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Abstract
The closed form analytical expression of the objective function of a single degree of freedom system with tuned mass
damper (TMD), subjected to Gaussian white noise and Kaimal forcing spectrum, is derived implementing the H2

optimization technique. To illustrate the procedure, a wind turbine tower with and without TMD, subjected to wind load,
has been presented. Kaimal spectrum has been considered to model the effects of wind load. Usually, the parameters of
TMD is optimized by implementing H2 optimization technique on Gaussian white noise (GWN) even though the system
is subject to any other forcing spectrum. Obtaining an analytical closed form expression of the objective function for
a TMD system considering a real spectrum is very challenging as a real spectrum may contains fractional order of
the frequency. Therefore, either objective function can be obtained numerically or an analytical form can be obtained
but only for GWN as an input forcing spectrum. To address the above mentioned issue, in this paper, the concept of
near identity spectrum (NIS) is introduced to idealize the Kaimal spectrum with high accuracy from which a closed form
expression of the objective function can be established. Further, histogram plots of the response reduction has been
made to show a comparison between TMD system optimized with Gaussian white noise and Kaimal spectrum. The
results showed that the displacement response of TMD system subjected to Kaimal spectrum yields better performance
if it is optimized according to Kaimal spectrum rather than GWN and vice versa.
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Introduction1

A tuned mass damper (TMD) is a vibration control device2

which can be attached to a vibrating member (primary3

system) subjected to the dynamic forces or base excitation.4

A mass connected by a parallel spring and dashpot element5

with the primary system is the most common form of a TMD,6

was first proposed by (Ormondroyd 1928). The parameters7

of a TMD, i.e. spring stiffness and damping coefficient can8

be obtained by implementing two analytical optimization9

techniques, namely H∞ and H2 optimization.10

The H∞ optimization technique can be used to estimate11

the optimum parameters when the primary system is12

subjected to harmonic force/motion (Hahnkamm 1933;13

Brock 1946; Snowdon 1974; Warburton 1982). Minimization14

of the maximum amplitude magnification factor (called15

H∞ norm) of the primary system is the key principle of16

the H∞ optimization technique (Nishihara and Matsuhisa17

1997; Ren 2001; Liu and Liu 2005; Wong and Cheung18

2008; Cheung and Wong 2009). Den Hartog (1985)19

derived the optimum parameters of the TMD system based20

on the fixed-point theory for minimizing the maximum21

vibration velocity response of a single degree of freedom22

(SDOF) system under harmonic excitation. Anh and Nguyen23

(2014) proposed an approach to determine the approximate24

analytical solutions for the H∞ optimization of the dynamic25

vibration absorber (DVA) attached to the damped primary26

structure subjected to force excitation by replacing with an27

equivalent undamped structure. A closed-form expression of28

the optimum parameters of a TMD can be obtained using29

the H∞ optimization technique if and only if damping is 30

not considered in the primary system (Ioi and Ikeda 1978; 31

Randall et al. 1981; Thompson 1981; Soom and Lee 1983). 32

For damped primary systems, several numerical and series 33

solutions has been proposed for obtaining the optimum 34

parameters as given in the state of the art (Sekiguchi and 35

Asami 1984; Yamaguchi and Harnpornchai 1993; Tsai and 36

Lin 1993; Asami et al. 1995; Zuo 2009). Liu and Coppola 37

(2010) used numerical approaches namely Chebyshev’s 38

equioscillation theorem to study the optimum design of 39

the damped primary system. Chun et al. (2015) studied 40

the H∞ optimal design of a DVA variant for suppressing 41

high-amplitude vibrations of damped primary systems using 42

diversity-guided cyclic-network-topology-based constrained 43

particle swarm optimization (Div-CNTCPSO) technique. 44

In contrary, the primary objective of the H2 optimization 45

technique is to reduce the total vibration energy of the 46

system’s overall frequency by minimizing the area under 47

the frequency response curve (Warburton 1982; Asami 48

et al. 1991, 2001). Several literature have proposed H2 49
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optimization techniques to estimate the optimum parameters50

