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Abstract—Currently, illegal parking detection tasks are mainly
achieved through manually checking by enforcement officers
on patrol or using Closed-Circuit Television (CCTV) cameras.
However, these methods either need high human labour costs
or demand installation costs and procedures. Therefore, illegal
parking detection solutions, which can reduce significant labour
and equipment installation costs, are highly demanded. This
paper proposes a novel voting based detection algorithm using
deep learning networks implemented using in-vehicle cameras to
achieve illegal parking detection with multiple offences’ types.
Adopting in-vehicle cameras better matches real-world mobile
scenarios than using traditional CCTV cameras as this helps
enforcement authorities to reduce manpower and installation
costs. A well-constructed new dataset with more than 10,000 high-
quality labelled images with seven object categories is built for
illegal parking detection tasks. Additionally, one novel labelling
method named “minimal illegal units” is proposed for illegal
parking detection. It reduces the time and human labelling costs
significantly, achieving a better correlation of a vehicle and its
parking type. The experiments have been conducted in the urban
areas of Singapore. Furthermore, the illumination robustness test
has also been performed to illustrate that the proposed detection
algorithm exhibits strong resistance to changing illumination
conditions in varied operating environments. Our proposed
detection algorithm can provide a benchmark for research in
illegal parking detection.

Index Terms—Illegal parking detection, in-vehicle camera,
deep learning neural network, multi-class classification.

I. INTRODUCTION

THE problem of “illegal parking” has been a significant
concern that draws public attention because of the rapidly

increasing number of vehicles in contrast with limited parking
resources in cities [1], [2], [3], [4], [5], [6]. Illegal parking
activities include parking vehicles in restricted regions or
parking in unauthorized manners. Illegal parking activities
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not only cause congestion to the traffic flow but also lead
to common civil complaints for urban management [7]. In
order to impede the occurrence of illegal parking activities,
government authorities usually deploy enforcement officers to
conduct manual patrols. Some countries also deploy Closed-
Circuit Television (CCTV) cameras in certain regions to detect
illegal vehicle parking. For example, Urban Redevelopment
Authority (URA) of Singapore manages about 700 roadside
parking sites with about 17,000 parking lots in Singapore.
Currently, the enforcement checking is manually performed
by patrolling officers, who have to manually sight each of
illegal parking activities, take photos and record offences.
However, these methods are expensive with high labour costs
and inefficient to cover large areas. Therefore, illegal parking
detection solutions are highly demanded, which can reduce
manpower and equipment installation costs significantly. Such
detection solutions can be further exploited for intelligent
transportation systems (ITS).

Recently, many efforts have been made to detect illegal
parking activities using CCTV cameras. Both Akhawaji et al.
[8] and Sarker et al. [9] apply an image segmentation algo-
rithm based on Gaussian Mixture Model to extract vehicle
information. Akhawaji et al. [8] further improve the vehi-
cle tracking by using Kalman Filter to reduce false alarms.
However, the performance of this method may suffer if rapid
changes in illumination of operating environments occur.
Another improved foreground extraction method applies one-
dimensional transformation projection to input images, which
reduces the dimension and computational complexities of the
extraction process [10]. Deep learning methods have also been
applied to illegal parking detection. For example, Convolu-
tional Neural Networks (CNN) and Single Shot MultiBox
Detector (SSD) networks have been implemented into illegal
parking detection CCTV systems [11], [12], [13]. Compared
with traditional image segmentation algorithms, deep learning
networks are more robust to the change of nearby operating
environments such as illumination and weather conditions.
However, since CCTV cameras are stationary with presetting
the region of interest (ROI), the detection coverage and scenar-
ios are limited. For example, Ng et al. [11] use a stationary IP
camera to detect parked cars at an outdoor illegal parking lot.
The work reported in [12] can detect illegal parking along the
roadside, but without further classified illegal parking types.
There are three illegal parking detection public datasets using
CCTV, i.e., Imagery Library for Intelligent Detection Systems
(i-LIDS) [8], dataset provided by ISLab [14] and Sussex
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Traffic Monitoring dataset of the University of Sussex [15].
Nowadays, in-vehicle cameras are widely installed in most

vehicles as they are very useful vehicle accessories. Compared
to stationary CCTV cameras, in-vehicle cameras have several
advantages in ITS applications, such as no limitation to
fixed physical locations, low installation requirements and low
capital expenditure [16]. Applications of in-vehicle cameras
include driver assistance systems [17] in rainy [18] and foggy
weather [19], traffic sign detections [20], [21], [22], [23], etc.
Matsuda et al. [24] present an algorithm to detect all vehicles
parked along streets using dashboard camera videos without
further distinguishing parking areas or road line types. How-
ever, in practice, not all vehicles parked along roadsides are
illegal if there are not restricted signs or restricted road lines.
It is hence necessary to relate a vehicle and its corresponding
parking area or the type of road lines to make accurate illegal
parking detections. To the best of our knowledge, the detection
of illegal parking activities with detailed types of offence using
in-vehicle cameras has not been reported in the literature.

In this paper, a novel voting based real-time illegal parking
detection algorithm is developed using videos captured by in-
vehicle cameras. The detection algorithm is implemented using
deep learning networks to detect parking types of vehicles
in real-time. The developed algorithm has great advantages
not only in easy installation and low cost, but also in high
resistance to the change of nearby environments such as low
illumination or rainy weather. Besides, prior knowledge of the
ROI is not required for the proposed algorithm, hence achiev-
ing high quality and high accuracy detection performance
for multiple illegal parking activities in different operating
scenarios. Additionally, a new dataset is built by our research
team, for dealing with illegal parking detection tasks using in-
vehicle cameras. Moreover, one novel labelling method named
“minimal illegal units” is also developed during the dataset
construction, which significantly reduces the labour and time
cost of labelling procedures. It better relates the vehicle to its
detailed parking type. Compared with conventional labelling
methods, which focus on specific margins between objects, the
developed labelling method marks vehicles’ information and
offence factors mutually without marking individual margins.

The main contributions of this paper are as follows.
1) The proposed novel voting based algorithm firstly

achieves illegal parking detection with multiple types of
detailed offence using in-vehicle cameras with benchmark
results. To the best of our knowledge, our proposed algorithm
is the first research work to achieve such functionalities, since
this area has not been exploited in prior studies.

2) The structure of the developed algorithm is straightfor-
ward to add or fine-tune the sub-networks to improve the
overall performance for future research.

3) A newly constructed illegal parking detection dataset
contains more than 10,000 high quality labelled images with
seven object categories, including six common illegal parking
types and one legal parking type. It is the first dataset using in-
vehicle cameras to deal with illegal parking detection without
relying on fixed-location ROIs and it further classifies captured
vehicles into seven detailed types with ground truth labels.

