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Summary

Clustering to find subgroups with common features is often a necessary first step in
the statistical modelling and analysis of large and complex datasets. Although follow-up
analyses often make use of complex statistical models that are appropriate for the spe-
cific application, most popular clustering approaches are either nonparametric, or based
on Gaussian mixture models and their variants, often for reasons of computational ef-
ficiency. Certain characteristics in the data, such as the presence of outliers, or non-
ellipsoidal cluster shapes, that are common in modern scientific datasets, often lead these
methods to fail to detect the cluster components accurately. In this article, we present
two efficient and robust Bayesian clustering approaches that seek to overcome these
limitations—a model-based ‘tight’ clustering approach to cluster points in the presence
of outliers, and a hierarchical Laplace mixture-based approach to cluster heavy-tailed
and otherwise non-normal cluster components—and illustrate their power and accuracy in
detecting meaningful clusters in datasets from genomics, imaging and the environmental
sciences.

Key words: data augmentation; Gibbs sampling; latent variable models; Markov Chain Monte
Carlo; non-Gaussian clusters; SNP genotyping.

1. Introduction

A primary goal of cluster analysis is to find homogeneous groups within a dataset such
that observations in the same cluster are similar to each other while objects in distinct groups
tend to be different (Everitt 1974). With the advent of large and complex datasets in modern
scientific research, cluster analysis has become a necessary statistical tool for exploratory
data analysis before further formal investigation. Mixture models are a commonly used
parametric framework for model-based clustering, and a vast literature on these and their
applications are available (e.g. see McLachlan & Basford 1988). A common assumption is
that each cluster comes from the same type of distribution but with different parameters, and
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the overall population probability density is a weighted sum of the individual component
densities. Gaussian mixture models (GMMs) are a practical and attractive choice due to
their relative tractability, in both a classical and Bayesian framework (Diebolt & Robert
1994; McLachlan & Peel 2000). However, with the advent of more computing power,
distributions beyond GMMs have been increasingly applied due to their ability to model
asymmetric distributions as well as those with heavy tails, as well as a variety of non-regular
features (Lee & McLachlan 2013a,b; Forbes et al. 2019).

The formulation of a multivariate t distribution as a multivariate Gaussian scale-mixture
model was utilised in extending a Normal mixture to a t-mixture that can allow for heavier-
tailed distributions in clustering (Peel & McLachlan 2000; Lin, Lee & Ni 2004; Andrews
& McNicholas 2012; Lee & McLachlan 2019). Choy & Chan (2008) explored a wide class
of distributions, the generalised t family of distributions, which includes the normal, t,
and exponential power distributions, and illustrated a unified scale-mixture representation
for this class that allowed Bayesian computational methods to be implemented easily for
statistical inference. A normal scale-mixture representation can encompass a wide variety
of distributional features and provide possible candidates for mixture modelling of compo-
nents with lighter or heavier tails than the normal, as well as varying degrees of skewness
(Johnson, Kotz & Balakrishnan 1994; Eltoft, Kim & Lee 2006a,b). For instance, the density
functions of Pearson Type VII distributions (of which the t- and Cauchy distributions are
special cases) can be represented as normal scale mixtures with the mixing density being
a gamma (Johnson, Kotz & Balakrishnan 1994); the class of variance gamma distributions
(Madan & Seneta 1990)—of which the Laplace distribution is a special case—can be rep-
resented as a Normal scale mixture with an inverse-gamma mixing density (Choy & Chan
2008); and generalised hyperbolic distributions may be represented using a generalised
inverse Gaussian mixing distribution (Browne & McNicholas 2015). Skewed extensions
to the elliptical distributions, such as the multivariate skewed Normal (MSN) and skew-t
(MST) distributions, have also been proposed (Azzalini 2005; Lee & McLachlan 2016);
and used successfully for model-based clustering in a classical (Lee & McLachlan 2013a,b)
as well as Bayesian (Fruhwirth-Schnatter & Pyne 2010) framework. Lee & McLachlan
(2013b) provided characterisations of several closely related parametric families of skew
distributions that can be classified into four forms and illustrate their uses in clustering
applications.

Distributions more widely divergent in properties from normality have also been de-
rived starting from a Gaussian framework—an example being the geometric skew normal
(GSN) distribution (Kundu 2017), based on an infinite convolution of Normal and Geometric
densities. The GSN distribution can allow for skewness, heavy-tails and multimodality, and
a latent variable-based Bayesian formulation was used efficiently for model-based cluster-
ing (Redivo, Nguyen & Gupta 2020). The Laplace distribution, with unique, and widely
differing features to normality, has been used as a prior in hierarchical Bayesian models, in
settings that favour sparsity, such as variable selection in regression model selection (Park
& Casella 2008). It also can be represented as a normal scale mixture, and has the property
of stability with respect to geometric summation (Kotz, Kozubowski & Podgorski 2001),
analogous to the infinite divisibility property of the normal distribution under ordinary
summation. In this article, we propose a new multivariate Laplace mixture-based model
for clustering, which derives its motivation from the Bayesian LASSO (Park & Casella
2008), with a focus on clustering instead of variable selection. Particular forms of mix-
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tures based on Laplace distributions have been previously used for clustering asymmetric
distributions (Franczak, Browne & McNicholas 2014); our hierarchical approach is in some
ways simpler, can be applied via minor modifications to the MCMC procedure for fitting
Gaussian mixtures, and is simultaneously robust to deviations from normality in the mixture
components.

More flexibility of modelling can be achieved without the restriction that subpopulations
must originate from the same parametric family (e.g. Jones & McLachlan 1990). A practical
problem in clustering data from biological experiments, is that of experimental noise and
artefacts, which cause the cluster components to not conform exactly to symmetric, normal
patterns (Ester et al. 1996)—patterns of noise and outliers are not always clearly known, and
may not be detectable using ad-hoc approaches for data filtering and cleaning. With high
volumes of complex data, clustering algorithms characterised by an intention to cluster all
observations often result either in large clusters with amorphous patterns or a massive number
of small clusters, neither of which provide useful information about the inherent structure
of the data or resolve scientific questions. In gene expression microarray experiments, many
genes are expected to be irrelevant to the biological process under investigation, prompting
Tseng & Wong (2005) to propose ‘tight clustering’, a method producing tight and stable clus-
ters through sequentially applying resampling procedures to clustering outcomes. Bensmail
& Meulman (2003) proposed a Gaussian clustering approach, following Banfield & Raftery
(1993), that allowed for random noise as a separate cluster, along with various specifications
of the form of the Gaussian covariance matrix. Joo, Casella & Hobert (2010) developed a
Bayesian approach for time course gene expression data. However, their definition of tight
clusters, and the resulting approach, were substantially different. In this article, we also pro-
pose a Bayesian model-based tight clustering approach for datasets of large volume with a
general model specification, specifying a prior structure that avoids non-identifiability issues
that may be caused by empty clusters. Our approach differs from Bensmail & Meulman
(2003) in avoiding the usage of different forms of the spectral decomposition of covariance
matrices, in the hierarchical prior structure, and the model selection criteria used to select
the number of clusters, in place of the Bayes Factor approximations based on integrated
likelihoods.