of TMD systems (Adhikari et al. 2016; Asami et al. 2002;51

Chowdhury et al. 2021; Adhikari and Banerjee 2021). Ghosh52

et al. (2007) obtained a closed form expression for optimum53

tuning ratio of damped TMD system subjected to harmonic54

load and GWN. Zuo (2009) conducted decentralized H2 and55

H∞ control methods to optimize the parameters of spring56

stiffness and damping coefficients for random and harmonic57

vibration. Cheung and Wong (2011) derived H2 optimum58

parameters of a DVA to minimize the total vibration energy59

or the mean square motion of a single degree of freedom60

(SDOF) system under random force excitations. Chowdhury61

et al. (2022) compared the H2 and H∞ optimization methods62

to identify the optimal system parameters of different63

vibration control devices subjected to Gaussian white noise64

(GWN) and harmonic motion. All the studies mentioned65

above are conducted using GWN when the amplitude is66

constant over the frequency range . However, no one derived67

a closed-form expression of the objective function from68

which the optimum parameter of the TMD can be determined69

while the TMD is subjected to a forcing spectrum other than70

GWN.71

Motivated from above-mentioned research gap, in the72

present study, a forcing spectrum is considered in which the73

amplitude is variable over the frequency domain which is74

more realistic in nature. As an example of a real spectrum, in75

this study, Kaimal spectrum is considered. Kaimal spectrum76

is often used to model the effect of wind load for offshore77

structures, tall buildings, cable stayed bridges, transmission78

towers etc. (Ankireddi and Y. Yang 1996; Commission et al.79

2005; Det 2013; Tian and Gai 2015; Li et al. 2021). Since the80

function of the Kaimal spectrum usually contains fractional81

power of excitation frequency, the use of the H2 optimization82

technique to estimate closed-form expression of the objective83

function can sometimes be arduous (Colwell and Basu84

2009). To overcome the fractional power in the spectrum, a85

near identity spectrum (NIS) similar to the Kaimal spectrum86

is proposed in this paper, which helps in omitting the87

fractional power of excitation frequency. Finally, a closed-88

form expression can be obtained for the objective function89

after implementation of H2 optimization technique. The90

time displacement responses have been compared between91

a traditional wind turbine and wind turbine attached with a92

TMD system. Finally, histogram plots have been made to93

show a comparison between the optimum parameters of the94

TMD system optimized for GWN and Kaimal spectrum.95

x1 x2

f(t)

m1

k1

c1

k2

c2

m2

Wind Load (Kaimal Spectrum)

Figure 1. A tuned mass damper (TMD) system subjected to
random wind load (Kaimal spectrum)

Methodology 96

Frequency Response Function 97

A single degree of freedom (SDOF) system equipped 98

with a passive TMD is considered in the present study 99

as shown in Figure 1. Since, the two degree of freedom 100

system given in Figure 1 can be considered as the model 101

given by (Asami et al. 2002) and defining several non- 102

dimensional parameters such as mass ratio
(
µ = m2

m1

)
, 103

natural frequency of primary system
(
ω1 =

√
k1

m1

)
, primary 104

system damping ratio
(
ζ1 = c1

2m1ω1

)
, natural frequency of 105

TMD
(
ω2 =

√
k2

m2

)
, TMD damping ratio

(
ζ2 = c2

2m2ω2

)
, 106

frequency ratio
(
ν = ω2

ω1

)
and non-dimensional excitation 107

frequency
(
λ = ω

ω1

)
and substituting these parameters in 108

the equation of motion of two degree of freedom system, 109

Frequency Response Function (FRF) can be established as 110

H (λ) =
ν2 + (iλ)

2
+ 2ζ2ν (iλ) (iλ)