4) A novel labelling method named “minimal illegal units”

for illegal parking detection is proposed. This labelling method
efficiently links the vehicle and essential parking information
to achieve detailed parking types classification.

As a limitation, at the current stage of the research work, the
data are all collected in Singapore. Roadside parking activities
at many locations are treated as illegal, where some are not
allowed for parking at all time; others are not allowed for
parking during the daytime, but permitted for parking at night.
As such, the new dataset is imbalanced: the number of data
samples collected from daytime is more than its counterpart
at night.

The remaining parts of this paper are organized as follows.
Section II reviews the background and related works in the
literature. Section III presents the procedures and standards of
data collection in our research. Section IV describes the details
of the new dataset and the real-time illegal parking detection
algorithm. Section V presents the experimental design for
benchmark results. Section VI concludes the paper.

(a)

(b)

(c)

(d)

Fig. 1: (a) Two types of deep object detection networks: region
proposal based and regression based. (b) Flowchart of R-CNN
(c) Flowchart of SSD (d) Flowchart of YOLOv3.
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II. BACKGROUND AND RELATED WORKS

Nowadays, many artificial intelligence (AI), machine learn-
ing and deep learning based methods have been applied in
various applications such as edge computing [25], elderly
healthcare [26], vehicular networks [27] and object detection,
etc. The goal of illegal parking detections is to identify
parking offences and further determine their locations in
images. Therefore, these tasks have close relations to the
scopes of object detection. Typically, object detection tasks can
be handled using general machine learning or deep learning
methods.

According to [28], object detection models generally have
three modules: region selection, feature extraction, and object
classification. Traditional machine learning based object detec-
tion pipeline contains two main modules: ROI extraction and
object classification [29]. One typical ROI extraction method
applies sliding windows with different scales shifting all over
an image [30]. However, due to enormous computational
complexities, exhaustive sliding is very difficult to be applied
in practice. Lowe et al. [31] have made improvements in pro-
cessing speed of pedestrian detection by assuming geometry
symmetry of people, predefining aspect ratio and applying the
stereo-vision technique to refine distance information. Instead
of using exhaustive sliding windows, Enzweiler et al. [32]
introduce a keypoint selection method by finding maximum
and minimum values among different Gaussian functions with
the ratio of principal curvatures.

For object classification tasks, several discriminative clas-
sification methods aim to find optimal decision boundaries
between different candidate classes after feature extraction
[33]. Primarily, feed-forward multilayer neural networks [34]
apply linear discrimination functions to non-linearly map
samples. Support Vector Machines (SVM) [35] with kernels
linearly map samples in higher feature space. Dalal and Triggs
[36] introduce a method which applies linear SVMs combined
with Histogram of Orientation (HOG) features to reduce false-
positive rate in human detection tasks. Freund et al. [37]
introduce another method to perform classification task by
cascading AdaBoost classifiers [38].

The prosperity of deep learning networks and performance
improvements benefit from multiple factors [28], [39], such as
large training data sets [40], [41], powerful graphics processing
unit (GPU), and novel training strategies [42]. Because of
distinguished learning and adaptive capacities, deep learning
networks have been widely applied to object detection tasks,
which can be categorized into two types, as shown in Fig.
1(a). One type begins with region proposals which are then
further classified into backgrounds or classes, such as R-CNN
[43]. The other type focuses on treating the detection task as a
regression problem and eventually building one-stage networks
such as SSD [44] and You Only Look Once (YOLO) [45].

As shown in Fig. 1(b), the model of R-CNN firstly deter-
mines the number of bounding box object region candidates
using selective search. Then features are computed by a
large CNN network. Later classes and boundaries of targets
are predicted by binary SVMs trained for each class and
linear regression, separately. Although R-CNN can achieve

satisfactory performances in some object detection tasks, the
training time of such models is very long, and the detection
speed is limited [46].

In order to increase both training and detection speed, one-
stage networks such as SSD and YOLO have been introduced
to deal with object detection tasks. As shown in Fig. 1(c),
the region based proposals are replaced by directly applying
CNN based feature extractors on the whole image. Then extra
convolutional feature layers at the end of the feature extractor
will generate predictions at multiple scales by convolutional
filters. Due to the less complex feature extractor without
using region based proposals, the detection speed of SSD
has increased a lot compared with two-stage networks. A
flowchart of another example of a one-stage network, YOLO,
is shown in Fig. 1(d). Instead of treating class prediction and
boundary locations separately, the model of YOLO directly
generates detection proposals on both boundaries and class
probabilities based on the feature map produced by a feature
extractor. It consists of multiple convolutional layers with
filters of size of 1 × 1 and 3 × 3. YOLO treats an object
detection task as a regression problem to reduce the detection
time. An input image will be divided into m × m grid
cells. Each cell will generate n bounding boxes with five
factors (i.e., centre coordinates: x, y, width: w, height: h
and object confidence scores for each bounding box). The
object confidence is defined as Pr(Object)×IOU truthpred , where
Pr(Object) indicates the probability of the existence of an
object; IOU truthpred represents the Intersection over Union (IOU)
overlap area between predicted results and ground truth. Mean-
while, every cell generates p conditional class probabilities
Pr(Classj |Object). During the test, class-specific confidence
scores for every box can be computed in Eq. (1).

Pr(Classj)× IOU truthpred =Pr(Classj |Object)
× Pr(Object)× IOU truthpred

(1)

The final layer of YOLO generates both classification prob-
abilities and coordinates of corresponding bounding boxes,
which are normalized to be in the range of 0 to 1. In total,
output of each grid cell is encoded as a tensor with the size
of m×m× (n×5+numbr of Classes). Except for the last
layer, which uses a linear activation function, all other layers
use the leaky rectified linear activation function to increase
non-linearity as shown in Eq. (2).

f(x) =

{
x, if x > 0

0.1x, Otherwise
(2)

An improved version YOLOv3 applies a more powerful
feature extractor with more convolutional layers and residual
layers to achieve better detection performances. Furthermore,
YOLOv3 predicts boxes at three different scales. To be spe-
cific, three feature maps of different scales are obtained. Two
of them are generated by transmitting the original feature
map using twice up-sampling on previous layers, which is
similar to procedures in SSD. This strategy assists the network
to obtain more semantic information from the less-sampled
features and the earlier feature map. Batch normalization is
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applied to stabilize and increase the speed of the training
process. YOLOv3 has significant benefits over other state-of-
the-art methods on detection speed and has been applied in
many real-world applications [46], [47], [48], [49].

III. DATA COLLECTION

In this section, data collection apparatus and collection
procedures of the new dataset are introduced using in-vehicle
cameras for illegal parking detection.