In the following sections, we investigate two parallel Bayesian approaches towards
clustering data displaying non-normality in their component densities—the first, a Bayesian
model-based tight clustering approach that augments the normal mixture by separate noise
distributions; and the second, a scale mixtures of normal distributions approach that increases
robustness of the model fit in the presence of noise and outliers. In Section 2, we describe
the model setup and methodology for the two proposed approaches, drawing connections
to a unified Bayesian framework that encompasses several alternative mixture models, and
that can be used for model-based clustering. Section 3 illustrates the applications of these
methods, along with a comparison to the performance of other clustering methods on real
datasets from single nucleotide polymorphism (SNP) genotype assays, North Sea fisheries
catch data and 3D stereoscopic audio–visual recording data. Section 4 further explores
the use of these methods in a variety of simulation studies, comparing them to a range
of model-based clustering approaches, to investigate their relative performance and also
the characteristics of identified clusters. Section 5 summarises our findings and discusses
limitations and extensions of the proposed models and methods. Appendices to the main
text are provided in the Supplementary Material.

© 2022 Australian Statistical Publishing Association Inc.



316 BAYESIAN CLUSTERING OF NOISY NON-NORMAL DATA

2. Model framework and methodology

In a mixture model framework, independent observations X1, … ,Xn, each of dimension
p, within the population of interest, can be assumed to come from one of K different groups,
with probabilities �1, … , �K , (�k > 0, for k = 1, … , K ;

∑K
k=1 �k =1). The pdf or pmf of Xi

(i = 1, … , n), evaluated at a realised value xi, is given by

f (xi|θ ) =
K∑

k=1

�k fk (xi|θ k ), (1)

where fk (xi|θ k ) is the component-specific probability density or mass function for the kth
mixture component, with the set of unknown component-specific parameter vectors being
θ� = (θ�

1 , … , θ�
K ). The fks are usually taken as densities from the same family with different

component-specific parameters, but could also refer to different parametric families. The
observed data likelihood arising from (1) is intractable, and numerical methods such as
the EM algorithm (Dempster, Laird & Rubin 1977; McLachlan & Peel 2000) must be
used for parameter estimation. In the Bayesian framework, a straightforward procedure
for obtaining the posterior distributions for parameters may be achieved by means of data
augmentation. Throughout this paper, we define a set of latent indicator variables Zik (i =
1, … , n; k =1, … , K), where Zik takes the value 1 if observation i belongs to component k,
and is zero otherwise. Then, with Zi denoting the vector (Zi1, … , ZiK ), it can be seen that
Zi ∼ Multinomial(1, π ), where π� = (�1, … , �K ). The complete data likelihood can then
be written in a simplified form, as

f (x|Z, θ ) =
n∏

i=1

K∏
k=1

[
�k fk (xi|θ k )

]Zik . (2)

The form of (2), taken along with appropriate (conjugate) priors for the parameters in θ ,
allows formulating an MCMC procedure to iteratively sample the component parameters
and latent variables, through a Gibbs, or hybrid Metropolis–Gibbs sampler (Marin & Robert
2007). A Dirichlet prior, Dir(α), where α = (�1, … , �K ), is typically used for π .

2.1. Bayesian tight clustering approach for noisy data

Tight clustering (Tseng & Wong 2005) was a heuristic, resampling-based approach
originally developed for finding compact data clusters in microarray experiments, without
making any probabilistic model assumptions. It consisted of a sequential procedure with an
inner loop (an algorithm such as k-means) that searched for tight cluster ‘candidates’ for a
given K (number of clusters); and an outer loop that identified tight clusters sequentially
based on successively increasing K . Augmenting the mixture model in (1) with a non-normal
noise distribution (Dasgupta & Raftery 1998) can be considered an analogous approach in
the Bayesian framework. For a set of p-dimensional observations x� = (x1, … , xn), each
generated from a mixture of K distributions, assuming an uniform distribution representing
noise—the (incomplete) data likelihood takes the form

f (x|θ ) =
n∏

i=1

(
�0

V
+

K∑
k=1

�k fk (xi|θ k )

)
, (3)
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where
∑K

k=0 �k =1, and now π = (�0, … , �K ). V is the hypervolume of the data domain,
where the noise is assumed to be randomly distributed. In practice, the hypervolume V is
defined as

V =
p∏

j=1

(
max

i∈{1,… ,n}
{xij}− min

i∈{1,… ,n}
{xij}

)
,

and can be considered the volume of the data region (Dasgupta & Raftery 1998). Assuming
a Dir(�0, �1, … , �K ) prior for π , its posterior full conditional distribution is Dir(n0 +�0, n1 +
�1, … , nK + �K ), where nj = ∑n

i=1 Zij (j = 0, 1, … , K), which would constitute one step
of the full Gibbs sampler. Most commonly, the component densities are assumed to be p-
dimensional Gaussian, Np(xi|μk , �k ) (k = 1, … , K), where we denote μ� = (μ�

1 , … , μ�
K ),

and � = (�1, … , �K ). A hierarchical formulation of the prior for component-specific means
can be used for mathematical tractability and faster MCMC convergence, with

μk |�k ∼ Np(m0, �k=ck ); �k ∼ Inv-Wishart(�0,S0),

where the prior hyperparameters are chosen to be minimally informative while ensuring
propriety of the distributions. In our examples,m0 was chosen to be a zero vector, ck = 10−3,
�0 = p + 1, and S0 a p × p identity matrix, and sensitivity analyses indicated that small
variations from these settings led to no appreciable differences in posterior inference.

In the Bayesian framework, widely varying choices of fk can be used, while still giving
straightforward model fitting procedures through Gibbs sampling (occasionally including a
Metropolis step), when usual conjugate prior specifications are used. These may range from
discrete data models such as the Binomial and Poisson, to skewed continuous distributions
such as the gamma (Wiper, Insua & Ruggeri 2001).

2.2. Clustering with Gaussian scale mixtures

Many symmetric continuous distributions can be represented as a ratio of a standard
normal distribution Z and a positive random variable �2, independent of Z (Andrews &
Mallows 1974). The probability density function of X , which is a continuous random variable
with mean � and scale parameter �2, has a Gaussian scale-mixture (GSM) representation if
it can be written as

f (x|�, �) =
∫ ∞

0
�(x|�, �2g(�2))�(�2)d�2,

where �(·) is the Gaussian density function, g(·) is a positive function and �(·) is a density
function defined on R+. With g(�2) = �2, and �(�2) set as an inverse-gamma density with
parameters (�=2, 	=2), the pdf of X takes the form of a Pearson Type VII density (Johnson,
Kotz & Balakrishnan 1994) with parameters (�, �, �, 	). When � = 	, the pdf reduces to a
Student t distribution with location �, scale � and degrees of freedom �. When �(�2) is, instead,
a gamma ( �

2 , �
2 ) density, the resulting pdf of X is a symmetric variance-gamma distribution

(Madan & Seneta 1990), which reduces to a Laplace density when � = 2. Logistic and
generalised hyperbolic distributions can also be derived as normal scale mixtures through
appropriate choices of the mixing distribution �(·) (Choy & Chan 2008).