4
+ (2ζ1 + 2νζ2 + 2µνζ2) (iλ)

3
+(

1 + ν2 + µν2 + 4νζ1ζ2
)
(iλ)

2
+(

2ζ1ν
2 + 2ζ2ν

)
(iλ) + ν2


(1)

Kaimal spectrum 111

Since, our two degree of freedom system is subjected to wind 112

force which is considered as random load. Thus, following 113

DNV code (Det 2013) the Kaimal spectrum (KS) is used to 114

incorporate the effect of wind load. The theoretical KS for 115

fixed point reference point in space can be written as 116

Suu,k (ω) =
σ2
U

(
4Lk

Ū

)
(
1 + 3ωLk

πŪ

) 5
3

(2)

where Lk is the integral length scale, Ū is the mean wind 117

speed, σU is the standard deviation of mean wind speed and f 118

is the excitation frequency in Hz. The spectral density of the 119

turbulent thrust force on the rotor SFF,wind,k(ω) following 120

(Arany et al. 2015) can be written as 121

SFF,wind,k (ω) = ρ2a
D4π2

16
C2

T Ū
2σ2

U S̃uu,k (ω) (3)

where, 122

S̃uu,k (ω) =
Suu,k (ω)

σ2
U

(4)

and, 123

σU = IŪ (5)

where D is the diameter of the rotor, S̃uu,k(ω) is the 124

normalized Kaimal spectrum, ρa is the density of air, CT is 125

the thrust coefficient, I is the turbulence intensity. The thrust 126

coefficient can be estimated using (Frohboese et al. 2010) as 127

CT =
7

Ū
(6)
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Since, angular excitation frequency ω is the only variable and128

all other parameters can be considered as a constant. Thus,129

equation (3) can be written as130

SFF,k (ω) =
α

(βω + 1)
5
3

(7)

Objective Function131

Since, our TMD system is subjected to random load, to132

estimate the optimum parameters such as optimum frequency133

ratio (νopt) and TMD damping ratio (ζ2opt), H2 optimization134

technique (Asami et al. 2002) is used. In this method,135

standard deviation is considered as the objective function136

which is to be minimized. Thus, the standard deviation of137

displacement response can be derived following (Adhikari138

et al. 2016) as139

σ2
xx = E

[
x2 (t)

]
= Rxx (0) =

∞∫
−∞

SFF (ω) |H (ω)|2dω

= ω1

∞∫
−∞

SFF (λ) |H (λ)|2dλ

(8)
For simplification, equation (7) can be written in the form140

SFF,k (λ) =
α

(βω + 1)
5
3

=
α

(χλ+ 1)
5
3

(9)

where, χ = βω and ω = 2πf . Now, substituting equation (9)141

in equation (8), we obtain142

σ2
xx = γ

∞∫
−∞

1

(χλ+ 1)
5
3

|H (λ)|2dλ (10)

where, γ = αω1143

Validation for Gaussian White Noise (GWN)144

When the TMD system is subjected to GWN, the Power145

Spectral Density (PSD) will be considered as constant wrt146

λ. Thus, equation (8) can be normalized as147

Imin =
σ2
xx

2πω1SFF,k
=

1

2π
×
∫ ∞

−∞
|H (λ)|2dλ (11)

where, Imin is the performance index which is a non-148

dimensional form of variance. Now, to evaluate the149

integration of equation (11), (Newland 1993) suggested a150

methodology in which the integrand must be in the form of151

H (λ) =
B0 + (iλ)B1 + (iλ)

2
B2 + · · · (iλ)n−1

Bn−1

A0 + (iλ)A1 + (iλ)
2
A2 + · · · (iλ)nAn

(12)
Since, equation (1) is a 4th order polynomial of λ,152

substituting n = 4 in equation (12) we obtain153

H (λ) =
B0 + iλB1 − λ2B2 − iλ3B3

A0 + iλA1 − λ2A2 − iλ3A3 + λ4A4
(13)