A. Collection Apparatus

The data collection is conducted using a Honda Vezel car
shown in Fig. 2(a) with cameras being installed, which start
recording videos when driving. This type of car model is very
common in Singapore. The installation positions of the in-
vehicle cameras are preferred being at high altitude for better
reviews during video recording. Fig. 2(b) shows the layout of
the apparatus related to recording. There are three horizontally
placed 1080p-Full-HD cameras, which can record videos with
up to 30-frame per second. Item No. 1 is a side-view camera
to support front-view cameras to locate vehicles and parking
lots. Item No. 2 includes two front-view cameras, but only one
camera is used to detect and recognize vehicles with parking
sites. The other camera is set as the backup.

(a)

(b)

Fig. 2: Experiment vehicle and apparatus used in the data
collection. (a) Experiment vehicle (b) apparatus layout. Item
No. 1 is the side-view camera. Item No. 2 are the two front-
view cameras with only one being used for detection.

B. Collection Tasks and Procedures

The primary task is to collect videos of roadside parking
vehicles with as many different scenarios as possible, such
as different traffic conditions, street blocks, weather, and
illumination conditions. The experiment vehicle is driven by

an experienced driver to keep the speed maintaining around 40
Km/h, which is the average driving speed of the enforcement
vehicles in urban areas of Singapore. In order to collect data
samples under different illumination conditions and traffic
situations, the collection tasks are performed mainly once a
week within three time blocks: 9 am - 12 pm, 2 pm - 5 pm,
and 7 pm - 9 pm during June 2019 to January 2020. Loop tours
among the candidate roads, such as Veerasamy Road, Desker
Road, Gul Way, and Aliwal Street, etc., are conducted for data
collection tasks with the in-vehicle cameras. These candidate
roads are selected according to the suggestions of Singapore
government authority experts, where illegal parking activities
are likely to happen. This strategy allows the data collection
team to have sufficient recording-time gaps in between for
the same candidate spot. It further increases the probability
of capturing different parking vehicles and different types
of illegal parking, as some of illegal parking activities are
rare, such as double parking. Consequently, after finishing
preliminary data processing, a few additional trips are made to
candidate spots, where rare cases are likely to happen making
our data less biased. In total, around 50-hours-long video
footages have been collected.

IV. DATASET DETAILS AND REAL-TIME ILLEGAL
PARKING DETECTION ALGORITHM

A. Dataset Details and Statistics
Object detection tasks aim to identify the existence of

the objects as well as their locations in images or videos
[50]. Many object detection tasks have been applied to ITS.
However, object detection in real traffic situations is challeng-
ing because a large number of candidate objects vary from
shapes, colours, and dimensions, with different environment
conditions, such as illumination and weather, etc. [51]. To
be specific, detection of illegal parking activities needs to
overcome the effects of similar vehicles with slight differences
in their parking details and other background effects such as
pedestrians or objects on roadsides. Compared with CCTV,
the main advantages of in-vehicle cameras include no limit
in locations and ROI. Therefore, the attributes of the new
dataset enable the detection algorithm to specify illegal park-
ing offence details. Taking Singapore as an example, there are
mainly six types of illegal parking activities listed in TABLE
I. As such, samples in the new dataset are classified into seven
parking types including six illegal types and one legal type.

After collecting raw video footages, a detailed data process-
ing is performed with the flowchart shown in Fig. 3. Firstly,
since illegal parking activities do not regularly exist through
constant recording, footages are required to be manually
clipped into short videos that contain illegal parking activities.
Secondly, manually labelling the learning contents frame by
frame from the selected videos is required, including vehicle
types, vehicle margins, and “minimal illegal units”. Vehicle
types and vehicle margins are used to generate pre-detected
vehicle regions. While the “minimal illegal units” are used
for the illegal units detection module to detect types of illegal
parking offence.

Every vehicle margin in each frame at the pixel-level is
labelled by combining with vehicle types and parking types,
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Fig. 3: Data processing flowchart including raw footages
clipping and image labeling.

TABLE I: Predefined Label Tags
No Vehicle Type No Parking Type (one legal and six illegal types)
1 Car 1 1st illegal parking type: Abreast / Double Parking
2 Heavy Vehicle 2 2nd illegal parking type: Against Single Centre White Line
3 Motorcycle 3 3rd illegal parking type: Along Double Yellow Lines

4 4th illegal parking type: Heavy Vehicle In Car Lot
5 5th illegal parking type: On Painted Island / Chevron Lines
6 6th illegal parking type: Out of Boundary
7 Legal parking type: Legal

in order to generate pre-detected vehicle regions, which will
be used in the overall algorithm construction. As such, its
label tag is derived accordingly, such as “Car: Along Double
Yellow Line”, “Heavy Vehicle: Against Single Centre White
Line”, etc. Note that heavy vehicles also include truck, bus,
etc. The details of predefined vehicle types and parking status
tags are listed in TABLE I.

Besides vehicle regions, detecting specific types of illegal
parking activities requires combining different essential infor-
mation shown in Fig. 4. Conventional image labelling methods
that require label objects separately in pixel-level will cost
a lot of human efforts and capitation. If the illegal parking
activities belong to Fig. 4(a) and (b), conventional image
labelling methods need to firstly mark the exact margins of
the lines and parking lots as well as the vehicles separately.
Next, corresponding label tags are required to be assigned to
different margins. If the activities belong to Fig. 4(c), conven-
tional image labelling methods will become more difficult and
inappropriate, as more complex margins of target objects need
to be separated. For example, if the illegal parking activities
belong to “Double parking”, conventional labelling methods
need to separately mark nearby vehicles, which may require
polygon boxes rather than rectangle boxes. It increases sig-
nificantly the labelling difficulty. Even if the vehicle locations
and line margins have been precisely labelled, it is hard to
determine the location relationship between the line margin
and the vehicle location among separate labelling boxes. Such
confusion may result in false alarms.

In order to address such problems, a novel labelling method
named “minimal illegal units” is introduced in this paper. It is
able to reduce the complex labelling workload for labelling il-
legal parking objects and efficiently link the vehicle’s location
with essential parking information. In general, the definition of
“minimal illegal units” refers to the minimum area acceptable

Fig. 4: Information required for detecting different types of
illegal parking. (a) detecting the 2nd, 3rd and 5th illegal
parking types; (b) for detecting the 4th and 6th illegal parking
types; (c) for detecting the 1st illegal parking type.

Fig. 5: Illustration sample of “minimal illegal units”. The
rectangle in red is the acceptable “minimal illegal units” and
rectangles in orange are other defective units.

for humans to determine vehicle parts and illegal parking
offence details. One sample illustration of “minimal illegal
units” is shown in Fig. 5. In this figure, two rectangles in
orange are either too small or too large, such that either
illegal offence details are missed, or unnecessary background
information is contained. On the contrary, the rectangle in red
in the acceptable region contains both vehicle parts and illegal
parking offence details with a minimal area size for detection
tasks. Compared with conventional labelling methods, which
emphasize specific boundaries between objects, the proposed
labelling method requires less time and manpower. It allows
to combine multiple types of information into one rectangular
box without separating their boundaries. Both the vehicle’s
location and illegal details are extracted simultaneously within
a region which contains little unwanted background informa-
tion. Therefore, both individual characteristics and the location
relationship of these two components can be obtained for the
illegal parking detection module. Nevertheless, to maintain top
learning performances, during the image labelling, on the one
hand, vehicle parts inside the labelling box should not be too
small to be regarded as a vehicle part. On the other hand,
the proportion of vehicle parts and illegal factors such as a
segment of yellow or a corner of one parking lot should not
vary significantly for all labelled samples.