In a multivariate setting, a number of forms of the t-distribution exist (Kotz & Nadarajah
2004), but the most commonly used one can be represented as a scale mixture of a multivariate
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normal and an inverse-gamma distribution (Forbes & Wraith 2014). Lin, Lee & Ni (2004)
presented an extensive exploration of multivariate t-mixtures for Bayesian model-based
clustering, showing that the scale-mixture form is highly amenable to model fitting through
a hierarchical Bayesian framework. For a single observation Xi (i = 1, … , n), their model,
conditioned on its cluster membership vector Zik (defined at the beginning of Section 2),
for k = 1, … , K , can be written hierarchically as

Xi|μ, �, τ , Zik = 1 ∼ Np(μk , �2
i �k ),

�2
i ∼ IG

(�k

2
,
�k

2

)
, (4)

where τ� = (�1, … , �n) is a vector of auxiliary scale variables; μ� = (μ�
1 , … , μ�

K ), a set of
K p-dimensional component mean vectors; � = (�1, … , �K ), a set of K p ×p covariance
matrices, and ν� = (�1, … , �K ), a K-dimensional vector of the degrees of freedom for the
K components. Using appropriate conjugate priors for μ and �, this model can be fit easily
using a Gibbs–Metropolis procedure. Introducing multidimensional scale variables in a setup
similar to (4) led to a new family of heavy-tailed distributions (Forbes & Wraith 2014),
allowing for robust clustering on complex real-life datasets.

The Laplace distribution has strikingly different features from a Gaussian or t, notably
in its sharp peak at the mode and heavy tails, motivating its use as a prior in hierarchical
Bayesian models, in settings that favour sparsity. The Bayesian LASSO (Park & Casella 2008)
used a model with a conditional Laplace prior specification for the regression coefficients
with a non-informative scale-invariant prior on the error variance, which allowed for a Gibbs
sampling-based model fitting approach. Kyung et al. (2010) presented a hierarchical group
LASSO approach, in which the conditional prior on the regression coefficients appeared as
a multivariate version of the Bayesian LASSO prior, which can be expressed as a gamma
mixture of normals. As both Park & Casella (2008) and Kyung et al. (2010) showed, the
conditioning on the variance parameter is necessary to attain a unimodal full posterior and
efficient convergence of the Gibbs sampler. Our hierarchical M-Laplace approach, based on
the ideas of Park & Casella (2008), gives a straightforward procedure to fit a robust mixture
model for heavy-tailed data, through minor modifications to the standard MCMC procedures
for fitting Gaussian mixtures. Our model specification differs significantly from the shifted
asymmetric version of Laplace mixtures (Franczak, Browne & McNicholas 2014), and is
described in the next section.

The scale-mixture representation is highly amenable to a Bayesian inferential approach,
as the hierarchical structure, coupled with the existence of conjugate priors for most param-
eters, allows for the straightforward computation of the posterior full conditional densities
(corresponding to well-known distributions) that are required for a Gibbs sampler. Careful
choice of the prior structure also allows for minimising correlation in the joint posterior
distributions of parameters, speeding up MCMC convergence. In mixtures in particular, there
is much evidence to show that MCMC approaches are often more successful compared to
maximum likelihood approaches (such as EM) in avoiding local maxima (Rydén 2008).
The Bayesian approach also allows us to approximate the full joint posterior distribution of
the parameters, even in complex multimodal likelihoods, where the choice of appropriate
(informative) priors can regularise the posterior distributions when the likelihood is non-
identifiable; or direct the sampler towards the regions of highest posterior density, permitting
valid inference.
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2.2.1. The M-Laplace mixture model

We now develop a model and methodology for a Bayesian Laplace mixture model-based
clustering approach. If Xi|Zik = 1 has a Laplace distribution with parameters �k and �k=
,
then this model may be written as a Bayesian hierarchical model (Park & Casella 2008):

Xi|Zik = 1, μ, σ 2, �2
i ∼ N

(
�k , �2

k�
2
i

)
(i = 1, … , n)

�2
i ∼ Ga

(
1,


2

2

)
≡ Expo(
2=2).

A multivariate version of this model may also be developed hierarchically, with Xi being a
p-variate normally distributed vector, and a scale factor of an (exponentially distributed) �2

i

for its covariance matrix (Eltoft, Kim & Lee 2006a,b).
Here, adapting ideas from the hierarchical group LASSO approach, we introduce an

alternate, simplified version of a multivariate Laplace distribution by using a different, gamma-
distributed scale factor instead of an exponential one. Unlike the Bayesian group LASSO
model, however, which considers groups of varying numbers of regression coefficients, we are
interested in a multivariate vector of observations that could arise from one out of K possible
distributions that are a simplified version of a multivariate Laplace (or M-Laplace) model.
We assume that we have a set of p-variate observations (X1, … ,Xn), and the hierarchical
model setup is as follows:

Xi|Zik = 1, μ, �, �2
i ∼ Np

(
μk , �2

i �k
)
,

�2
i |Zik = 1, 
2

k ∼ Ga

(
p+1

2
,

2

k

2

)
,

(5)

where μk is a p-dimensional mean vector, and �k denotes a non-singular covariance matrix
of order p (k = 1, … , K). An observation Xi is assumed to be generated from the mixture
component k with probability �k (k = 1, … , K). We use the notation τ 2 to denote the set
of variables (�2

1, … , �2
n), λ to denote (
1, … , 
K ), μ to denote (μ1, … , μK ), and � to denote

(�1, … , �K ). This leads to Proposition 1.

Proposition 1. Under the hierarchical model setting (5), the distribution of Xi|Zik =1, μ, �
is M-Laplace, with parameters μk and 
−2

k �k , and a pdf given by

p(Xi|Zik =1, μ, �, λ)∝
p
k |�k |− 1

2 exp
[
−
k

{
(xi −μk )��−1

k (xi −μk )
}1=2

]
. (6)

The proof of Proposition 1 is straightforward, following similar lines as other Gaussian
scale mixtures, and is given in Appendix I for completeness. The form of the M-Laplace
distribution in (6) is somewhat different to multivariate versions of the Laplace distribution
as presented elsewhere, for example, in Eltoft, Kim & Lee (2006b). This is due to the
usage of the gamma mixing distribution for the scale parameter �2

i , instead of an exponential
distribution, which leads to the more commonly used (but relatively complex) form. When
Xis can be assumed to have a diagonal covariance matrix, that is, �k = �2

k Ip (where Ip is
an identity matrix of order p), the pdf in (6) simplifies to

p(Xi|Zik =1, μ, σ 2)∝
(


k

�k

)p

exp

[
−
k

�k

{
(xi −μk )�(xi −μk )

}1=2
]
.
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Figure 1. Mixture of 4 bivariate M-Laplace distributions with choices of 
 as 0.5, 1, 1.5, respectively,
compared to a 4-component bivariate normal mixture. The means of the four components are:
(0, 0)�, (−3, 3)�, (3, 4)� and (3,−4)�. Other parameters are specified in the text.

2.2.2. Features of the M-Laplace model

In order to motivate the use of the M-Laplace model for clustering, we briefly demonstrate
some of its features compared to alternatives. In the univariate setting, the M-Laplace and
multivariate Laplace both reduce to an identical form, with tails of the Laplace distribution
being heavier than the Normal for every choice of scale parameter (Figure S8 in Appendix II).
Comparing features of the bivariate forms of the Laplace distribution with the bivariate normal
(Figure S9 in Appendix II), we see that all forms of the Laplace densities have heavier tails,
with the M-Laplace with 
 = 1 having the heaviest tails with the largest spread of sample
values among them. This feature is replicated in the marginal histograms and densities of
each variable (Figure S10 in Appendix II).