Now, comparing equation (1) and equation (13) we obtain
the coefficients as

B0 = ν2, B1 = 2ζ2ν,B2 = 1, B3 = 0

A1 = 2ζ1ν
2 + 2ζ2ν

A2 = 1 + ν2 + µν2 + 4νζ1ζ2

A3 = 2ζ1 + 2νζ2 + 2µνζ2

A4 = 1 (14)
154

Imin =


A0B

2
3 (A0A3 −A1A2)

+A0A1A4

(
2B1B3 −B2

2

)
−A0A3A4

(
B2

1 − 2B0B2

)
+A4B

2
0 (A1A4 −A2A3)


2A0A4 (A0A2

3 +A4A2
1 −A1A2A3)

(15)

Figure 2 shows the contour of Performance Index Imin for 155

different frequency ratio (ν) and TMD damping ratio (ζ2). 156

From Figure 2, it can be observed that when a TMD is 157

subjected to GWN having mass ratio (µ = 0.1) and primary 158

system damping ratio (ζ1 = 0.01), the optimum frequency 159

ratio (νopt) was found to be 0.93 and the optimum TMD 160

damping ratio (ζ2opt) was found to be 0.15. equation (15) is 161

also validated with (Asami et al. 2002) for different values of 162

mass ratio µ and primary system damping ratio ζ1 as shown 163

in Figure 3. 164

μ = 0.1

ζ1 = 0.01

2

xx
σ

νopt = 0.93

ζ2opt = 0.15

0.01

0.01

1.0

Figure 2. Contour of Performance Index Imin for different
frequency ratio (ν) and TMD damping ratio (ζ2) subjected to
Gaussian white noise

Optimization for Kaimal Spectrum 165

For TMD system subjected to Kaimal Spectrum, a closed 166

form equation of the objective function given in equation 167

(8) cannot be directly obtained due to presence of fractional 168

power of λ in the integrand. Thus, solving it numerically, a 169

contour plot has been made for different frequency ratio (ν) 170

and TMD damping ratio (ζ1) as shown in Figure 4. From 171

Figure 4, it can be observed that when a TMD is subjected 172

to Kaimal Spectrum having mass ratio (µ = 0.1), primary 173

system damping ratio (ζ1 = 0.01) and a non-dimensional 174

parameter (χ = 100), the optimum frequency ratio (νopt) 175

was found to be 0.91 and the optimum TMD damping 176

ratio (ζ2opt) was found to be 0.15. The non-dimensional 177

parameter (χ = 100) mainly depends on mean wind velocity 178
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Figure 3. Validation with (Asami et al. 2002) for different values
of mass ratio µ and primary system damping ratio ζ1

Ū , integral length scale Lk and natural frequency of the179

primary system (ω1) and it has been observed that, higher180

value of χ does not have a much effect in the change181

of optimum parameters but, for lesser of χ, the value182

of optimum frequency ratio (νopt) tends toward optimum183

frequency ratio (νopt) of Gaussian white noise.184

νo�� = 0.91

ζ2o�� = 0.15

μ = 0.1

ζ1 = 0.01

 = 100

0.5

2

xx
σ

0.01

0.01

Figure 4. Contour of Variance σ2
xx for different frequency ratio

(ν) and TMD damping ratio (ζ2) subjected to Kaimal spectrum.
Here, the integral of equation (10) has been solved numerically
to obtain the contour plot.

