagnosis, being almost exclusively employed for research.

It would be essential to validate our model on an independent dataset. To do this, it is

important to bear in mind that all patients from our dataset were recruited locally from Scot-

land, UK. This means that these results might not be reproducible in other countries, given

environmental differences. Besides, multi-site datasets include other risk factors in the predic-

tion such as differences in the scanning parameters. Therefore, it is important to follow the

same approach as the one used in the current dataset when validating our predictive model.

Our model of fatigue would strongly benefit from replication prior to use in different

fatigue interventions. For example, it has been demonstrated that some patients experience a

substantial improvement of fatigue following anti-TNF treatment [6]. Other non-pharmaco-

logical fatigue interventions include Cognitive Behavioural Therapy (CBT) and physical exer-

cise [39]. This could be an approach to test our model or even to improve it.

During a fatigue intervention, greater changes of fatigue can be expected with the time, as

opposed to the modest spontaneously fatigue changes of the current database. Since the meth-

ods followed in this work can be extended to other dataset, the resulting model after a fatigue

intervention would be expected to be more robust and reliable.

Conclusion

We evidenced a superiority of brain metrics compared with clinical metrics in predicting

fatigue changes. Moreover, we demonstrated that a machine learning approach may enable

identification of fine-grained patterns of fatigue, key for single subject diagnosis, as opposed to

the most conventional group level comparison analysis. Further exploration of these tech-

niques may support future stratification of patients. This is the first classification study of dif-

ferent fatigue states in rheumatoid arthritis using neuroimaging. In addition, it is the largest

neuroimaging database in RA to date.
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