The properties of the univariate distributions are replicated in higher dimensions and
in mixtures. A four-component bivariate mixture with unequal covariance matrices(

1 0.5
0.5 0.5

)
,

(
2 −1

−1 1

)
,

(
2 1
1 1

)
, and

(
1 0.5

0.5 1

)

is shown in Figure 1. With a smaller 
 in the M-Laplace mixture, the component distributions
have heavy tails—the component modes even appear to merge in the case of 
 = 0.5—
suggesting that this may be a more appropriate model to fit for data with more spread out
distributions or outliers. This also suggests that the 
ks can act as ‘tuning’ parameters, giving
a hierarchy of clusterings of the same dataset that can be utilised through informative prior
settings in a Bayesian framework.

2.2.3. Priors

Choosing conjugate model priors, if available, allows for efficient, closed-form Gibbs
sampler steps for fitting the M-Laplace model. Following Park & Casella (2008), we choose,
for k = 1, … K , 
2

k ∼ Ga(r, 	), μk ∼ N(m0, g�k ), and �k ∼ Inv-Wishart(�0,S0). As previ-
ously, we assume a Dirichlet–Multinomial model for π and Z|π . The priors may be made
weakly informative by appropriate choices of the fixed hyperparameters r, 	,m0, g, �0,S0

and α (while ensuring that �0 > p+1 and S0 is positive definite). The fully conjugate prior
specification for μk leads to a more efficient Gibbs sampler with faster convergence. By using
weakly informative priors for clustering, improper posterior distributions can be avoided
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(for instance, allowing for empty clusters), while still allowing posterior inference to be data
driven rather than strongly influenced by priors.

2.2.4. Bayesian clustering with M-Laplace mixtures

The hierarchical model formulation for the M-Laplace mixture, as discussed at the start
of Section 2.2.1, allows for the posterior full conditional distributions for all but one of
the parameters to be derived in closed form, which can then be sampled through efficient
Gibbs sampling steps. In addition, the sampling steps are straightforward to implement
as extensions to a standard normal mixture model-based Gibbs sampler. The forms of the
posterior full conditional distributions are given in Proposition 2 and derived in Appendix I.

Proposition 2. The posterior full conditional distributions of the parameters for the model
described by (5), with the prior settings as given in Section 2.2.3, are as follows:

μk |X,Z, τ 2, �k ∼ Np
(
Ek ,Vk

)
, where

Ek =
(

n∑
i=1

zikxi

�2
i

+ m0

g

)/(
n∑

i=1

zik

�2
i

+ 1

g

)
; Vk =

(
n∑

i=1

zik

�2
i

+ 1

g

)−1

�k ;

�k |X,Z, τ 2, μk ∼ Inv-Wishart
(
�0 +nk ,Sk

)
, where

Sk = S0 +
n∑

i=1

zik

�2
i

(xi −μk )(xi −μk )� + 1

g
(μk −m0)(μk −m0)�,


2
k |Z, τ 2 ∼ Ga

(
(p+1)nk

2
+ r,

∑n
i=1 �2

i zik

2
+	

)
, and π |Z ∼ Dir(n+α),

(7)
where nk = ∑n

i=1 zik and n = (n1, … , nK ).

In addition, for the remaining latent variables, we have, for i = 1, … , n:

p(�2
i |X,Z, λ, μ, σ 2)∝ (�i)

−1 exp

[
− 1

2�2
i

K∑
k=1

zik (xi −μk )��−1
k (xi −μk )− �2

i

2

K∑
k=1


2
kzik

]
. (8)

One could, in principle, sample from the distribution in (8) using a Metropolis–Hastings-type
step, but in practice, this appeared to significantly slow down convergence, so we used an
adaptive Metropolis–Hastings (ARMS) step instead (Gilks, Best & Tan 1995). Finally, the
latent cluster indicator variables Z may be sampled through evaluating the posterior cluster
membership probabilities, using Bayes’Theorem; here we marginalised the densities over the
latent variable �i, to increase the efficiency of the Gibbs sampler and improve convergence
(Liu, Wong & Kong 1994).

2.3. Model selection and assessment in model-based clustering

To assess the performance of clustering methods in simulation studies and real datasets
where the cluster labels were known (or identifiable), we used the adjusted rand index (ARI)
(Hubert & Arabie 1985), that evaluates the accuracy of clustering results based on the prior
knowledge of clusters. High agreement between two clusterings is indicated by ARI values
close to 1, while values approaching 0 indicate poor concordance. Additionally, given the
true labels, the correct classification rate (CCR)—defined as the proportion of correctly
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allocated cluster points among all objects in clusters—was used to compare the performance
of different methods when the true number of clusters was known.

The other aspect of assessing clustering performance was through model comparison,
especially important in the context of real-life datasets with no established cluster member-
ship. One criterion used was the Bayesian information criterion (BIC) (Schwarz 1978), that
maximises the data likelihood while penalising model complexity. In Bayesian models, the
BIC can be evaluated at the estimated posterior mode rather than the MLE, while another
option is based on estimating the integrated likelihood from posterior simulation (Raftery
et al. 2007). Bensmail & Meulman (2003) approximated the integrated Bayes Factor based
on a Laplace–Metropolis approximation to decide on the best model after excluding points
classified as noise; our selected approach for model selection was based on an alternative
criterion, the WAIC (Watanabe 2010). The WAIC evaluates the predictive accuracy of the
fitted model to the data using log pointwise predictive densities based on the posterior
distribution of the parameters: a description is provided in Appendix I.

3. Applications

The Bayesian uniform-normal mixture (Section 2.1) and M-Laplace mixture model
(Section 2.2.1) were fitted on a number of datasets, and compared with other commonly
used mixture model-based clustering methods in the same scenarios. We present results
from three applications: (i) a GWAS of bone density (Estrada et al. 2012), (ii) data from
bottom-trawl fishing in Scotland and Northern Europe (ICES 2020) and (iii) audio–visual
recording data from the CAVA database (Arnaud et al. 2008). In the first two cases, the
cluster identities of samples were either fully known or had been inferred through manual
identification techniques.

Along with the two proposed methods, we also applied the following—(i) tight clustering
(TC)—implemented through the tightClust R package (Tseng & Wong 2018), (ii) normal
mixture models and normal mixtures with uniform noise fitted with the EM algorithm (N-EM
and UN-EM)—both implemented using versions of the R package mclust (Scrucca et al.
2016), (iii) Normal mixture models (N-GS) fitted via Gibbs sampling using the R package
mixAK (Komarek 2009), (iv) the EM algorithm for mixtures of t-distributions implemented
in the R package EMMIXskew (Wang, Ng & McLachlan 2009) and (iv) mixtures of shifted
asymmetric Laplace distributions or MSAL implemented in the R package MixSAL (Franczak
et al. 2018). Model selection was done using BIC for the non-Bayesian models, and using
both BIC and WAIC for the Bayesian ones. All implementation of our proposed models was
done in the R statistical software environment (R Core Team 2021).