Near Identity Spectrum185

Now, to estimate the objective function for TMD system186

subjected to Kaimal spectrum analytically, a near identity187

spectrum (NIS) has been established such that the power188

spectral density function can be written as189

SFF,k (λ) =
α

(χλ+1)
5
3

≈ SFF,n (λ) =
αδ(1+ε2λ2)

(1+χ2λ2)(1+ϕ2λ2)

(16)

where, δ, ε and ϕ are constants which depends on χ.190

Now, using non-linear regression technique and curve fitting191

method, a relationship can be developed between δ, ε and ϕ192

as a function of χ. The relationships can be expressed as193

δ = p1χ
3 + p2χ

2 + p3χ+ p4 (17)

ε = q1 ln (χ) +
q2
χ2

+
q3
χ

+ q4χ+ q5 (18)

and, 194

ϕ = r1e
(−r2χ) + r3χ

2 + r4χ+ r5 (19)

where, p1 = 4.685× 10−8, p2 = −4.897× 10−5, p3 = 195

0.02069, p4 = 0.9586, q1 = −0.1308, q2 = 1.307, q3 = 196

−2.748, q4 = 0.0003, q5 = 1.74, r1 = −0.6364, r2 = 197

0.2823, r3 = 1.82× 10−7, r4 = −0.0001584 and r5 = 198

0.6684. Now, comparing equation (16) for Kaimal spectrum 199

and Near Identity Spectrum in Figure 5, we can observe that 200

the Near Identity Spectrum almost coincides with the Kaimal 201

spectrum and can be used as a substitute of Kaimal spectrum 202

for further calculations. Now, to conduct H2 optimization, 203

substituting equation (16) in equation (8) and modifying 204

equation (8) as 205

Near Identity Spectrum

χ = 100α = 1

Figure 5. Comparison between Kaimal spectrum and Near
Identity spectrum (NIS)

σ2
x = αω1δ

∞∫
−∞

|T (λ)|2dλ =
παω1M6

a0∆6
(20)

where, the values of T (λ), M6 and ∆6 including the 206

entire derivation of the integral in equation (20) is given in 207

annex section. Figure 6 shows a contour of Variance (σ2
x) 208

for different frequency ratio (ν) and TMD damping ratio 209

(ζ1). From Figure 6, it can be observed that when a TMD 210

is subjected to NIS having mass ratio (µ = 0.1), primary 211

system damping ratio (ζ1 = 0.01) and non-dimensional 212

parameter (χ = 100), the optimum frequency ratio (νopt) 213

was found to be 0.91 and the optimum TMD damping ratio 214

(ζ2opt) was found to be 0.15 which exactly matches with the 215

optimum parameters of Figure 4 which provides us essential 216

confidence to use the NIS as a substitution spectrum of 217

Kaimal spectrum. 218

Results and Discussions 219

Time Domain Response 220

Using the concept of inverse fast Fourier transform, time 221

domain wind force can be represented as sum of N sinusoids 222
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νo�� = 0.91

ζ2o�� = 0.15

μ = 0.1

ζ1 = 0.01

 = 100

0.5

2

xx
σ

0.01

0.01

Figure 6. Contour of Variance σ2
xx for different frequency ratio

(ν) and TMD damping ratio (ζ2) for the Near Identity Spectrum
(NIS). Here, the integral of equation (20) has been solved
analytically to obtain the contour plot.

of amplitude Ai at an angular frequency ωi having phase223

angle φi:224

Fwind =

N∑
i=1

Ai sin (ωit+ φi) (21)

the amplitude can be determined from the power spectral225

density of turbulent thrust force as226

A =
√
2SFF (f) (22)

