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Experimental and Numerical Investigations of
the Electro-Mechanical Response of Particle
Filled Elastomers - Part II: Continuum
Modeling Approach

Markus Mehnert, Jessica Faber, Mokarram Hossain, Shawn A. Chester and Paul
Steinmann

Abstract A comprehensive experimental study performed under a combination of
electro-mechanical loads on a particle-filled silicone as a representative of dielectric
elastomers is presented in the Part I of this work (Mehnert et al., submitted, 2021).
The constitutive modelling and numerical simulation of electro-active polymers are
essential fields of research in order to increase the acceptance of this group of soft
smart materials in real-life applications. However, only few contributions containing
constitutive modelling approaches are combined with experimental data obtained
from electro-mechanically coupled loading conditions due to the complexity of
corresponding experiments. In this contribution, we aim to develop an electro-
mechanically coupled model, which closely replicates the response of a silicone
polymer filled with a high dielectric permittivity filler of varying fractions that are
characterized under a combination of electric and mechanical loads. Once the model
is calibrated with the experimental data described in Part I of this contribution, it is
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used for a simple illustrative application example showcasing the capability of the
model and the influence of the different material characteristics.

1 Introduction

The term electro-active polymers (EAPs), defines a wide range of soft materials that
have the ability of undergoing large deformations under excitation by an electric
field [1]. This subclass of smart materials shows great potential as soft artificial
muscles [2] thanks to their inherent mechanical properties. Furthermore, in various
other potential applications such as stretchable sensors, flexible generators or flexible
optics [3, 4, 5, 6, 7, 8], the use of EAPs shows great promise. Prominent examples
of EAPs are the so-called dielectric elastomers (DEs) that are especially popular as
they are relatively easy to manufacture and simple to handle. These can be used for
the design of soft actuators by the addition of flexible electrodes on both sides of a
thin polymeric layer. Upon the application of an electric potential difference between
the electrodes, the sample contracts in the thickness direction while simultaneously
expanding in the lateral directions due to the attractive forces between the oppositely
charged electrodes. The extent to which an actuator will deform is determined by the
mechanical and dielectric properties of the underlying soft polymer. While classical
polymeric materials such as silicones or acrylates display necessary soft mechanical
properties, these materials usually do not inherit specifically high dielectric con-
stants and thus do not have favorable dielectric properties that are needed to induce
the required forces from an externally applied electric field. A well-known concept
for optimizing the dielectric properties is the addition of filler particles with high
dielectric constant, such as Barium-Titanate, Titanium Oxides, carbon nanotubes,
etc that enhance the overall electro-mechanical performances of the composites as
demonstrated in Part I of this publication series.

In order to widen the applications and acceptance of EAP-based compounds, compu-
tational modeling approaches become indispensable tools in predicting the material
response under a combined electro-mechanical loading. For predicting the purely
mechanical response of particle filled polymeric materials, mathematical models
used in computer-based simulations have been developed over the past years that
were initially restricted to small deformations [9] and later extended accounting for
large deformations based on finite strain theories, see [10]. Furthermore, in an ef-
fort to incorporate the rate-dependent behavior of particle filled polymers, various
phenomenological models were developed using the concept of so-called stress-like
internal variables for which suited evolution equations are required [11, 12, 13].
While these models considered the effective material as homogeneous, multiscale
models such as [14] approached the topic by also investigating the behavior on the
microscale, in which the particles and the polymeric base material can clearly be
distinguished.
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For developing mathematical models that can replicate electro-responsive mate-
rial behavior, electro-mechanically coupled constitutive approaches were developed
based on the interplay between a deforming body and an electric field, see the sem-
inal works, e.g., by Eringen [15] or Toupin [16]. These ground-laying works have
been expanded over the last decades especially sparked by the growing interests in
electro-active soft polymeric materials [17, 18, 19, 20]. These concepts were also ex-
tended to so-called multiscale homogenization approaches, e.g. in the works by Keip
et al. [21, 22] where two-scale homogenization methods are used for the solution of
the electro-mechanical problem. Similarly, in a series of papers Lopez-Pamies et al.
derived a homogenization method for dielectric composites capable of replicating
the purely mechanical response of filled polymers and their electro-mechanical be-
havior [23, 24, 25, 26, 27, 28] validated by experimental data presented in [29]. In
these works, special attention was put on the influence of particle interphases and
the role of space charges on the material response.

Within the scope of the current work, we combine these concepts for the simu-
lation of the electro-mechanical behavior of a particle filled silicone. To this end,
a number of experiments were performed under electro-mechanical loads in order
to characterize the material response of the silicone Elastosil P 7670TM filled with
Barium-Titanate particles, see Part I of this publication series. Based on the obtained
results, the material parameters of the presented model are identified resulting in a
comprehensive constitutive model of the composite material under combined me-
chanical and electric loading.

This contribution is structured as follows. In Section 2 the general modeling approach
is introduced. In the following Section, the experimental results and the modeling
approach are combined in order to identify the necessary mechanical and electro-
mechanical material parameters. In order to illustrate the material characteristics, a
simple numerical application example is presented in Section 4. Finally, Section 5
presents a brief summary of this contribution and an outlook.