3.1. Genotype identification

Single nucleotide polymorphisms (SNPs) are base-pair variations (A, C, G or T) at
a locus in an individual’s DNA sequence, which provide important markers in genetic
association or linkage studies to locate genes that may be responsible for various diseases
(Auton et al. 2015). In genome-wide association studies (GWAS), tens of thousands of
SNPs are interrogated simultaneously in order to detect those that may be associated with
a phenotype or disease. Most SNPs are biallelic, with only two possible nucleotides out of
the 4 occurring, say A and C, giving three possible genotypes at that position as AA, AC
or CC. The data from a genotyping assay are bivariate, representing the quantitative levels
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of fluorescent intensities of two probes designed to capture each of the two alleles—the
stronger the intensity, the stronger is the signal for that allele. Clustering of the data from
multiple individuals is used to partition samples into the three possible genotypes, either
with a proprietary clustering algorithm built into the genotyping platforms, such as Illumina
(Zhao et al. 2018), or a (usually Gaussian) mixture model (Erickson & Callaway 2016).
The typical shapes of the cluster components, volume of the data (both SNPs and numbers
of individuals), along with experimental noise and instrumental limitations, complicate this
process, leading to numerous errors, that then have to be corrected through a labour-intensive
procedure of manual curation, magnified by the sheer order of repetition for the hundreds
of thousands of SNPs. It is therefore important to be able to automatically and accurately
cluster SNPs into the correct genotype categories using powerful probabilistic clustering
methods.

3.1.1. Tight genotype clustering

We applied the Bayesian tight clustering method, as well as several other approaches
on four SNP datasets, each from 5094 individuals in a GWAS of bone density (Estrada et al.
2012). The data are in fairly dense clusters, with a number of outliers, and some points
in-between the main cluster centres (first column of Figure 2). For all SNP datasets, we
obtained manually curated sets of genotype calls which could be used as a benchmark for
the accuracy of predicted calls.

Comparing the classification of points to genotype groups, for the SNP tagged as
rs6665426 in dbSNP (Sherry et al. 2001), UN-GS was the only method that was successful in

Figure 2. Comparisons of Single nucleotide polymorphism (SNP) genotype prediction for three
methods: N-EM (column 2), UN-EM (column 3), UN-GS (column 4) and MSAL (column 5) compared
to the gold standard of manual curation (column 1) for two SNPs: rs6665426 and rs4868125

(rows). The black points correspond to predicted ‘noise’ by UN-EM and UN-GS, that are not allocated
to any of the three clusters.
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Table 1. Adjusted rand index (ARI), correct classification rate (CCR),
Bayesian information criterion (BIC) and predicted percentage of noise
for the genotyping data for four SNPs, fitted using N-EM, UN-EM,
UN-GS and MSAL.

SNP Measure N-EM UN-EM UN-GS MSAL

rs2993122 ARI 0.5674 0.5605 0.7735 0.9070
CCR 0.8386 0.8129 0.9163 0.9499
Noise% – 4.21 1.59 –

rs4868125 ARI 0.8187 0.9247 0.9715 0.0161
CCR 0.9432 0.9495 0.9866 0.4402
Noise% – 4.91 0.83 –

rs6665426 ARI 0.6602 0.6310 0.9447 0.7234
CCR 0.8229 0.8073 0.9699 0.8579
Noise% – 0.26 2.90 –

rs6683715 ARI 0.4305 0.6781 0.9355 0.8317
CCR 0.6713 0.8600 0.9317 0.9107
Noise% – 4.57 2.22 –

determining the groups fairly accurately (Figure 2), although the number of points classified as
noise was over-estimated. UN-EM classified fewer points as noise, but severely misclassified
the groups, one severely non-normal group (denoted by + symbols) containing observations
from all three genotypes. For the SNP rs4868125, UN-GS again more accurately classified
SNPs into the correct groups, and classified fewer points as noise, compared to UN-EM.
This behaviour was also observed in the CCR and ARI (Table 1)—for three of four SNPs,
UN-GS produced the highest values among all methods, sometimes by as high a margin
as 0.3 or 0.4. For the fourth SNP, rs2993122, MSAL appeared to have a slightly higher
ARI and CCR, but on closer observation, it appeared that it still failed to detect the cluster
separation accurately, and the lower values for UN-EM and UN-GS were due to a larger
proportion of points in one cluster being labelled as noise. On average, UN-GS classified
fewer points as noise compared to UN-EM. The BIC tended to overestimate the number of
groups (typically by 1) for these four datasets. Running 1000 iterations of UN-GS on each
SNP dataset took an average of 10.34 minutes on a 2 GHz Intel Core i5 processor.

3.1.2. SNP genotype clustering using M-Laplace mixture models

We next investigated the performance of the M-Laplace mixture model on SNP datasets
(Estrada et al. 2012) which did not have clear outliers, but more spread out clusters, for
which the component distributions were likely to have heavier tails than a Normal. We
present here results for a particular SNP, rs1926463, that showed visual separation in its
genotype distributions, yet could not be clustered accurately using the Illumina software
as well as simple and widely used clustering methods such as k-means. We fitted the M-
Laplace mixture model on this dataset, with K fixed at 3, and initially with weak priors set
for μk , (m0 = 0 and g = 106), �k (with �0 = 5 and S0 a diagonal matrix of dimension 2)
and π (�j =1, for j = 1, … , K). It was found that the posterior sampling step for 
2

k caused
slow MCMC convergence of the algorithm and we therefore experimented with fixing the
values of 
2

k and checking the sensitivity of the results to a range of values over 0.1 to 100
(discussed later). The MCMC algorithm, after 10,000 iterations, did not appear to show signs
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Figure 3. Comparisons of genotype cluster prediction for four methods: Normal mixtures (Panel 2),
t-mixtures (Panel 3), shifted asymmetric Laplace mixtures (Panel 4) and M-Laplace mixture (Panel
5) compared to manual curation (Panel 1). The plot symbols indicate the cluster labels according to
manual curation, while the point colours indicate the cluster labels predicted by each method.

of non-convergence, and the results here, are from a run when 
2
k = 2 with the first 20%

of the chain taken as burn-in. Using the M-Laplace mixture model, 5052 out of the 5094
individual genotypes were correctly called, with two of the three categories being classified
perfectly (CCR: 0.9918; ARI: 0.9887). Keeping other parts of the model unchanged, but a
more informative prior on μk , based on clustering patterns in a number of other SNP datasets
(μ1 = (1.5, 0)�, μ2 = (0.7, 0.7)�, μ3 = (0, 1.5)�), the results were slightly improved further,
with 5072 of the genotypes correctly classified (CCR: 0.9980; ARI: 0.9924). We also fitted a
normal mixture (N-EM), a t-mixture (t-EM), and MSAL on the same dataset. These methods
had lower accuracy, with N-EM having a CCR of 0.715 (ARI: 0.4007), t-EM a CCR of
0.6048 (ARI: 0.3534) and MSAL a CCR of 0.9748 (ARI:0.9681). Figure 3 shows the SNP
data labelled by the predicted genotype IDs from the manual curation method and each of the
fitted models. It is appears that while the M-Laplace picked up the separation of the clusters
quite clearly, the other three algorithms did not. For N-EM and t-EM one cluster cannot be
detected separately, while two other predicted clusters actually correspond to a single cluster.
For MSAL, the middle cluster is split into two, while the third cluster is merged with one of
these components. Posterior summaries for the cluster-specific parameters and convergence
diagnostics (for the 
2

k =2 setting) are shown in Table 2. We conducted a sensitivity analysis
for 
2

k for the M-Laplace mixture; posterior credible intervals of μ from different settings
of 
2

k (Supplementary Figure S15 in Appendix II) showed very little variation, and high
degrees of overlap, suggesting that the precise choice of 
2

k did not strongly matter. Credible
intervals for the other parameters also remained similar with variations in 
2

k , except when

2

k was set at the highest value (100), in which case the clustering results of the M-Laplace
method appeared to become similar to mclust (splitting the cluster along the horizontal axis
into two clusters and merging the other two clusters into one), indicating a form of limiting
behaviour.