Now, using MATLAB tool called ode solver and assuming227

the initial conditions for displacement and velocity as zero,228

the time domain response can be evaluated. Considering229

a example model of Siemens SWT-107-3.6 offshore wind230

turbine (Arany et al. 2015) and using the method given by231

(Adhikari and Bhattacharya 2011) where the entire wind232

turbine system can be converted into a SDOF system,233

the time displacement response curve has been calculated234

for SDOF system, TMD optimised for GWN and TMD235

optimised for NIS subjected to GWN as shown in Figure236

7 (a to d). Similarly, all the three cases were subjected to237

Wind Load and the response was shown in Figure 8 (a to238

d). In both Figure 7 and Figure 8, a sample size of 10k was239

considered and mean and standard deviation were plotted240

both for individual cases shown in Figure 7 (a to c) and241

Figure 8 (a to c) as well as a comparison has also been242

done considering all the cases as shown in Figure 7 (d) and243

Figure 8 (d). The wind turbine properties and the wind load244

properties are given in Table 1. A damping ratio (ζ1) of 0.01245

is also been considered for the wind turbine model.246

Histogram plots247

Although, a clear understanding is formed i.e., TMD248

system shows a significant reduction in displacement than249

conventional SDOF system irrespective of loading condition,250

but a clear comparison between the TMD GWN and TMD251

NIS is difficult to obtain from Figure 7 (d) and Figure 8252

(d). Thus, to omit the confusion, histogram plots has been253

made for the response reduction between TMD optimised254

through GWN and TMD optimised through NIS subjected255

to GWN and Kaimal spectrum considering the same sample 256

size of 10k as shown in Figure 9(a and b). Here, the response 257

reduction can be defined as 258

RR (%) =
ynormKS − ynormGWN

ynormKS
× 100 (23)

where, ynormGWN = L2 norm or root mean square of the 259

displacement responses of the TMD system optimized by 260

Gaussian white noise and ynormKS = L2 norm or root 261

mean square of the displacement responses of the TMD 262

system optimized by Kaimal Spectrum. When the TMD 263

is subjected to Gaussian white noise, then the histogram 264

of response reduction is more inclined towards positive 265

side in other words positive area is more than negative 266

area as shown in Figure 9 (a) whereas when the TMD 267

system is subjected to Kaimal Spectrum, then the response 268

reduction is more inclined towards negative side or more 269

negative area as shown in Figure 9 (b). This clearly indicates, 270

if the system is subjected to Gaussian white noise, then 271

displacement response will be minimum when optimized 272

according to GWN. Similarly, if the system is subjected 273

to kaimal spectrum, then displacement response will be 274

minimum when optimized according to kaimal spectrum. 275

Table 1. Wind Turbine and wind load properties for Siemens
SWT-107-3.6 offshore wind turbine (Arany et al. 2015).

Property Symbols Values

Diameter of rotor (m) D 107
Density of air (kg/m3) ρa 1.225
Mean wind speed (m/s) U 9
Turbulence intensity I 0.1
Integral length scale Lk 340.2
Drag Coefficient CD 0.5
Young’s modulus of the
tower material (GPa) E 210
Tower height (m) L 5.0
Bottom Diameter (m) Db 5.0
Top Diameter (m) Dt 3.0
Tower wall thickness (mm) t 50
Tower mass (kg) Mt 260000
Rotor nacelle assembly
(RNA) mass (kg) MRNA 234500
Lateral foundation
stiffness (GNm−1) KL 3.65
Rotational foundation
stiffness (GNmrad−1) KR 254.3

Conclusion 276

A classical mechanics-based methodology towards the 277

estimation of optimum parameters of a tuned mass damper 278

(TMD) system subjected to Kaimal Spectrum using H2 279

optimization technique has been communicated in this paper. 280

The optimal parameters of a TMD is obtained by minimizing 281

the the standard deviation of the displacement response, 282

known as H2 optimization technique. A validation study 283

has been conducted with the existing literature for the 284

TMD system subjected to Gaussian white noise (GWN). 285

Since, obtaining an analytical closed form expression of 286

the objective function for a TMD system considering a 287

real spectrum, having fractional order of the frequency, 288

is very challenging. Therefore, usually objective functions 289
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Mean

SD

Mean

SD

Mean

SD

Mean SDOF

Mean TMD GWN

Mean TMD NIS

(a) (b)

(c) (d)