2 Constitutive modeling

In this section, an electro-mechanical modeling approach is presented and specified
with suitable terms from the literature. The model is developed in such a way that
the material behavior of both unfilled and particle filled silicones can be replicated
as closely as possible with the experimental data produced in Part I of this contri-
bution. Our prime aim is to reduce the number of material parameters appearing
in the model to a minimum. However, the complexity of the observed responses
results in an extensive format of the final expressions. As typical for other poly-
mers, we assume that the underlying response of the unfilled silicone studied here
is viscoelastic. However, by comparing the data obtained from the multistep relax-
ation tests and the cyclic loading tests with a very slow stretch rate ( Ûλ = 0.01 s−1),
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we observe that there is a rate-independent difference between the loading and the
unloading curves. Furthermore, we can clearly identify a residual strain at the end
of the deformation cycle. As the material samples were preconditioned, we do not
consider this phenomenon as a consequence of the so-called Mullins effect, describ-
ing a unique and permanent softening of the material after the first deformation.
Instead, we conjecture that in order to describe the observed material response, the
classical elastic behavior has to be augmented to a pseudo-elastic material response
as introduced in [30] , which has been used for the modeling of residual strains in
different soft materials [31, 32]. Therefore, this formulation is subsequently extended
to viscoelasticity which captures the behavior of the base material. Such an approach
is similar to the combination of viscoelasticity and stress-softening as presented by
Wang and Chester [13]. The addition of filler particles alters both the elastic and
viscous behavior, thus both energy contributions will be modified accordingly. Fi-
nally, the energy function has to be extended by electro-mechanical coupling terms
that reflect the capability of the dielectric to deform under the application of an
electric field. This combination of different material characteristics is summarized
in Figure 1, showcasing the corresponding curves from the conducted experiments
that characterize the specific material behavior.
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Fig. 1 A summary of the key structure of the different material characteristics under consideration.
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Generally, we distinguish in our modeling approach between the response of the
unfilled silicone (upper plots of Figure 1) and the particle filled compound (lower
plots of Figure 1) where we assume that the unfilled material is the foundation
that is subsequently extended. The underlying elastic material response of a pure
silicone is modified to pseudo-elasticity in order to replicate the rate-independent
hysteresis, visible in the upper central plot in Figure 1. Additionally, a rate-dependent
response of the material is visible at increased strain rates as shown in the upper
right plot. Consequently, the model is further extended to pseudo-viscoelasticity.
Upon the addition of the stiffer particles, the material behavior noticeably changes.
As shown in the plot on the lower left side, the underlying elasticity stiffens with
the increasing particle concentration. This is accounted for by the modification of
the elastic material model. Furthermore, the filler particles lead to an increase in the
dissipated energy.Thus, the viscoelastic description of the material is modified. At
this point, themechanical response of thematerial is completed and this filler-content
dependent pseudo-viscoelasticmaterialmodel is extended to an electro-mechanically
coupled form.
We assume the existence of an energy function W that can be used to derive the
mechanical and electric quantities describing the material behavior. This energy
function can be decomposed into a volumetric contribution Wvol and an isochoric
contribution Wiso. The former describes the volume changing deformation whereas
the latter describes the volume preserving part of the deformation. As we assume
that the material under consideration shows incompressible response, the volumetric
energy contribution vanishes and will not be addressed further in the following.
Therefore, we can state that W = Wiso. Following the structure of the conducted
experiments, we will extend and modify the expression stepwise to describe the
material characteristics.

2.1 Constitutive modeling of the mechanical response of unfilled
silicone

Initially, it is assumed that the energy function W consists of an elastic contribution
Wel and a viscous contribution Wv . For modelling purely elastic response of a
polymeric material, a wide range of well established energy functions can be found
in the literature [33]. However, in the current case, a rate-independent hysteresis can
be observed that would not be replicated by a strictly elastic approach. Consequently,
a pseudo-elastic description is adopted from [30] resulting in an elastic energy
contribution that reads as

Wel(C) = η1Wel
0 (C) + [1 − η2]N(C). (1)

Here we introduce an elastic base function Wel
0 (C) that is formulated in terms of the

isochoric part of the right Cauchy-Green tensor defined as C = J−2/3FT ·F with the
deformation gradient F and its Jacobian J = detF. In the current study, a Yeoh-type
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energy formulation is selected that reads

Wel
0 (C) = cel1

[
I1 − dim

]
+ cel2

[
I1 − dim

]2
+ cel3

[
I1 − dim

]3 (2)

For identifying the elastic material parameters celi (i = 1, 2, 3) , experimental data
obtained from the multistep relaxation tests of pure Elastosil will be used. Note that
the first invariant of the right Cauchy-Green tensor is defined as I1 = C : I , where
I is the identity tensor. This base function is extended by the two parameters η1 and
η2 as well as the function N(C) that captures the rate-independent hysteresis and the
residual strain. These parameters will be either active or inactive depending on the
course of the deformations. While a sample material is loaded, it is assumed that
η1 = 1 and η2 = 1, whereas they can take different values during unloading. We
follow the notion given in [34] and define N(C) as