The typical pattern and shapes of the three genotype clusters, along with the imbalance of
points across clusters (the category with two rare alleles usually has a very small frequency),
appeared to make it difficult for Gaussian or t-mixture based clustering methods to detect
clusters accurately, even when there was clear visual separation. Our analysis was replicated
on several other SNPs with similar genotype patterns, indicating that the M-Laplace mixture
may have the potential to provide a robust and accurate method for automatic SNP genotype-
calling in large-scale GWAS. MSAL allows for heavy tails and multimodality in the data,
however, this approach often ran into numerical issues, when certain runs of the algorithm
failed, and had to be re-started from a different initial value. An additional feature that was
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Table 2. Credible intervals and effective sample size (ESS) for model parameters of
M-Laplace mixture model. 2.5th and 97.5th percentiles of the posterior distributions
of each parameter are shown.

Parameter (2.5th, 97.5th) ESS (mean)

μ1 (1.300, 1.375) (0.004, 0.005) 10304.7
μ2 (0.588, 0.675) (0.619, 0.711) 9933.3
μ3 (−0.129, 0.299) (0.850, 1.684) 5302.2

�1 (1.809, 2.113) (0.005, 0.008) (0.0003, 0.0004) 9445.9
�2 (0.348, 0.522) (0.332, 0.503) (0.392, 0.596) 9445.9
�3 (0.0297, 0.920) (-0.381, 0.318) (0.241, 3.028) 9445.0

�1 (0.8353, 0.8553) 9100.8
�2 (0.1399, 0.1612) 6853.5
�3 (0.0005, 0.0072) 3050.4

observed even in successful runs of MSAL with relatively high CCR was that the correct
‘patterns’ or directions of clusters failed to be determined, for instance, clusters being split
along incorrect axes or subdivided into two or more parts with wide spreads; see, for example,
Figures 2 and 3. The results of different runs sometimes varied, suggesting that the EM
algorithm could get trapped at suboptimal modes of the likelihood.

3.2. Fisheries data

Data from the North Sea International Bottom Trawl Survey (NS-IBTS) (ICES 2020),
consisting of distributions of size structure of the caught fish, are important for understanding
the impact of both natural and human pressures on fish populations (Weerarathne, Monk &
Barrett 2021). We selected two species of fish commonly caught in the survey as our second
case study: these are the European sprat Sprattus sprattus and Atlantic mackerel Scomber
scombrus. The data, collected over the period 1990–1999, consist of two measurements—
cost per unit effort (CPUE) per hour and length class (measured in 5 cm bands, with the
measurement taken the lower bound of the band). While length class is a discrete measurement,
it represents a continuous scale and our treatment of it as a continuous measurement seemed
reasonable.

Each set of data, corresponding to a species, had a highly non-normal structure, and there
was not a complete visual separation between groups, suggesting that clustering accurately
could be difficult (Figure 4). Observations that were zero on both axes (no fish of that species
and/or length class being observed) were non-informative in the context of clustering and
were removed prior to fitting the algorithms, but measurements that were zero on a single
axis were retained. It was evident that there were large numbers of outliers in the data,
with a large spread in the upper tail. It is common to consider the CPUE on a log-scale to
make distributions more spherical. When some observations have a measurement of zero
on one of the axes, a standard approach is to add a small constant to all data points before
taking logarithms. Bellégo, Benatia & Pape (2021) discuss possible pitfalls of this approach,
and show that bias in log-linear model parameter estimates is minimised for a constant
approximately equal to 0.7. Small values were likely to dominate the zero values, whereas
larger values could potentially change the variance of the clusters and risk distortion of the
results.
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Figure 4. Comparisons of cluster prediction results for five methods applied on the Fisheries data on
the log-scale, compared to actual clusters (leftmost panel). The black points correspond to predicted
‘noise’ by UN-EM and UN-GS, that are not allocated to any of the two clusters.

3.2.1. Tight clustering and comparison with other methods

The Fisheries data were filtered, by removing observations with zero in both measure-
ments, incrementing all values by 1 and taking logarithms: the first column in Figure 4
shows the two clusters: Sprattus sprattus (n = 2904) and Scomber scombrus (n = 256). We
implemented the N-EM, UN-EM, N-GS, UN-GS and MSAL methods on the log-transformed
data. For UN-GS, we ran a chain of length 55000, after which a burn-in of 5000 and a
thinning of 5 were applied. Generally, the results for all methods except for MSAL were
quite similar (Figure 4), where the larger cluster appeared to be segmented into two by the
smaller cluster. The noise points identified by UN-EM and UN-GS were also similar. From
Table 3, it can be seen that UN-GS had the highest CCR (0.9386) and ARI (0.6348) among
all the methods, followed by N-GS. The low ARI and CCR for MSAL are evident in Figure
4, where a large number of observations in the large (circles) group were wrongly allocated
to the other. The BIC values of the corresponding models were calculated as 15220.51
(UN-GS), and 18178 (MSAL). Running 1000 iterations of UN-GS took approximately 5.38
minutes on a quad core 10th generation Intel Core i5 CPU processor with a speed of 2 GHz
(Turbo Boost up to 3.8GHz).

Posterior credible intervals of the parameters from N-GS and UN-GS, showed con-
siderable similarity to confidence intervals from N-EM and UN-EM, calculated using non-
parametric bootstrap (Table S6 in Appendix II). To investigate the influence of the constant
value added to the data before taking logarithms, we also applied the above five methods
when a constant of 0.5 was used. The results were essentially unchanged (Figure 4). UN-
GS retained the highest CCR and ARI, followed by N-GS. Such similar outcomes can be
attributed to the cluster shape not changing substantially between a constant of 1 or 0.5.

Table 3. Adjusted rand index (ARI) and correct classification rate (CCR) for the
Fisheries data, using the methods N-EM, UN-EM, N-GS, UN-GS and MSAL.

Measure N-EM UN-EM N-GS UN-GS MSAL

Logarithmic ARI 0.6088 0.6177 0.6285 0.6348 0.0529
Scale CCR 0.9355 0.9345 0.9383 0.9386 0.6196
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However, with a constant of 0.01, the shape of the smaller (blue) group in the leftmost panel
(Figure 4) was altered considerably, leading to a worse performance for all methods– this
matched observations in Bellégo, Benatia & Pape (2021). Therefore, a choice of 1, or values
around 1, that preserved the shape of the clusters, appeared suitable for this dataset.