Using the proposed “minimal illegal units” labelling
method, images are labelled according to the six types of
illegal parking. Fig. 6 shows labelling examples according to
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TABLE II: Number of Samples in the Constructed Dataset for
Each Illegal Parking Type

Illegal Parking Type Number of Samples

1st illegal parking type: Abreast / Double Parking 1702
2nd illegal parking type: Against Single Centre White Line 3580
3rd illegal parking type: Along Double Yellow Lines 4859
4th illegal parking type: Heavy Vehicle In Car Lot 269
5th illegal parking type: On Painted Island / Chevron Lines 1693
6th illegal parking type: Out of Boundary 1818

the required information mentioned in Fig. 4. To be specific,
for illegal parking activities belonging to Fig. 4(a) such as
“2nd illegal parking type: Against Single Centre White Line”,
“3rd illegal parking type: Along double yellow line” and “5th

illegal parking type: On Painted Island / Chevron Lines”, the
“minimal illegal units” are set as the area that contains the
wheel, which can represent the vehicle information and parts
of the road line. After testing and fine-tuning the detection
performance, the proportion between the area of vehicle and
road line is set to be around 2:1.

Illegal parking activities within types of Fig. 4(b), such as
“4th illegal parking type: Heavy Vehicle In Car Lot” and “6th

illegal parking type: Out of Boundary”, parts of the vehicle
(including the front or the rear wheel) with the parking lot’s
corner being labelled as the “minimal illegal units”.

Similar way is applied to Fig. 4(c) on “1st illegal parking
type: Abreast / Double Parking”, where parts of the head or
back of the illegally parked vehicle and the partially blocked
vehicle are marked as “minimal illegal units”.

In total, there are 13,921 labelled illegal parking samples in
10,972 images in the constructed dataset by our research team.
These samples are further classified into six illegal parking
types. The number of collected samples for each type of illegal
parking is shown in TABLE II.

B. Comparison with Three Relevant Public Datasets

The new dataset aims to include the details that are not
covered in the three mentioned public datasets based on CCTV.
This new dataset contains large number of illegally parked
vehicles and recorded street blocks with different illegal
parking types’ details. Sufficient samples and recorded street
blocks cover most of the practical scenarios that enforcement
authority may encounter.

Furthermore, since the new dataset has non-fixed ROIs
for each frame, it can better prevent the algorithm from
stacking in the non-object features to generate overfitting
phenomenon [39] during the training. A larger number of
samples can assist the proposed detection algorithm to achieve
better generalization. The comparison of the new dataset and
these mentioned CCTV based ones is shown in TABLE III.

C. Real-Time Illegal Parking Detection Algorithm

Given an input image obtained from the collected videos,
the task is to determine whether or not vehicles in this frame
are parked legally or illegally with specific offences’ types.
Fig. 7 illustrates the architecture of the proposed algorithm,

which consists of two modules: offline training and real-
time detection. The training data is used to achieve offline
training of the illegal units detection and to determine the
IOU overlap area threshold τ . In addition, in the real-time
detection pipeline, the trained illegal units detection module
processes the input image to generate illegal units detection
outputs. Then the result is combined with the corresponding
vehicles’ regions data based on IOU overlap area threshold.
It is followed by the voting based process that is applied
to generate output parking types of vehicles. Each of these
components is explained in the following Section IV-D and
Section IV-E.

D. Offline Training

YOLOv3 [52] has come out with a more reliable trade-off
between accuracy and detection speed than earlier versions.
YOLOv3 makes some changes in its detection strategies
such as using logistic loss and predicting boxes with three
different scales. As a result, YOLOv3 can manage many real-
time object detection tasks with relatively high processing
performances.

One YOLOv3 deep learning network is used for illegal
units detection in Fig. 7. There are two types of data used
for training: labelled vehicle region training data and labelled
illegal units training data. The training set for the vehicle
region contains data {X1, T1} = {x1i, t1i}ni=1, where x1i
represents the coordinates of rectangular labelled vehicles
and t1i represents the corresponding vehicle types defined in
TABLE I.

Similarly, the training set for the illegal units detection
module contains data {X2, T2} = {x2i, t2i}mi=1, where x2i
contains coordinates of the rectangular labelled illegal units
and t2i is the corresponding illegal parking types, excluding
the type “Legal” defined in TABLE I.

The minimum IOU overlap area threshold τ among the
vehicle regions and detected illegal units is determined based
on the IOU overlap value between {X1, T1} and {X2, T2}.

For the detection module, mini-batches with a batch size
of eight are used to divide corresponding training data. The
network performs forward propagation on the current mini-
batch to compute their output and loss. Next, stochastic
gradient descent (SGD) [53] method is used to achieve weights
update during back propagation. After parameters tuning and
evaluations, for the networks of the illegal units detection
module, the default learning rate is set to be η0 = 0.001
and gradually decreases when the train process is close to
finishing the total batches [54]. The momentum and decay of
both networks are ϕ = 0.9 and λ = 0.0005, respectively.

In the training process, YOLOv3 model aims to optimize
the multi-task loss function [46], [52] shown in Eq. (3).
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(a) (b)

(c) (d)

(e) (f)

Fig. 6: Labelling examples of six types of illegal parking activities: red rectangles are training examples of the “minimal illegal
units”. (a) the 1st illegal type: “Abreast / Double Parking”. (b) the 2nd illegal parking type: “Against Single Centre White
Line”. (c) the 3rd illegal parking type: “Along Double Yellow Lines”. (d) the 4th illegal parking type: “Heavy Vehicle In Car
Lot”. (e) the 5th illegal parking type: “On Painted Island / Chevron Lines”. (f) the 6th illegal parking type: “Out of Boundary”.

TABLE III: Comparisons of the New Dataset with Common CCTV Illegal Parking Detection Datasets

Dataset Content The New Dataset i-LIDS [8] ISLab-PVD [14] Sussex Traffic Monitoring [15]

Type of Camera In-Vehicle Camera CCTV CCTV CCTV

Daytime / Night Both Both Both Both

Multiple Objects X X X X

Non-fixed ROI X × × ×
Number of Illegal Parking Sample Category 6 1 1 1

Number of Recorded Street Block >30 N.A. ≈16 N.A.