Mean SDOF

Mean TMD GWN

Mean TMD NIS

Figure 7. (a), (b) and (c) Time displacement curve including mean and standard deviation for SDOF, TMD optimised for GWN and
TMD optimised for NIS subjected to GWN; (d) Mean and standard deviation comparison between all the three cases subjected to
GWN

(a) (b)

(c) (d)

Mean

SD

Mean

SD

Mean

SD

Mean SDOF

Mean TMD GWN

Mean TMD NIS

Mean SDOF

Mean TMD GWN

Mean TMD NIS

Figure 8. (a), (b) and (c) Time displacement curve including mean and standard deviation for SDOF, TMD optimised for GWN and
TMD optimised for NIS subjected to KS; (d) Mean and standard deviation comparison between all the three cases subjected to KS
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(a) (b)

Figure 9. (a) and (b) Histogram plot for performance reduction when the system subjected to GWN and KS

are obtained numerically which does not directly yields290

the optimum point and increases the computational cost291

significantly. To deal with the aforementioned challenges292

associated with the fractional power of excitation frequency293

in the power spectral density, a concept of near identity294

spectrum (NIS) has been proposed. The NIS contains295

excitation frequency as a product of complex conjugate296

which enables us to form a closed-form expression of the297

objective function. The proposed NIS precisely matches298

with the Kaimal Spectrum; hence, it omits the fractional299

power in the variance equation. The closed-form analytical300

expression of objective function can be directly plotted301

to obtain the optimal parameters of the TMD system. A302

sample of ten thousand time histories obtained from GWN303

and Kaimal spectrum are applied to the system as in input304

force to realize the performance of the optimized TMD.305

From the histogram plot it can be concluded that, minimum306

displacement response occurs while the system be optimized307

according to the input forcing spectrum rather than any other308

noise/spectrum. Thus, the novelty lies in proposing a NIS309

that can be used as a generalized spectrum to estimate the310

optimum parameters of the TMD system implementing the311

H2 optimization technique. Due to severe change in climatic312

condition in recent years, the demand of stable, clean and313

green energy production becomes the primary mission of314

several countries. Towards this mission, the developed NIS315

contributed for easy simulation of wind load and provides316

a generalised method for optimal design which can be used317

in design firms for next generation wind turbine design and318

control. Further, this concept of NIS could be extended in the319

future study to generalize other dynamic loads, such as wave320

loads, earthquake loads, etc.321

Annexure322

The values of T (λ), M6, ∆6 and derivation of the integral in323

equation (20) are listed below.324

T (λ) =
B0(iλ)

3
+B1(iλ)

2
+B2 (iλ) +B3 A0(iλ)

6
+A1(iλ)

5
+A2(iλ)

4

+A3(iλ)
3
+A4(iλ)

2
+A5 (iλ)

+A6

 , (24)

in which,325

B0 = ε, (25)

B1 = 2νεζ2 + 1, (26)

B2 = εν2 + 2ζ2ν, (27)

B3 = ν2, (28)

A0 = χϕ, (29)

A1 = χ+ ϕ+ 2χϕζ1 + 2χνϕζ2 + 2χµνϕζ2, (30)

A2 =

 χϕ+ 2χζ1 + 2ϕζ1 + χν2ϕ+ 2χνζ2
+2νϕζ2 + 2χµνζ2 + 2µνϕζ2 + χµν2v
+4χνϕζ1ζ2 + 1

 ,

(31)

A3 =

 χ+ ϕ+ 2ζ1 + 2νζ2 + χν2+
ν2ϕ+ µν2ϕ+ 2µνζ2 + χµν2+
2χνϕζ2 + 4χνζ1ζ2 + 4νϕζ1ζ2 + 2χν2ϕζ1

 ,

(32)

A4 =

(
µν2 + ν2 + χν2ϕ+ 2χν2ζ1 + 2ν2ϕζ1
+2χνζ2 + 2νϕζ2 + 4νζ1ζ2 + 1

)
, (33)