Finally, as N-EM and UN-EM are both designed to cluster in the presence of noise,
we did an additional test by adding uniform noise points in the data space before clustering.
In this case, UN-GS gave the most accurate results (CCR: 0.9259, ARI: 0.6584), followed
by UN-EM (CCR: 0.9241, ARI: 0.6537). N-GS performed slightly worse (CCR: 0.9127,
ARI: 0.6264). In all cases, the large cluster was still split by the smaller one (Figure S16 in
Appendix II). For N-EM (CCR: 0.7472, ARI: 0.2760), many more observations in the large
cluster were incorrectly classified and more noise points were allocated into the clusters. The
Fisheries dataset was difficult to cluster because of zero-inflated data; a more sophisticated
mechanism for dealing with the zeroes may succeed in improving the clustering results. In
this dataset, when the total number of clusters was allowed to vary from 2, the BIC overfitted
every type of model, by favouring more clusters in the data.

3.3. 3-D data from stereoscopic camera pair

As our final application, we compared the performance of the previously discussed meth-
ods on a location-tracking dataset from the CAVA database (Arnaud et al. 2008), previously
analysed by Forbes & Wraith (2014). The three-dimensional data are audio–visual record-
ings of three moving and speaking people, using binocular and binaural camera/microphone
pairs. After removing instrumental artefacts, the data appear as three elongated clusters,
each corresponding to a person—the goal is to distinguish the locations of the three through
clustering methods.

Figure 5 shows that a number of differences are visible in the results of applying the
seven methods on the data: (i) the normal mixture fitted with EM can only differentiate two
clusters; the Bayesian approach also is unable to separate the two closest clusters; (ii) when
the uniform-normal mixture is used, both the EM and Bayesian versions do much better,

Figure 5. Comparisons of cluster prediction results for methods applied on the stereoscopic data on
variables V1 and V2 (top row), and V1 and V3 (bottom row) with K set as 3. The black points
correspond to predicted ‘noise’ by UN-EM and UN-GS, that are not allocated to any of the three
clusters. Tight clustering does not perform well (as expected for heavy tailed component distributions),
with three very compact clusters found, and the vast majority of points classified as outliers, and is
not included in the figure.
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however a large number of points are predicted as noise (17.08% for EM; 5.05% for Gibbs)
and left unclassified; (iii) the t-mixture appears to separate the clusters well on one set of
variables (V1 and V2) but misclassifies severely on another pair (V1 and V3) where all points
in the tails are absorbed into a single cluster; (iv) MSAL is unable to separate the clusters well
on either pair of axes, in spite of allowing for heavier tails of the component distributions; and
(v) the M-Laplace mixture distinguishes the clusters accurately along both sets of axes—the
heavy tails allowing outlying points to be allocated to the appropriate clusters.

4. Simulation studies

To get a better idea of the extent of observed differences in the performance of various
methods in the real datasets, we next designed simulation studies involving the two proposed
Bayesian clustering methods, as well as the previously used methods, in a variety of simulation
settings where the ‘true’ clustering was known. We compared their performance under three
broad headings: (i) impact of within-cluster variance, levels of overlap across clusters, and
the total number of cluster components, (ii) impact of model misspecification and (iii)
performance in application-inspired datasets. Results of the simulation studies presented are
based on ten independent replicates under each setting.

4.1. Impact of cluster variance, overlap and total number

The simulation settings for all datasets used in the following sections are given in
Table S5 in Appendix II. In case study 1, we simulated multiple datasets using a five-
component Gaussian mixture, with two overlapping clusters, and ‘noise’ points that con-
stituted about 20% of the dataset. For N-EM and UN-EM, we used results both from the
best model chosen by BIC (this turned out to be the ‘VII’ model for all 10 datasets in
N-EM and ‘VII’ (9) and ‘VEI’(1) for UN-EM) as well as the unrestricted (variable vol-
ume, shape and orientation: VVV) model, which was the most comparable to the general
model fitted by Gibbs sampling. Priors for the Bayesian models were chosen to be proper
to ensure identifiability of the mixtures (if empty clusters were obtained) but minimally
informative to avoid biasing the parameter estimates in any direction. The boxplots of the
ARI and CCR for all the fitted models (Fig. 6), and the MSE for parameters of the Gaus-
sian mixture models show that UN-EM and UN-GS had similarly high ARI and CCR, and
the lowest average MSE (Table 4), while tight clustering and MSAL had the lowest CCR
and ARI.

Figure S11 in Appendix II shows the results from a single replicate dataset, which
illustrates the general pattern of performance across the methods. Tight clustering split
one of the clusters and lost an entire cluster by classifying it as ‘noise’, leading to a low
ARI and CCR. The noise points are mostly found as a separate cluster by the normal
mixture-based models, while the general t and MSAL approaches split up some clusters
as well as the noise points. UN-GS and UN-EM have the lowest misclassification rates,
being able to distinguish most outlying points, while the t-mixture and normal mixtures had
similar CCRs.

Next, we investigated the performance of the model selection criteria for a subset of
case study 1, where the data were generated from a three-component mixture, but the number
of clusters (excluding the noise) was allowed to vary between 2 and 5, for the normal and
normal-uniform mixtures. For N-EM, the BIC appeared to select the correct number of
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Figure 6. Adjusted rand index (ARI), correct classification rate (CCR) and mean MSE for clustering
methods over 10 replicated datasets in Case study 1. Models used are: normal mixtures fitted with (i)
EM [N-EM], (ii) EM with the unrestricted model [N-EM(VVV)] (iii) Gibbs sampling [N-GS], normal
mixtures with uniform noise component fitted with (iv) EM [UN-EM] and (v) Gibbs [UN-GS], t-mixture
with diagonal variance (vi) [T(diag)] and (vii) general variance [T(VVV)], (viii) tight clustering [TC]
and (ix) mixtures of shifted asymmetric Laplace distributions [MSAL].
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Table 4. Average Adjusted rand index (ARI) and correct
classification rate (CCR) in Case studies 1, 2 and 3, us-
ing the methods: (i) tight clustering (TC), (ii) normal mix-
ture-model based clustering (N-EM), (iii) normal mixture
model-based clustering with uniformly distributed noise
(UN-EM), (iv) Bayesian normal mixture model (N-GS),
(v) Bayesian normal mixture model with uniformly dis-
tributed noise (UN-GS), (vi) t-mixture models (T), (vii)
shifted asymmetric Laplace mixtures (MSAL) and (viii)
M-Laplace mixture models (MLap). N-EM, and UN-EM
results are shown for both the highest Bayesian informa-
tion criterion (BIC) model and the unrestricted covariance
model (VVV) while the t-mixture results are shown for the
unrestricted (VVV) and diagonal (diag) covariance models.
MLap was not used in Case study 1 as it is not appropriate
for data with very compact, overlapping clusters that it would
tend to merge into a single cluster. The number of clusters
K was set at 5, 3, 3 for UN-EM and UN-GS, while the other
methods were allowed an extra cluster.