Loss =

αcoord

m2∑
i=0

n∑
j=0

Iobjij [(xi − x̂i)2 + (yi − ŷi)2]

+ αcoord

m2∑
i=0

n∑
j=0

Iobjij
[
(
√
wi −

√
ŵi

)2
+

(√
hi −

√
ĥi

)2

]

+ LCon + LClass
(3)

where the first and the second lines are the coordinates loss
of the bounding boxes; x̂i, ŷi, ŵi, ĥi are ground truth of the
coordinates; and Iobjij = 1 if there exist objects in jth bounding
box derived by ith cell, otherwise Iobjij = 0.

Notations of LCon and LClass are Confidence loss and Clas-
sification loss as shown in Eq. (4) and Eq. (5), respectively.

LCon = −
m2∑
i=0

n∑
j=0

Iobjij [Ŝilog(Si) + (1− Ŝi)log(1− Si)]

− αnoobj
m2∑
i=0

n∑
j=0

Inoobjij [Ŝilog(Si) + (1− Ŝi)log(1− Si)]

(4)

LClass = −
m2∑
i=0

Iobji
∑

pi∈classes

[P̂ r(pi)log(Pr(pi))

+ (1− P̂ r(pi))log(1− Pr(pi))]

(5)

where Inoobjij is the complement of Iobjij ; Si is the confidence
score; Pr(pi) is the probability of class pi; Ŝi and P̂ r(pi)
are the ground truth of the confidence score and probability
of class pi, respectively.



8

Fig. 7: Flow chart of the proposed detection algorithm.

Fig. 8: Illustrated example of the refined detection strategy.

Sigmoid activation function is used to produce Si and pi.
But one drawback is that the output of the sigmoid function
derivative will become too small if its input is large. As
a result, the model’s convergence speed becomes very slow
if we use a loss function like mean squared error (MSE),
which was applied on YOLOv1, making the error value too
small. To overcome such drawback, the cross-entropy loss
function is applied to LCon and LClass in Eq. (4) and (5) to
reduce the negative effect of the small values generated by the
sigmoid function derivative during the backpropagation [55].
Different detection tasks have different sample characteristics.
For example, if most grid cells of samples from one task do
not contain an object, the influence of scarce cells containing

objects may need to be increased to make the model focusing
more on the cells that contain objects. Therefore, αcoord in
Eq. (3) and αnoobj in Eq. (4) are hyper-parameters to balance
the loss from cells containing objects and non-object. To be
specific, if αcoord is set to be higher than αnoobj , it puts more
emphasis on cells containing objects and leads to better recall
performance.

Evaluations of the hyper-parameter setting of the detection
module will be discussed in Section V. Since the experimental
vehicle may make turns frequently during the practical use,
both front-view and side-view images are combined to train
one network to make it less sensitive to change of view.
Moreover, in order to make the algorithm more robust to
the change of illuminations, artificial data augmentations by
changing values of brightness, saturation and contrast within
the statistical results of the collected data are applied to the
training data during the training.

E. Real-time Detection

The detection goal is to determine the parking type of
each vehicle rather than to detect locations of human-defined
“minimal illegal units” ground truth boxes, subject to manual
deviations. Slight location shifts between such predicted units
and ground truth units do not necessarily affect the parking
type of one vehicle. Therefore, the illegal parking detection can
be treated as a multi-class classification problem of parking
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Fig. 9: Example of single vehicle with multiple “minimal
illegal units”.

types for vehicles that appear in each frame, rather than a
pure object detection problem for “minimal illegal units”.
The illustrated procedures of the refined detection strategy are
shown in Fig. 8. This strategy makes the algorithm focusing
on the determination of the parking type of each vehicle. It
is our goal to alleviate the impacts of small location devia-
tions from the predicted “minimal illegal units”. Such small
deviations are not significant for the results of vehicle parking
type classification. Besides, one vehicle may have multiple
“minimal illegal units”, an example being shown in Fig. 9. To
get appropriate output parking type, a majority voting based
process [56] is adopted in the developed algorithm.

Each input image s of the test dataset S is processed by the
illegal units detection module to generate I detection outputs
as shown in Eq. (6).

OIPi = (xIPi , yIPi , wIPi , hIPi , sqi , λ
q
i ); i = 1, ..., I (6)

where xIPi , yIPi , wIPi , hIPi are boxes locations values; sqi and
λqi represent the confidence score and the detected illegal
parking type among number of Q (Q = 6) illegal parking
types for the ith detection box, respectively. Then every
predicted output OIPi from the illegal units detection module
will be assigned based on the IOU overlap value to N vehicles’
regions in each image frame as shown in Eq. (7).

OVj = (xVj , y
V
j , w

V
j , h

V
j ); j = 1, ..., N (7)

where xVj , y
V
j , w

V
j , h

V
j are vehicle’s locations values.

The minimum threshold τ is set to filter out the output
OIPi with too small IOU values θi. So the jth vehicles’
region OVj contains number of K illegal parking type λqi
with corresponding confidence score sqi . The final output
parking type for each OVj is then determined by majority
voting on number of K assigned illegal parking type λqk and
corresponding confidence score sqk, where k = 1...K.

A vector COj ∈ RQ with the same number of target illegal
parking types is used to record K illegal units detection results
that are assigned to the jth vehicle’s region OVj . The value of
the qth entry in the vector is the sum of the confidence score
sqk whose corresponding illegal parking type λqk is q, as shown
in Eq. (8).

COj
(q) =

∑
λq
k∈q

sqk (8)

The parking type output of every vehicle’s region OVj is
determined by a majority voting process, as shown in Eq. (9).

λmaxj = argmax
q∈[1,...,Q]

{COj
(q)} (9)

If a vehicle’s region OVj has not been assigned with any
illegal parking type, the output parking type of that vehicle
will be “Legal”.

Therefore, if one OVj has been assigned with at least one
OIPi , the output parking type is shown in Eq. (10).

OFinalj = (xVj , y
V
j , w

V
j , h

V
j , λ

max
j ); j = 1, ..., N (10)

where λmaxj is the output of the majority voting process for
OVj . Otherwise, if there is no OIPi being assigned to OVj , the
results will be as shown in Eq. (11).

OFinalj = (xVj , y
V
j , w

V
j , h

V
j , Legal); j = 1, ..., N (11)

The pseudocode of our real-time detection algorithm is
presented in Algorithm 1.