N(C) =
1
2

[
v1

[
λ

2
1 − 1

]
+ v2

[
λ

2
2 − 1

]
+ v3

[
λ

2
3 − 1

] ]
(3)

which corresponds to a modified Neo-Hookean formulation with the material pa-
rameters νi (i = 1, 2, 3) and the principal isochoric stretches λi . By the definition of
the material parameters as

v1 = µ

[
1 −

1
3.5

tanh(10[λm − 1])
]
,

v2 = v3 = µ

(4)

the effect of a residual strain is introduced. The formulations contain a material
parameter µ with a further dependency on the maximum strain λm in the loading
direction. The parameters η1 and η2 from Equation (1) are defined as

η1 = 1 −
1
r

tanh

(
Wel

m (Cm) −Wel
0 (C)

µm

)
,

η2 = tanh

( [
Wel

0 (C)/W
el
m (Cm)

]α (W el
m (Cm)

) )
/tanh(1),

α = a + bWel
m (Cm)/µ,

(5)

where Wel
m (Cm) is the elastic energy at the maximum applied deformation Cm and

the parameters r , m, a and b have to be identified using the results of the cyclic
loading experiments performed at the slowest stretch rate.

On the top of this, apparent changes in the stress-strain curve in response to a change
in the deformation rate are attributed to a viscous contribution to the response of the
unfilled material. Thus, the viscous contribution Wv is added to the energy function
initially depending on the deformation described by the right Cauchy-Green tensor
and a set of internal variables Ai , i.e.,
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Wv(C, Ai) =
∑
i

Wv
i (C, Ai). (6)

In order to describe the complex time-dependent behavior of thematerial, the viscous
energy consists of a number of functions Wv

i (C, Ai) (i = 1, 2, 3...), each of which
represents a viscous Maxwell element. For the description of the response of pure
Elastosil, we assume three viscous functions, the first two of which are defined as a
Neo-Hookean type. In combination with the evolution equations that determine the
internal variables, these read

Wv
i

(
C, Ai

)
=

1
2

∑
i

µvi
[
I
v

1,i − dim
]
,

ÛAi =
1
τi

[
C −

1
dim

I
v

1,iAi

]
,

(7)

with i = 1, 2. Here, the viscous shear moduli µvi are introduced while the viscous
invariants are defined as I

v

1,i = A−1
i : C. The final contribution and its corresponding

evolution law are formulated as a Yeoh-type function that reads

Wv
3
(
C, A3

)
= cv1

[
I
v

1,3 − dim
]
+ cv2

[
I
v

1,3 − dim
]2
+ cv3

[
I
v

1,3 − dim
]3
,

ÛA3 =

[
1
τ3,1
+

2
[
I
v

1,3 − dim
]

τ3,2
+

3
[
I
v

1,3 − dim
]2

τ3,3

] [
C −

1
3

I
v

1,3A3

]
.

(8)

It should be noted that the relaxation times τ3,i (i = 1, 2, 3) are defined as τ3,i = τ3/cvi .
These expressions are derived in a thermodynamically consistent way following the
approach outlined in [35]. The viscous material parameters µi , cvi and τi (i = 1, 2, 3)
have to be identified using the cyclic loading data obtained from tests performed at
higher deformation rates.

2.2 Constitutive modeling of the mechanical response of particle
filled silicone

As observed in the experimental data, the addition of filler particles leads to mod-
ifications of both the elastic and the viscous responses of the dielectric elastomers.
In the case of the elastic energy contribution Wel(C), these changes can be incor-
porated by introducing a modified invariant Ĩe1 following the approach presented in
[10], which reads

Ĩe1 =
[
1 + gel1 v f +

[
gel2 v f

]2] [I1 − dim
]
+ dim = Xel

[
I1 − dim

]
+ dim, (9)
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where v f describes the filler content of the material and ge1 and ge2 are material
parameters. The modified form of the elastic base energy from Equation (2) is
labelled as W̃el

0 (C) and reads

W̃el
0 (C) = cel1

[
Ĩ1 − dim

]
+ cel2

[
Ĩ1 − dim

]2
+ cel3

[
Ĩ1 − dim

]3
. (10)

Similar to the elastic part of the energy, the viscous contributions need modifications
in order to capture the influence of the filler particles. The results of the cyclic loading
tests show an increase in the stiffness of the material and a change in the form of
the hysteresis curves originating from the addition of the fillers. Consequently, in
addition to the introduction of a modified first invariant Ĩv1,i (i = 1, 2, 3) and material
parameters gv1 and gv2 , a modification for each of the relaxation times τi (i = 1, 2, 3)
with a quadratic scaling function is introduced, i.e.,

Ĩv1,i =
[
1 + gv1 v f +

[
gv2 v f

]2] [Iv1,i − dim]
+ dim = Xv

[
I
v

1,i − dim
]
+ dim,

τ̃i =
[
1 + gτ1,iv f +

[
gτ2,iv f

]2]
τi = Xτ,iτi .