A5 = 2νζ2 + χν2 + ν2ϕ+ 2ν2ζ1 (34)

and, 326

A6 = ν2 (35)

To evaluate equation (20), (James et al. 1947) suggested a 327

method in which the integrand must be in the form of 328

In =
1

2πj

∞∫
−∞

gn (x)

hn (x)hn (−x)
dx (36)

where, 329
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gn (x) = b0x
2n−2 + b1x

2n−4 + · · ·+ bn−1 (37)

and,330

hn (x) = a0x
n + a1x

n−1 + · · ·+ an (38)

Now, by assuming q = iλ and writing integrand of Eq.(20)331

in form of integrand of Eq.(36) as332

g6 (x)

h6 (x)h6 (−x)
=

(
C0x

6 + C1x
4+

C2x
2 + C3

)


 A0x
6 +A1x

5 +A2x
4

+A3x
3 +A4x

2 +A5x
+A6

 A0x
6 −A1x

5 +A2x
4

−A3x
3 +A4x

2 −A5x
+A6




(39)

where,333

C0 = −u2 (40)

C1 = (2νuζ2 + 1)
2 − 2u

(
uν2 + 2ζ2ν

)
(41)

C2 = 2 (2νuζ2 + 1) ν2 −
(
uν2 + 2ζ2ν

)2
(42)

and,334

C3 = ν4 (43)

Since, the highest power of x in Eq.(39) is 6, thus,335

substituting n = 6 in Eq.(36), Eq.(37) and Eq.(38), we obtain336

the integrand as337

g6 (x)

h6 (x)h6 (−x)
=

(
b0x

10 + b1x
8 + b2x

6 + b3x
4

+b4x
2 + b5

)


(
a0x

6 + a1x
5 + a2x

4+
a3x

3 + a4x
2 + a5x+ a6

)
(

a0x
6 − a1x

5 + a2x
4−

a3x
3 + a4x

2 − a5x+ a6

)

(44)

Now, comparing Eq.(39) and Eq.(44) we obtain the338

coefficients as b0 = b1 = 0, b2 = C0, b3 = C1, b4 = C2,339

b5 = C3 and ai = Ai where, i = 1 to 6. Thus, Eq.(20) can340

be evaluated as341

σ2
xx = 2παω1 ×

1

2πj

∞∫
−∞

g6 (x)

h6 (x)h6 (−x)
dx =

παω1M6

a0∆6

(45)
where,342

M6 =

(
b0d0 + a0b1d1 + a0b2d2+

a0b3d3 + a0b4d4 +
a0b5
a6

d5

)
(46)

and,343

∆6 =


a20a

3
5 + 3a0a1a3a5a6 − 2a0a1a4a

2
5−

a0a2a3a
2
5 − a0a

3
3a6 + a0a

2
3a4a5 + a31a

2
6−

2a21a2a5a6 − a21a3a4a6 + a21a
2
4a5 + a1a

2
2a

2
5+

a1a2a
2
3a6 − a1a2a3a4a5


(47)

where, 344

d0 =

 −a0a3a5a6 + a0a4a
2
5 − a21a

2
6 + 2a1a2a5a6

+a1a3a4a6 − a1a
2
4a5 − a22a

2
5 − a2a

2
3a6

+a2a3a4a5

 ,

(48)

d1 = −a1a5a6 + a2a
2
5 + a23a6 − a3a4a5, (49)

d2 = −a0a
2
5 − a1a3a6 + a1a4a5, (50)

d3 = a0a3a5 + a21a6 − a1a2a5, (51)

d4 = a0a1a5 − a0a
2
3 − a21a4 + a1a2a3 (52)

and, 345

d5 =

 a20a
2
5 + a0a1a3a6 − 2a0a1a4a5

−a0a2a3a5 + a0a
2
3a4 − a21a2a6 + a21a

2
4

+a1a
2
2a5 − a1a2a3a4

 (53)
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