Algorithm 1: Real-time Detection Algorithm
Input: Test Dataset S, number of illegal parking type

Q and IOU threshold τ

for s ∈ S do
Obtain I detection outputs with confidence score
sqm from the trained detection module;

for i ∈ I do
IOU θi ← using eq. (6) and eq. (7);
if θi > τ then

for q ∈ Q do
Vector COi

(q) ← sqi ;
end

else
COi

(q) ← 0
end

end
λmax ← argmaxq∈[1,...,Q] {COi(q)};
if λmax 6= 0 then

Output parking type ← λmax;
else

Output parking type ← Legal
end

end

V. EXPERIMENTS

In this section, performance evaluation, benchmark and
simulation results and the hyper-parameter setting for the real-
time illegal parking detection algorithm developed in Section
IV are presented. The ability of the developed algorithm to
handle illumination changes is also analyzed. Additionally,
detection performance comparisons and time cost analysis
with other commonly used detection models are performed.
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TABLE IV: Benchmark Performance Results for the Proposed Algorithm for Illegal Parking Detection

Parking Type Number Parking Type Name Precision ( % ) Recall ( % )

1 Abreast / Double Parking 88.73 91.95
2 Against Single Centre White Line 91.53 94.98
3 Along Double Yellow Lines 83.47 96.83
4 Heavy Vehicle In Car Lot 95.38 89.48
5 On Painted Island / Chevron Lines 95.45 94.12
6 Out of Boundary 80.39 77.78
7 Legal 96.69 92.50

Average Precision ( % ) 90.24
Average Recall ( % ) 91.09

F-Score ( % ) 90.66

TABLE V: Comparisons Results with Relevant Detection Models for Illegal Parking Detection

Parking Type Number Parking Type Name ResNet-50 [57] ResNet-101 [57] RetinaNet-50 [58] RetinaNet-101 [58] SSD[44]

Precision ( % ) Recall ( % ) Precision ( % ) Recall ( % ) Precision ( % ) Recall ( % ) Precision ( % ) Recall ( % ) Precision ( % ) Recall ( % )

1 Abreast / Double Parking 91.10 85.94 92.17 85.82 91.96 88.80 92.19 88.21 86.90 78.94

2 Against Single Centre White Line 98.04 78.11 98.84 74.20 94.98 70.27 92.69 70.07 97.36 70.06

3 Along Double Yellow Lines 86.87 82.22 90.37 82.27 83.22 83.35 84.72 83.82 78.98 75.53

4 Heavy Vehicle In Car Lot 87.76 96.06 89.23 94.91 77.28 95.28 76.84 96.85 89.42 50.30

5 On Painted Island / Chevron Lines 96.20 87.09 97.67 86.98 94.89 88.28 95.38 86.92 97.67 75.07

6 Out of Boundary 88.32 65.02 93.52 63.17 86.19 62.79 83.59 63.77 85.54 33.62

7 Legal 88.20 96.41 87.64 98.15 86.87 94.34 86.85 94.16 83.64 97.45

Average Precision ( % ) 90.93 92.78 87.91 87.47 88.50

Average Recall ( % ) 84.41 83.64 83.30 83.40 68.71

F-Score ( % ) 87.54 87.97 85.55 85.38 77.36

A. Experiment Setup

The experiments are conducted with Pytorch [59] deep
learning framework which is run on a NVIDIA TESLA P100
GPU. The 3-fold cross-validation processes [60], [61] are
conducted. To be specific, we split the entire collected dataset
into three non-overlapping folds: one fold is reserved for
testing, the other two folds are served for training. Each fold
has nearly the equal number of data samples. Each of these
three folds is used for testing once, whose performances are
recorded. The average performance of these three tests is
derived accordingly.

B. Evaluation Metric

Since labels of parking types have already been assigned
to each vehicle, the detection problem can be treated as the
multi-class classification for each vehicle. The following five
evaluation metrics shown in Eq. (12) to (16) are employed to
evaluate the performances of the developed algorithm:

Precision(Classj) =
TPj

TPj + FPj
(12)

Recall(Classj) =
TPj

TPj + FNj
(13)

Precision =
1

M

∑M

j=1

TPj
TPj + FPj

(14)

Recall =
1

M

∑M

j=1

TPj
TPj + FNj

(15)

F -Score = (1 + γ2)
Precision×Recall
γ2Precision+Recall

(16)

where TPj is the number of jth type parking vehicles that
are correctly classified; FPj is the number of NOT jth type
parking vehicles that are misclassified as jth type; FNj is the
number of jth type parking vehicles that are misclassified as
NOT jth type; M is the number of classes; γ is the parameter
to define the importance weight between precision and recall.

The computations of TPj , FPj , and FNj are shown in Eq.
(17) to (19).

TPj =

{
TPj + 1, if λmax = j and GT = j

0, Otherwise
(17)

FPj =

{
FPj + 1, if λmax = j and GT 6= j

0, Otherwise
(18)

FNj =

{
FNj + 1, if λmax 6= j and GT = j

0, Otherwise
(19)

where GT is the ground truth label and λmax is the prediction
of parking type produced by the proposed method shown in
Eq. (10).

Precision and recall are commonly used in the evaluation
of classification problems to represent the positive predictive
rate and sensitivity of one algorithm. F-Score [62] combines
precision and recall into a single metric by using a harmonic
mean calculation. Here, because of the equal importance of
precision and recall, we set γ = 1.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Fig. 10: Visualization example of illegal parking detection results. Every figure shows the front view or side view example
for one of the six illegal parking types. Note that only front view images for 2nd illegal parking type: “Against Single Centre
White Line” are captured, because the side view camera is set on the left side. But the single centre white line always lays on
the centre of the road lane, making it unable to be recorded by this camera.

C. Evaluation of Illegal Parking Detection Performance

Even if there are multiple vehicles in one frame, the
proposed algorithm can successfully detect the illegal parking
activities and classify them within six illegal parking types or
one legal parking type. To evaluate the ability of the proposed
algorithm in preventing false alarm, precision and recall values
of vehicles with the parking type “Legal” are also calculated
in the experiments.

Fig. 10 shows detection examples for every parking type
in the experiment. Each colour of the rectangular boxes
represents one specific parking type as follows:

• Blue - 1st illegal parking type: “Abreast / Double Park-
ing”,

• Yellow - 2nd illegal parking type: “Against Single Centre
White Line”,

• Red - 3rd illegal parking type: “Along Double Yellow
Lines”,

• Orange - 4th illegal parking type: “Heavy Vehicle In Car
Lot”,

• Purple - 5th illegal parking type: “On Painted Island /
Chevron Lines”,

• Cyan - 6th illegal parking type: “Out of Boundary”,
• Green - Legal type: “Legal”.