(11)

It should be noted that the model parameters introduced here are responsible for
the increase in the magnitude of the combined viscoelastic stress response and the
amount of the energy dissipation. However, due to the complex interplay of the
different Maxwell elements, a direct relation of each parameter to the form of the
hysteresis is not possible. When these modifications are implemented into Equations
(7) and (8), the first two member functions take the form

W̃v
i

(
C, Ai

)
= 0.5

∑
i

µvi
[
Ĩv1,i − dim

]
,

ÛAi =
1
τ̃i

[
C −

1
dim

Ĩv1,iAi

]
,

(12)

whereas the final contribution reads

W̃v
3
(
C, A3

)
= cv1

[
Ĩv1,3 − dim

]
+ cv2

[
Ĩv1,3 − dim

]2
+ cv3

[
Ĩv1,3 − dim

]3
,

ÛA3 =


1
τ̃3,1
+

2
[
Ĩv1,3 − dim

]
τ̃3,2

+
3
[
Ĩv1,3 − dim

]2

τ̃3,3


[
C −

1
3

Ĩv1,3A3

]
.

(13)

In summary, the effect of the addition of filler particles on the mechanical response
is modelled by eight modified parameters that have to be identified using the exper-
imental results.
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2.3 Constitutive modeling of the electro-mechanical response of
particle filled silicone

Finally, coupling of the electric field with the mechanical response needs to be
established. Within the data available in the current study, it is difficult to distinguish
between the effects of the electric field on the elastic and the viscous parts of the
material response. Hence, it is assumed that only the elastic energy contribution
is dependent on the electric field. Such a simplification brings extra advantage as
every additional electro-mechanical coupling parameter introduced here results in a
considerable increase in the runtime of the optimization routine later on. Therefore,
in order to keep the material parameters at a minimum, the electric coupling in the
elastic energy contribution is introduced by modifications of the coupling invariant
I5 and the dominating first material parameter ce1 . Note that the viscous energy
contributions are kept unchanged which renders the respective energy functions into
the format

W̃el
0

(
CEM,E

)
= cel1 (I4)

[
Ĩ1 − dim

]
+ cel2

[
Ĩ1 − dim

]2
+ cel3

[
Ĩ1 − dim

]3
+ γ2 Ĩ5. (14)

Here we have introduced the fifth invariant I5 = [E ⊗ E] : C that depends on the
electric field that is defined as the material gradient of an electric potential ϕ as
E = −Gradϕ. For a more detailed introduction of the electro-mechanical basics,
reader is referred to [36, 37, 36, 38]. As is observed from the experimental data,
the inclusion of filler particles increases the electro-mechanical coupling, hence, the
field sensitive coupling parameters are modified via the particle concentration v f in
the form

cel1 (I4) = ĉel1 − [1 + kv f ]βe I4, γ = [1 + kv f ]γ̂, (15)

where a fourth invariant I4 = [E⊗E] : I is introduced. The above equations convey
the notion that the material has a zero field ground state captured by the parameter ĉ1.
This parameter is further influenced by the application of an electric field that can be
scaled by the coupling parameters βe and a factor k incorporating the concentration
of the filler particles. Similarly, the coupling parameter γ2 is also scaled by v f in
order to take into account the influence of increasing filler concentrations. Finally,
in order to incorporate a field sensitivity of the elastic contribution, the pseudo-
elasticity function N(C) is also modified into a field sensitive form. This is achieved
by changing the material parameter µ introduced in Equation (4) into an expression
µ̃(I4) that reads

µ̃(I4) = µ̂ − [1 + 5kv f ]βe I4. (16)

Thus, three additional material parameters have to be identified using the results of
the electro-mechanically coupled experiments in order to characterize the coupling
behavior of the particle-filled silicone. Table 1 presents a summary of all 29 necessary
material parameters appearing in the electro-mechanical modeling framework.
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Elastosil P 7670TM filled with BaTiO3 particles
Mechanical Base Parameters

Elastic Parameters
ĉel1 cel2 cel3

Pseudo-Elastic Parameters
µ̂ r m a b

Viscous Parameters
µv

1 µv
2 cv1 cv2 cv3

τ1 τ2 τ3
Particle Scaling Parameters
Elastic Scaling Parameters

ge
1 ge

2
Viscous Scaling Parameters

gv
1 gv

2 gτ1,1 gτ2,1 gτ1,2 gτ2,2 gτ1,3 gτ2,3
Electro-Mechanical Coupling Parameters

βe γ̂2 k

Table 1 A summary of the 29material parameters of the modeling approach for Elastosil P 7670TM
filled with BaTiO3 particles. Parameters ci , µv

i in N/mm2, τi in s, βe in N/(Vmm)2, γ̂2 in N/V2.

3 Parameter identification

In the following section, a material parameter identification process using the data
obtained from the electro-mechanical experiments is described. This is done by cal-
culating the resulting force over the course of a specific experiment and fitting this
solution to the experimental results. We follow the same logic as in the previous
chapter that proposes a modular structure of the constitutive framework. Conse-
quently, the identification process starts by first finding the elastic, pseudo-elastic,
and viscous material parameters of unfilled silicone, followed by the identification of
the parameters describing the influence of the filler particles on the elastic and vis-
cous material responses. In these cases, an analytical solution to the experiments can
be calculated due to the selected sample geometry. Finally, the electro-mechanical
coupling parameters are identified. However, due to the non-homogeneous sample
deformation in these coupled experiments, the tests can not be assumed to be uniaxial
and therefore, no analytical solution can be calculated. Thus, a numerical solution
is obtained using a finite element implementation of the derived modeling approach
which is fitted to the experimental data.