Case study 1 2 3

TC ARI 0.508 0.519 0.163
CCR 0.649 0.646 0.156

N-EM(VVV) ARI 0.747 0.780 0.779
CCR 0.922 0.907 0.858

N-EM ARI 0.758 0.788 0.828
CCR 0.923 0.911 0.902

UN-EM(VVV) ARI 0.769 0.804 0.648
CCR 0.932 0.926 0.773

UN-EM ARI 0.791 0.801 0.708
CCR 0.954 0.924 0.817

N-GS ARI 0.746 0.784 0.919
CCR 0.919 0.912 0.960

UN-GS ARI 0.785 0.809 0.923
CCR 0.950 0.930 0.995

T(VVV) ARI 0.595 0.800 0.861
CCR 0.800 0.941 0.918

T(diag) ARI 0.648 0.802 0.893
CCR 0.868 0.942 0.941

MSAL ARI 0.345 0.567 0.643
CCR 0.614 0.833 0.772

MLap ARI − 0.652 0.922
CCR − 0.978 0.996

clusters, while for UN-EM, the number of clusters was over-estimated by 1 on average. For
the Bayesian models, the WAIC was able to choose the correct number of clusters in every
case, whereas the BIC occasionally underestimated the number of clusters by 1. With the
correct K , the average ARI computed for UN-GS (0.747) was slightly higher than that for
N-EM (0.7464) and N-GS (0.7132).
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4.2. Impact of model misspecification

The next study was designed to examine how well these methods performed in the
case of model misspecification. The datasets in case study 2 were simulated from a three-
component mixture of t-distributions, each component with 3 df, and with other parameter
and noise settings given in Table S5 in the Appendix II. The ARI still appeared to be the
highest for UN-GS (Figure S12 in Appendix II) but the CCR from the t-mixture model
was in general slightly higher (as expected). UN-GS had the next highest average CCR,
followed by UN-EM. Tight clustering continued to give overly compact clusters, identifying
many cluster points as noise; and increasing the total number of clusters to 4 only led to
further cluster splitting. Figure S13 in Appendix II shows an example of the performance
of the various methods on t-mixture data, with the Normal mixtures with noise components
doing slightly better than the non-noise versions, and the t-mixture doing slightly better
overall. The asymmetric Laplace merged two clusters and split another, leading to a higher
misclassification rate.

4.3. Performance in application-inspired datasets

Our final study was motivated by the goal of replicating the observed performance
of the methods in datasets that were simulated to have similar characteristics to the SNP
genotyping data in Section 1. Ten replicated datasets, for three ‘genotype’ clusters each,
were simulated from a mixture of three truncated normal distributions in the proportions
1=2 : 1=3 : 1=6, restricted to the positive quadrant, and noise points that constituted about 3%
of the dataset, were added (parameter settings in Table S5 in Appendix II).

Applying the N-GS model on this dataset, in most cases, exhibited label-switching,
which had to be manually corrected by visualising the posterior density plots and re-ordering
observations. This could potentially be a problem with using N-GS in clustering large num-
bers of genotyping datasets in GWAS. The difference between the actual ARI and CCR
was not significantly impacted by the relabelling, in this example, but is a possibility.
UN-GS did not exhibit symptoms of label-switching in any of the simulated runs or real
datasets. UN-GS and the Bayesian M-Laplace mixture had the highest average ARI and
CCR, and were also most consistent over the multiple replicated datasets (Fig. 7). There
were slight differences in the cluster components detected by UN-GS and M-Laplace, the
M-Laplace tending to have heavier component tails, thus including more distant points
into the clusters, whereas UN-GS classified more distant points as noise; however, both
methods successfully classified the majority of the data points into their correct clusters
(an example is shown in Figure S14 in Appendix II). This study demonstrated that even
when the data significantly mismatched model assumptions (reflecting characteristics of SNP
genotyping), the M-Laplace mixture and UN-GS appeared relatively robust and accurate in
clustering.

4.4. Summary

Overall, it was found that (i) tight clustering tended to find small and compact clusters
with low within-cluster variance, with a tendency to split up high variance clusters, thus
performing relatively worse compared to model-based methods, with heavy-tailed data; (ii)
in the presence of noise, Uniform-Normal mixtures showed better performance in terms
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Figure 7. Adjusted rand index (ARI) and correct classification rate (CCR) summarized over 10
replications for all clustering methods in Case study 3.

of ARI, CCR and BIC in most scenarios, and Gibbs sampling was more robust to the
presence of noise than EM-based methods; (iii) in a scenario where data were simulated
from a t-mixture with additional noise, UN-GS still performed comparably to the gen-
erative model, which could be ascribed to the EM algorithm having a tendency to get
trapped at local optima in the presence of noise, while Gibbs sampling is successful in
exploring the posterior distributions more broadly; and (iv) the M-Laplace mixture was
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highly successful in detecting clusters in data inspired by real genotyping studies, that
had significant departures from normality in the form of bounded data with elongated,
non-ellipsoidal groups.

5. Discussion

In this article, we have explored methods of Bayesian model-based clustering in the
presence of noise and outliers and features of non-normality. We have proposed an extension
to the method of Bayesian Gaussian mixture modelling through incorporating outliers, as
well as an M-Laplace mixture model-based approach for heavy-tailed and non-normal data
clusters. Both approaches were implemented through efficient data augmentation algorithms,
and appeared robust to departures from normality, and less prone to problematic aspects of
Bayesian mixture modelling, such as label-switching, in the datasets under investigation. Our
approaches gave promising results in three real-life applications—a genotyping experiment,
an ecological study and image classification—however, they could generally be applied to
a variety of clustering problems in other areas of science.

In some of the real data examples, the clustering models fitted will certainly not contain
the true cluster model due to the variables being bounded and/or discrete. Our approach aims
to study the use of the new approaches to challenging data types where standard approaches
do not perform well. Examples of the use of real-valued models for non-real-valued data can
be widely found in the clustering literature, for example, the success of unrestricted skew-t
mixtures in clustering bounded flow cytometry data (e.g. Lee & McLachlan 2013a,b), and
the widespread use of real-valued mixture distributions for non-negative or discrete data (e.g.
Andrews & McNicholas 2012; Lee & McLachlan 2013a,b; Franczak, Browne & McNicholas
2014)—although we acknowledge that other specific distributions such as restricted skew
distributions (Lee & McLachlan 2013a,b) or tree models (Poon, Liu & Zhang 2018) could be
sometimes more appropriate. Such model misspecification may not be ideal, and could lead
to slight biases in parameter estimation, but our numerical studies (including a simulation
study under a truncated data scenario) show that as long as there are sufficient data to build
the cluster structure, the accuracy of cluster grouping is not significantly affected, along with
substantial gains in computational efficiency and stability over some of the more complex
models.

In practical terms, these methods have much future scope for improvement. The Bayesian
tight clustering algorithm assumes the noise structure is uniform, which may not always be
realistic—the model could be further extended to account for more complex and informed
noise patterns, based on the specific application. For model selection, the BIC appeared
to give an overestimate of the total number of clusters, and although the performance of
the WAIC appeared more promising for the Bayesian models, more investigation into this
would be desirable. Alternative approaches, such as variational approximations (Forbes et al.
2019) may also be explored. In our applications here, it is also important to observe that
we have looked at comparatively low-dimensional datasets. In many other applications in
genomics where clustering is needed, for example, in single-cell RNA sequencing experiments
(Kiselev, Andrews & Hemberg 2019), both the dimensionality and size of datasets is very
large, running into tens of thousands or higher. In such situations, the interpretation of
clusters and clustering results presents an extra challenge, beyond even the computational
challenges that may ensue from a scaling-up of the methods presented here.
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Supporting information

Additional supporting information may be found in the online version of this article at
http://wileyonlinelibrary.com/journal/anzs.
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