TABLE IV presents the benchmark results tested on the
constructed dataset. Data collected from the front-view and
side-view in-vehicle cameras are evaluated together because
mixed training method is applied in offline training. Observed
in TABLE IV, the overall F-Score of the proposed algorithm
is 90.66%. Average Precision for all seven parking types is
90.24% and Average Recall is 91.09%. The outcomes of these
evaluation metrics show that the proposed algorithm is able
to deal with illegal parking detection tasks efficiently. After
analysing some mistaken cases such as those shown in Fig.
11, these cases are reasonably considered as very hard to be
differentiated. To be specific, as shown in Fig. 11(a), 11(b)
and 11(c), in some image frames, traffic lines such as “Single
Centre White Line” or “Painted Island / Chevron Lines” or the
parking lot conner are not clear, which makes it difficult to
recognise them as illegal parking activities. Fig. 11(d) shows
an example of very ambiguous case, where the head of the
vehicle has parked out of the parking lots corner. This is the
obvious characteristics for type “Out of Boundary” but since
“double yellow lines” is near the vehicle, it is reasonable for
type “Along Double Yellow Lines” also. As a result, under
this circumstance, it is hard to make correct detection. Note
that both values of precision and recall for type “Legal” are
above or near 90%, which means the algorithm has a good
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ability to reduce false alarms.
In addition, performance comparisons with related detection

models are presented in TABLE V. Five other commonly
used detection models including ResNet-50 [57], ResNet-
101 [57], RetinaNet-50 [58], RetinaNet-101 [58] and SSD
[44] are selected to replace the YOLOv3 detection models to
compare the illegal parking detection performance. The first
two models, i.e., ResNet-50 and ResNet-101, are based on the
baseline Faster R-CNN [63] detection system with different
backbone structures. RetinaNet-50 and RetinaNet-101 are two
single unified network composed of ResNet-50 and ResNet-
101 backbones with Feature Pyramid Network (FPN) structure
[64], respectively. The backbone is applied to generate con-
volutional feature maps over an entire input image. SSD is a
widely used recent one-stage detection network. Comparing
the results presented in TABLE IV and TABLE V, results of
Average Precision of ResNet-50 and ResNet-101 are 90.93%
and 92.78%, respectively. While these two results are a little
higher than the Average Precision of the proposed algorithm,
their F-Score and Average Recall are both lower than that of
the proposed algorithm. This shows that overall the proposed
algorithm achieves satisfactory generalization and robustness.

Compared with performances produced by one-stage mod-
els including RetinaNet-50, RetinaNet-101 and SSD, all met-
rics including Average Precision, Average Recall and F-Score
produced by the proposed algorithm with YOLOv3 as de-
tection models are much higher than these detection models.
Observed from the comparison results, the proposed algorithm
can detect different illegal parking types efficiently.

In order to perform the time cost analysis, the offline train-
ing time cost and detection time cost of the proposed algorithm
are evaluated and compared with other five models listed
in TABLE VII. Their implementation environments are kept
unchanged in the experiments to make it a fair comparison.
As shown in TABLE VII, the proposed algorithm requires the
minimum offline training time compared with the other five
models. The ResNet-50 and ResNet-101 are two-stage based
models that require using region proposal network (RPN) to
generate region proposal, which are followed by the stage
of classification and bounding box regression. As a result,
these two models need much more time in training with 27.52
hours and 62.68 hours, respectively. Although RetinaNet-
50 and RetinaNet-101 are one-stage networks, they have a
rather large FPN structure backbone with two subnetworks.
One is for classifying anchor boxes; and the other is for
regressing anchors to target objects boxes. As such, their
training processes still need long time with 9.86 hours and
21.24 hours, respectively. Moreover, SSD uses a large CNN
based feature extractor in the network. It takes about 37.65
hours for training. On the contrary, the proposed algorithm
adopts YOLOv3 as the detection model that directly deals
with the bounding box regression problem on each grid cell.
Therefore, the training speed is much faster, which is about
6.23 hours. Similarly, the YOLOv3 model has a much faster
detection speed than the other models. As such, the proposed
algorithm achieves the least detection time per image among
these models, which is around 0.07 second. Other one-stage
models take shorter detection time than that of the two-

(a) (b)

(c) (d)

Fig. 11: Examples of mistakes during the experiment. (a), (b),
and (c) are mistakes caused by unclear traffic lines or parking
lot conner. (d) is the mistake caused by confusion of 3rd illegal
parking type: “Along Double Yellow Lines” and 6th illegal
parking type: “Out of Boundary”.

stage models (i.e., 0.21 and 0.24 second for RetinaNet-50 and
RetinaNet-101, respectively and 0.17 second for SSD), but is
still longer than that of the proposed algorithm.

Moreover, the time complexity of the proposed algorithm
has also been evaluated and compared with those five models
in terms of floating point operations (FLOPs). We assume
that computational load of the proposed algorithm is mainly
contributed by the deep learning networks in the detection
module. The batch normalization and ReLU operations are
negligible comparing to the operations by the convolution lay-
ers in the network architecture. As such, for each convolution
layer, there are (2×Ci×k)×HW ×Co operations, where Ci
denotes the input channel; k denotes the square of kernel size;
HW denotes the output feature map area; and Co denotes
the output channel. Based on the analysis of the operations
above, the complexity results are shown in the TABLE VII.
It is observed that the proposed algorithm has much smaller
number of FLOPs than those of these four models, ResNet-
50, ResNet-101, RetinaNet-50, and RetinaNet-101, but slightly
larger number of FLOPs than that of the SSD model. Note
that the proposed algorithm has lower training time cost and
detection time cost than that of SSD, and also better detection
performances (e.g., F-Score: the proposed algorithm: 90.66%,
SSD: 77.36%).

D. Hyper-parameter Setting

YOLOv3 naturally handles multiple object detections and
has few hyper-parameters to tune, which is more flexible
for illegal parking detection. The learning rate is the hyper-
parameter that controls the learning progress. Too large learn-
ing rate leads to unwanted diverge, while too small learning
rate seriously slows down the learning process. Optimizers
link together the model weights and the loss function by
updating the model in response to a decrease in the output
of the loss function. Several optimizers are commonly used in
training deep neural networks such as SGD and Adam [65].
However, the choice of optimizers normally depends on the
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TABLE VI: Performance of Illumination Robustness for the Proposed Algorithm of Illegal Parking Detection

Parking Type Number Parking Type Precision ( % ) Recall ( % )

1 Abreast / Double Parking 88.65 91.60
2 Against Single Centre White Line 91.45 94.95
3 Along Double Yellow Lines 82.70 96.71
4 Heavy Vehicle In Car Lot 93.78 90.23
5 On Painted Island / Chevron Lines 95.23 94.36
6 Out of Boundary 80.36 77.11
7 Legal 96.63 92.26

Average Precision ( % ) 89.83
Average Recall ( % ) 91.03

F-Score ( % ) 90.42

Fig. 12: Detection performances along with relative precision
and recall values obtained by different starting learning rates
with SGD or Adam optimizer.

characteristics of the dataset and multiple trials. The goal of
this subsection is to build the hyper-parameters setting, includ-
ing the learning rate and the optimizer using our constructed
dataset as an example. Fig. 12 presents the F-Score along
with relative Average Precision and Average Recall values
obtained by four combinations of optimizers with different
starting learning rates. Among these four, the highest F-Score
is obtained using SGD optimizer with starting learning rate
η = 0.001. Results obtained from SGD optimizer with starting
learning rate η = 0.0001 are not good. This phenomenon may
result from the fact that too small learning rates will make
the model trapped in the suboptimal solution and miss the
global optimum. Moreover, as the training further continues,
the model turns more susceptible to overfitting. Besides, using
SGD as the optimizer with starting learning rate η = 0.001
generates more competitive performance in F-Score compared
with Adam optimizer. According to Im et al. [66] and Keskar
et al. [67], in the late stages of the training, step sizes learned
by Adam optimizer may circumstantially become extremely
small, making it suffering from inefficient convergence and
being outperformed by SGD for final weights generation.