For the identification of the mechanical parameters, the stress state during the con-
ducted experiments can be calculated analytically. For this, we introduce the Piola-
Kirchhoff stress tensor S as the derivative of the energy function with respect to the
right Cauchy-Green tensor, i.e.,

S = 2
∂W(C, Ai,E)

∂C
. (17)
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Here, the most general case is assumed considering that a particle filled silicone
may be put under both mechanical and electric loads. In this context, it is usually
convenient to introduce the isochoric version of the Piola-Kirchhoff tensor as S =
2∂W(C, Ai,E)/∂C that we can transform into the conventional Piola-Kirchhoff
stress S with the help of P = ∂C/∂C, the fourth-order projection tensor. We can
decompose this stress tensor further into an elastic part S

el
and a viscous part S

v
. In

order to compare these stresses to the obtained data curves, we introduce the Piola
stress tensor P which is linked to S via

P = F · [S
el
+ S

v
] : P = F · [Sel + Sv]. (18)

Following the classical assumption, the polymer studied here is considered as an in-
compressible material. Furthermore, for the case of purely mechanical experiments,
the stress state inside a sample is homogeneous due to the selected sample geometry.
Thus, the deformation gradient F and the corresponding right Cauchy-Green tensor
C for the case of uniaxial stretching read

F =


λ 0 0
0 λ−1/2 0
0 0 λ−1/2

 , C =


λ2 0 0
0 λ−1 0
0 0 λ−1

 . (19)

Here, we define λ as λ = [L0 + ∆L]/L0, the ratio between the extended length
L0 + ∆L and the initial length of the sample L0. Consequently, the stretch rate is
defined as Ûλ = Û∆L/L0. The stretch-like internal variables Ai take a form resembling
C, i.e.,

Ai =


A2
i 0 0

0 A−1
i 0

0 0 A−1
i

 . (20)

In the following sections, this form of the deformation gradient is inserted into
the definition of the stress in order to compare the experiments with the analytical
solution.

3.1 Identification of the mechanical parameters of unfilled silicone

At first, the elastic base parameters celi from Equation (2) are identified by fitting the
analytical solution of the equilibrium curve to the corresponding experimental data.
In this case, we assume that the recorded data can be attributed to the purely elastic
material response. Thus, the analytical solution that is fitted to the experimental
results reads

Pel =
4
3
[
cel1 + 2cel2 [λ

2 + 2λ−1 − 3
]
+ 3cel3

[
λ2 + 2λ−1 − 3]2

] [
λ − λ−2] . (21)
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Note that in the aforementioned equation, the first elastic parameter is labelled as
cel1 . In the electro-mechanical case, where this term is scaled with the electric field,
parameter cel1 corresponds to the base parameter ĉel1 . For the purely mechanical
case at present, however, the additional circumflex accent is omitted for the sake
of readability. The fit of the analytical solution to the equilibrium curve is shown
in Figure 2, with the identified material parameters cel1 = 0.0458 N/mm2, cel2 =

−0.0012 N/mm2 and cel3 = 9.9 · 10−5 N/mm2.
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Fig. 2 Calibration of the analytical solution (dashed line) to the experimental results (solid line) of
the resulting equilibrium force values obtained from a multi-step relaxation test of unfilled Elastosil
P 7670TM.

As was pointed out previously, the equilibrium curve corresponds to the loading
path of the cyclic loading test with the slowest stretch rate ( Ûλ = 0.01 s−1). Thus, the
unloading curve at this stretch rate is described by the additional terms in Equation
(1), i.e., the parameters µ, r and m from Equation (4) and (5). Consequently, the
analytical solution that is fitted to the experimental results is modified to

Pel =
4
3
η1

[
cel1 + 2cel2 [λ

2 + 2λ−1 − dim
]
+ 3cel3

[
λ2 + 2λ−1 − dim]2

] [
λ − λ−2]

+ [1 − η2][v1λ − 0.5[v2 + v3]λ
−2]].

(22)
The optimization of this solution to the respective cyclic loading data leads to the fit
as presented in Figure 3with the identified values µ = 1.5, r = 1.14, andm = 0.3427.
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Fig. 3 Comparison between the experimental results (solid line) and the analytical solution (dashed)
of cyclic loading-unloading tests performed with unfilled Elastosil P 7670TM with Ûλ = 0.01 s−1.
(Pseudo-elastic material behavior)

We can now use the already identified pseudo-elastic parameters as a basis for the
identification of the viscous parameters. Thus, the viscous stress Pv originating from
a Neo-Hookean type model in the stretch direction can be calculated as

Pv
i =

4
3
µvi

[
λA2

i − λ
−2 A−1

i

]
,

ÛAi =
1

3τi
[
λ2 A−1

i − A2
i λ
−1] with i = 1, 2.

(23)

However, Yeoh-type contribution takes the form

Pv
3 =

4
3

[
cv1 + 2cv2

[
I
v

1,3 − 3
]
+ 3cv3

[
I
v

1,3 − 3
]2

] [
λA−2

3 − λ
−2 A3

]
,

ÛA3 =
[ 1
3τ3,1

+
2

3τ3,2
[I

v

1,3 − dim] +
1
τ3,3
[I

v

1,3 − dim]2
] [
λ2 A−1

3 − A2
3λ
−1],

with I
v

1,3 = λ
2 A−2

3 + 2λ−1 A3,

(24)

The combination of the elastic and the viscous stresses can be fitted to multiple
experimental data sets at the same time using a simultaneous minimization technique
[39, 40, 41] in order to identify the viscous material parameters of the unfilled
silicone. For this, the results of the experiments conducted with Ûλ = 0.4 s−1 and
Ûλ = 0.6 s−1 are used as inputs for the optimization process, while the experimental
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data with the remaining stretch rates are used for the validation of the calibrated
material parameters. Figure 4 shows the comparison between the experimental results
and the model predictions with the identified material parameters summarized in
Table 2.

µv
1 µv

2 cv1 cv2 cv3
4.14 · 10−3 2.57 · 10−3 6.51 · 10−3 2.22 · 10−14 4.04 · 10−6

τ1 τ2 τ3
4.39 · 10−3 0.685 0.266

Table 2 Identified viscous material parameter sets for pure Elastosil P 7670TM. µv
i , c

v
j in N/mm2

and τi in s. Relaxation times τ1 and τ2 correspond to the Maxwell element modelled with a Neo-
Hookean type formulation and the parameters µv

1 and µv
2 . Relaxation time τ3 corresponds to the

Maxwell element modelled with a Yeoh-type formulation and the parameters cvi .

The combination of viscous and pseudo-elastic material behavior captures the ma-
terial response of the unfilled Elastosil silicone satisfyingly well.

3.2 Identification of the mechanical parameters of particle filled
silicone

So far the material parameters for the unfilled silicone are identified as described
step by step in the previous sections. Now, the parameters taking into account for the
influences of the filler particles will be identified. For this, we derive the Piola stress
in the stretching direction from Equation (10), which reads

Pel =
4
3
[
Xelcel1 + 2X2

elc
el
2 [λ

2 + 2λ−1 − dim
]
+ 3X3

elc
el
3

[
λ2 + 2λ−1 − dim]2

] [
λ − λ−2] .

with Xel = 1 + gel1 v f +
[
gel1 v f

]2

(25)
With this, the material parameters gel1 and gel2 are next identified by fitting the ana-
lytical solution to the equilibrium curves obtained from the multistep relaxation tests
with different filler concentrations. The comparisons between the model predictions
and the experimental data are depicted in Figure 5 for values gel1 = 2.81 · 10−2 and
gel2 = −1.323.

In order to fully characterize the mechanical response of the filled silicone, we
will now identify the remaining parameters that were introduced in Equation (11).
To this end, the Neo-Hookean type viscous contributions of the Piola stress in the
deformation direction are calculated as
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(a) Loading-unloading test with Ûλ = 0.1 s−1 and Ûλ = 0.2 s−1 used for the calibration of the model
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(b) Loading-unloading test with Ûλ = 0.4 s−1 and Ûλ = 0.6 s−1 used for the calibration of the model

Fig. 4 Comparison between the experimental results (solid lines) and the analytical solution (dashed
lines) of cyclic loading-unloading tests performed with unfilled Elastosil P 7670TM.

Pv
i =

4
3

Xvµ
v
i

[
λA2

i − λ
−2 A−1

i

]
,

ÛAi =
1

3Xτ,iτi

[
λ2 A−1

i − A2
i λ
−1] with i = 1, 2,

Xv = 1 + gv1 v f +
[
gv2 v f

]2
,

Xτ,i = 1 + gτi,1v f +
[
gτi,2v f

]2

(26)

while the Yeoh-type contributions take the form
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Fig. 5 Analytical solutions compared to experiments for the equilibriumvalues of the resulting force
of multi-step relaxation tests for various filler concentrations. (Left) Analytical solution (dashed
lines) and experimental values (solid lines) over the applied stretch, (right) simulation (o-marks
and dashed trend line) and experimental values (x marks and solid line) of the resulting force for
the maximum applied stretch over the range of tested filler concentrations.

Pv
3 =

4
3

[
Xvcv1 + 2X2

v cv2
[
I
v

1,3 − 3
]
+ 3X3

v cv3
[
I
v

1,3 − 3
]2

] [
λA−2

3 − λ
−2 A3

]
,

ÛA3 =
[ 1
3Xτ,3τ3,1

+
2

3Xτ,3τ3,2
[I

v

1,3 − dim] +
1

Xτ,3τ3,3
[I

v

1,3 − dim]2
] [
λ2 A−1

3 − A2
3λ
−1],

with I
v

1,3 = λ
2 A−2

3 + 2λ−1 A3,
(27)

In combination with the previously derived stress contributions and the identified
material parameters, this expression can be fit to multiple data sets of the cyclic
loading experiments performed with various filler concentrations. Once again, a
simultaneous minimization technique is used and the results of the experiments with
8.3 vol.% and 5.5 vol.% fillers at a stretch rate of 0.2 s−1 and 0.6 s−1 are used
as input data for the optimization. This leads to a fit of the analytical solution to
the experiments as presented in the Figures 6 to 9 while the identified material
parameters as given in Table 3

gv
1 gv

2 gτ1,1 gτ2,1 gτ1,2 gτ2,2 gτ1,3 gτ2,3
4.267 0.405 −4.105 6.804 −4.105 6.804 6.794 1.081