E. Evaluation of Illumination Robustness

Since the proposed algorithm is expected to work all day in
practical applications, its performance is evaluated with images

TABLE VII: Time complexity result comparisons

Detection Model Name Offline Training Time (hour) Detection Time per Image (second) FLOPs (G)(≈)

ResNet-50 [57] 27.52 0.35 832.43

ResNet-101 [57] 62.68 0.40 907.21

RetinaNet-50 [58] 9.86 0.21 203.02

RetinaNet-101 [58] 21.24 0.24 279.38

SSD [44] 37.65 0.17 61.58

The Proposed Algorithm 6.23 0.07 65.64

of different illumination conditions. The brightness of tested
images is randomly changed within a range to simulate differ-
ent illumination conditions. TABLE VI shows the performance
of the proposed algorithm in random illumination conditions.
Fig. 13 presents the comparison of precision and recall results
between the standard test and the illumination robustness test.
Please take note that the experiment results of the standard
test are presented in TABLE IV. The bars in blue represent
results produced from the standard test, and bars in orange
represent results produced from the illumination robustness
test. Except for the brightness of test images, other factors of
the test dataset remain the same.

Observed from TABLE VI, the overall F-Score in various
illumination conditions is 90.42%, very close to that of the
standard test (i.e., 90.66% shown in TABLE IV). The Average
Precision and Average Recall values of the seven parking
types for illumination robustness test are 89.83% and 91.03%,
respectively. These two values are about 1% less than those
of the standard test. This phenomenon means that the changes
of illumination will have some impacts on the performance of
the detection of illegal parking types, which is expected. To
be specific, deficient or excessive illumination condition will
make small corner boundaries of parking lots and the blocked
vehicles more blurry, which becomes similar to backgrounds.
In summary, results of two kinds of tests are close, showing
that the proposed algorithm exhibits satisfactory illumination
robustness. Visualization examples of comparison results in
the evaluation of illumination robustness are shown in Fig.
14.

F. Evaluation of Robustness under Different Weather Condi-
tions

Since the proposed detection algorithm with in-vehicle
cameras is expected to work in urban environments regardless
of weather conditions, its performance robustness needs to be
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(a)

(b)

Fig. 13: Comparison of classification precision and recall
results. (a) precision (b) recall.

evaluated under various common weather conditions, such as
good weather, rainy, or sunspot under extreme sunshiny days.
The detection performances of the developed algorithm are
expected to be affected, as raindrops, sunspots or reflections
on the vehicle windows may blur images acquired by the in-
vehicle cameras. We also add two other categories named
as good weather plus rainy, and good weather plus spot,
which combine images under good weather with rainy, and
good weather with sunspots (or spot in short), respectively.
It is observed from the performances in the five categories
shown in Fig. 15, the performances of the proposed algorithm
remain robust and stable in these common weather conditions.
Specifically, the drop of the F-Score performance is less than
2% comparing good weather to sunspots or rainy. It is further
observed that the negative impact of rainy condition is more
significant than that of the sunspots. This phenomenon is
reasonable, because raindrops on the entire vehicle window
are likely to affect the window visibility for the in-vehicle
cameras, while the sunspots or reflections on vehicle windows
may only affect parts of the windows. The evaluation results
illustrate the detection of the proposed algorithm is robust
under different weather conditions.

(a) (b)

(c) (d)

Fig. 14: Visualization of several comparison examples in the
illumination robustness test. (a) and (c) are reference results
in the standard test. (b) and (d) are corresponding results
in the illumination robustness test. Red represents the 3rd

illegal parking type: “Along Double Yellow Lines” and Cyan
represents the 6th illegal parking type: “Out of Boundary”.

Fig. 15: Detection performances on average precision, average
recall and F-score values under different weather conditions.

G. Limitation

According to results shown in Fig. 13, if the illumination
conditions are changing to too bright or too dark, the corner
boundaries of parking lots will be blurrier, which becomes
similar to backgrounds. It results in the decrease of the
precision and recall values for the illegal parking type “Out
of Boundary”. As such, more image enhancement or super
resolution techniques can be added in the overall real-time
detection algorithm to better reduce the negative impacts
generated by the excessive change of illumination conditions.
In addition, in real-world environments, vehicles which are
far away from the in-vehicle cameras are of very small
shapes. Road lines or parking lots are also very hard to be
recognized from far distance. As such, those vehicles parking
far away from the in-vehicle cameras will be difficult to detect
accurately by the proposed method. In the future, advanced
image enhancement techniques could be added to improve the
detection of vehicles parking far away.
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VI. CONCLUSIONS

To better deal with illegal parking detection tasks, a novel
voting-based algorithm has been proposed to achieve real-time
illegal parking detection. The new detection algorithm pro-
vides multiple illegal parking offences’ types using in-vehicle
cameras and is more suitable for real-world dynamic scenarios.
It overcomes the limitation of existing CCTV based methods,
which require complex and high-cost installation procedures
for data collection but do not provide illegal parking details.
A well-constructed illegal parking detection dataset has been
newly developed by the research team, which has more than
10,000 images captured in Singapore with highly accurate an-
notations, covering six common illegal parking types and one
legal parking type. In order to make the image labelling tasks
less labour demanding, as well better relating the vehicle to its
detailed parking type, a novel image labelling method named
“minimal illegal units” is proposed in this paper. It marks
multiple types of information in one rectangular box without
separating their boundaries. Experiments have been conducted
to evaluate the performance of the proposed solution on data
collected in urban areas of Singapore. Benchmark results for
illegal parking detection show that the proposed algorithm has
a notable ability to detect illegal parking activities. It is able to
further classify them into six types of illegally parking offences
with high robustness with respect to illumination.

The limitation of the current illegal parking detection algo-
rithm is all the videos were taken in Singapore, and mostly
during daytime. In the future, more data from other countries
and night time will be collected and evaluated by refining
the detection algorithm presented in this paper. In addition,
advanced image enhancement techniques can be added in
the overall real-time detection algorithm to reduce negative
impacts caused by the excessive changes of illumination
conditions.
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