Table 3 Identified viscous material parameters for filled Elastosil P 7670TM.
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(a) Loading-unloading tests with filler contents of 1.6 vol.% and 3.3 vol.%
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(b) Loading-unloading tests with filler contents of 5.5 vol.% and 8.3 vol.%

Fig. 6 Comparison between the experimental results (x-marks) and the simulation (dashed lines)
of cyclic loading-unloading experiments for Elastosil P 7670TM with various filler contents at a
stretch rate of 0.1 s−1.

3.3 Identification of the electro-mechanical coupling parameters of
particle filled silicone

The identified mechanical parameters are now used as the basis for the characteri-
zation of the electro-mechanical coupling parameters. For electro-mechanical tests,
the dimensions of the material samples have to be increased for the application of
sufficient amount of electric field. Hence, it is not possible to find an analytical solu-
tion to the cyclic tests under an electro-mechanical load. Thus, the derived material
model is implemented into a finite element code [42, 43, 44]. This numerical solution
is then fitted to the experimental results in order to obtain the electro-mechanical
coupling parameters γ, βe and k. The resulting fit is shown in Figure 10 for the
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(a) Loading-unloading tests with filler contents of 1.6 vol.% and 3.3 vol.%
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(b) Loading-unloading tests with filler contents of 5.5 vol.% and 8.3 vol.%

Fig. 7 Comparison between the experimental results (x-marks) and the simulation (dashed lines)
of cyclic loading-unloading experiments for Elastosil P 7670TM with various filler content at a
stretch rate of 0.2 s−1.

unfilled silicone and Figure 11 for the particle filled material. The identified param-
eters are γ = 4.41 · 10−14, βe = 4.375 · 10−13 and k = 200. The Figures show
that the material model is capable of simulating the general material response of
both pure silicone and the particle filled polymers. It should be emphasized that the
response of this non-homogeneous experiment in the case that no electric poten-
tial difference is applied, relies solely on the material parameters identified earlier.
Due to the increased complexity during the fabrication and the conduction of the
experiments the simulation does not fit the experimental results as closely as in the
uniaxial case presented in the previous sections. However, the quality of the fit is still
satisfying and can therefore be considered as a validation of the purely mechanical
material response. Considering the case that an electric field is applied during the
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(a) Loading-unloading tests with filler fractions of 1.6 vol.% and 3.3 vol.%
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(b) Loading-unloading tests with filler fractions of 5.5 vol.% and 8.3 vol.%

Fig. 8 Comparisons between the experimental results (x-marks) and the simulation (dashed lines)
of cyclic loading-unloading experiments for Elastosil P 7670TM with various filler contents at a
stretch rate of 0.4 s−1.

experiments, it can be seen that the simulation still replicates the response of the
material well. The identified values of the material parameters are summarized in
Table 4.

4 Deformation of a Cylinder under Thermo-Electric Loading

As a simple yet illustrative numerical example, we present the deformation of a
cylinder that is fixed in normal direction on one of its plane faces and loaded by an
electric potential difference between the fixed and the opposing face, which results
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(a) Loading-unloading tests with filler contents of 1.6 vol.% and 3.3 vol.%
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(b) Loading-unloading tests with filler contents of 5.5 vol.% and 8.3 vol.%

Fig. 9 Comparisons between the experimental results (x-marks) and the simulation (dashed lines)
of cyclic loading-unloading experiments for Elastosil P 7670TM with various filler contents at a
stretch rate of 0.6 s−1.

in a homogeneous deformation of the geometry. The purpose of this numerical in-
vestigation is to present the effects of the electric field on the mechanical response
of the viscous material. In contrast to the experiments presented in the preceding
sections where the material response was dominated by the imposed mechanical
deformation, the deformation of the cylinder is directly induced by the application
of an electric field. These calculations are performed using the presented material
model and the material parameters identified in the previous sections. In order to link
this example to the experiments, the height of the investigated cylinder is 0.3 mm, as
an approximation of the thickness of a material sample of Elastosil at the maximum
deformation of 200 %. Furthermore, the potential difference applied between the
plane faces of the cylinder is prescribed as 6 kV, which is the maximum potential
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Fig. 10 Comparison between the experimental results (solid lines) and the simulation (dashed
lines) of cyclic loading-unloading experiments with unfilled Elastosil and a stretch rate of 0.1s−1

with an applied electric voltage differences of 0 kV and 6 kV.
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Fig. 11 Comparisons between the experimental results (solid lines) and the simulation (dashed
lines) with Elastosil filled with (left) 5.5 vol.% BaTiO3 and (right) 8.3 vol.% BaTiO3 at a stretch
rate of 0.1 s−1 for electric voltage differences of 0 kV and 6 kV.

difference applied in the experimental investigations. The potential difference is lin-
early increased over a specific ramp-up time tramp and is reduced back to zero over the
same time to illustrate the viscous response of the material. The results are computed
using the finite element implementation of the presented modeling approach.We as-
sume that the geometry and the boundary conditions of the example are symmetric
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Elastosil P 7670TM filled with BaTiO3 particles
Mechanical Base Parameters

Elastic Parameters
ĉel1 cel2 cel3

0.0458 −0.0012 9.9 · 10−5

Pseudo-Elastic Parameters
µ̂ r m a b

0.45 1.14 0.3427 0.42 4.564
Viscous Parameters

µv
1 µv

2 cv1 cv2 cv3
4.14 · 10−3 2.57 · 10−3 6.51 · 10−3 2.22 · 10−14 4.04 · 10−6

τ1 τ2 τ3
4.39 · 10−3 0.685 0.266

Particle Scaling Parameters
Elastic Scaling Parameters

gel
1 gel

2
2.81 · 10−2 −1.323

Viscous Scaling Parameters
gv

1 gv
2 gτ1,1 gτ2,1 gτ1,2 gτ2,2 gτ1,3 gτ2,3

4.267 0.405 −4.105 6.804 −4.105 6.804 6.794 1.081
Electro-Mechanical Coupling Parameters

βe γ k

4.375 · 10−13 4.41 · 10−14 200

Table 4 Summary of the identified material parameters of the modeling approach for Elastosil P
7670TM filled with BaTiO3 particles. Parameters ci , µv

i in N/mm2, τi in s, βe in N/(Vmm)2, γ in
N/V2.

in relation to the center axis of the cylinder and the resulting deformation does not
lead to a displacement of the material perpendicular to the cross section. Thus, the
finite element model can be reduced to a quarter of the cross section of the cylinder
in form of a two-dimensional mesh. This cross-section is a square with a side length
of 0.15 mm and is discretized with 64 four-node elements. A sketch of the geometry
with the prescribed boundary conditions and a plot of the simulated cross section of
the cylinder in the deformed state is presented in Figure 12. It should be noted that
as the resulting deformation is comparatively small, the result presented in the right
plot is scaled by a factor of 2 and the initial geometry of the cylinder is depicted with
reduced opacity for the sake of visibility.

Now, a periodic loading of the cylinder is assumed such that in each cycle the
magnitude of the electric potential difference is increased to the maximum value and
then decreased to zero. The resulting normal displacement of the center of the top
surface of the cylinder is depicted in Figure 13 for five cycles and various loading
conditions.
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Fig. 12 (left) A sketch of the model geometry with prescribed boundary conditions. (right) Result-
ing deformation of the cross section under thermo-electric loading for a ramp-up time of 103 s at
reference temperature, deformation scaled by a factor of 2.
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Fig. 13 Displacement of the center of the top surface of a cylinder of (left) pure Elastosil and
(right) Elastosil filled with 8.3 vol.% BaTiO3 particles for different ramp-up times of the electric
field.

The response of the cylinder illustrates both the effects of the addition of particles
and the characteristics of the selected material model. Initially we will focus on the
response of the unfilled silicone presented in the left plot of Figure 13. It can be
seen that the cylinder does not return to its initial configuration after the first cycle
due to the viscous stress contributions. However, in the following cycles the cylinder
returns almost exactly to the state at the beginning of the respective cycle, showing
that the viscous characteristics of the unfilled material influence the overall response
only slightly. This is emphasized even further by the fact that the ramp-up time has
only a meager effect on the maximum displacement of the cylinder. When compared
to the displacement of the filled material as shown in the right plot of Figure 13, it is
clearly visible that the addition of particles with a high dielectric constant leads to
a distinctly more pronounced displacement. As before, the cylinder does not return
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to its initial configuration after the end of the first cycle due to the viscous stress.
However, now it can be seen that the viscous characteristics of the compound have
a very distinct influence on the material response. First, the response is much more
pronounced when the electric field is increased over a longer period of time as
the elastic contributions are dominating the response. When the ramp-up time is
reduced on the other hand, the displacement is reduced significantly as the viscous
contributions start to dominate the material response. Second, a close analysis of the
displacement of the cylinder at the end of each cycle shows that this deformation
increases with each cycle adding a viscous contribution to the deformation.
Taken together, for the application of this type of silicone, it is crucial to consider the
desired rate of deformation. Even though the addition of BaTiO3 particles leads to an
increase of the effect of the electric field on the material, the resulting deformation is
markedly dominated by the deformation rate and can drastically impact the realized
deformation.

5 Conclusion and outlook

In this contribution, a numerical modeling approach for the simulation of particle
filled dielectric elastomers under combined electro-mechanical loading was pre-
sented. The proposed model was specified for the viscoelastic silicone Elastosil P
7670TM filled with Barium-Titanate particles. In combination with the experimental
results presented in Part I of this sequel, all relevant material parameters appearing
in the constitutive model were identified here. For the replication of the mechanical
experiments, analytical solutions were derived whereas in the case of an electro-
mechanical load, the solution was calculated using an electro-mechanically coupled
finite-element implementation.In our future work, we plan to combine the approach
proposed herein with homogenization techniques in order to reduce the number of
fitting parameters and analyze the interactions between the silicone and the filler
particles in more detail similar to the recent studies shown in [45].
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