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A B S T R A C T

Better understanding the risk factors that exacerbate Covid-19 symptoms and lead to worse health outcomes
is vitally important in the public health fight against the virus. One such risk factor that is currently under
investigation is air pollution concentrations, with some studies finding statistically significant effects while
other studies have found no consistent associations. The aim of this paper is to add to this global evidence base
on the potential association between air pollution concentrations and Covid-19 hospitalisations and deaths, by
presenting the first study on this topic at the small-area scale in Scotland, United Kingdom. Our study is one of
the most comprehensive to date in terms of its temporal coverage, as it includes all hospitalisations and deaths
in Scotland between 1𝑠𝑡 March 2020 and 31𝑠𝑡 July 2021. We quantify the effects of air pollution on Covid-
19 outcomes using a small-area spatial ecological study design, with inference using Bayesian hierarchical
models that allow for the residual spatial correlation present in the data. A key advantage of our study is
its extensive sensitivity analyses, which examines the robustness of the results to our modelling assumptions.
We find clear evidence that PM2.5 concentrations are associated with hospital admissions, with a 1 μgm−3

increase in concentrations being associated with between a 7.4% and a 9.3% increase in hospitalisations. In
addition, we find some evidence that PM2.5 concentrations are associated with deaths, with a 1 μgm−3 increase
in concentrations being associated with between a 2.9% and a 10.3% increase in deaths.
1. Introduction

Covid-19 has caused worldwide health and economic devastation,
and was declared a global pandemic by the World Health Organisation
(WHO) on 11𝑡ℎ March 2020. The disease originated in Wuhan in the
People’s Republic of China in December 2019, and subsequently spread
across the world in the following months. As of 1𝑠𝑡 March 2022 there
have been over 437 million cases worldwide, and over 5.9 million of
those individuals have sadly died from the virus (Johns Hopkins Coron-
avirus Resource Centre, https://coronavirus.jhu.edu/map.html). There
is thus a rapidly growing research literature focusing on the Covid-
19 pandemic, including: (i) modelling the spread of the pandemic and
its impacts on healthcare (Remuzzi and Remuzzi, 2020 and Lee et al.,
2021); (ii) identifying the factors that make people at a higher risk of
displaying severe symptoms (Conticini et al., 2020 and Wu et al., 2020);
(iii) identifying the wider health impacts of the pandemic (Douglas
et al., 2020); and (iv) developing real-time surveillance systems to track
disease incidence (Dong et al., 2020).
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One important epidemiological question about the pandemic is the
role that air pollution may play in exacerbating Covid-19 symptoms,
potentially leading to greater numbers of hospital admissions and
deaths from the virus in more polluted areas. Air pollution is well
known to be a global public health problem, with the WHO linking
seven million deaths to it each year worldwide (World Health Or-
ganisation, 2016). One of the main health outcomes associated with
air pollution is respiratory disease (COMEAP, 2020), and thus it is
biologically plausible that air pollution may deleteriously affect Covid-
19 sufferers, resulting in worse health outcomes. However, the evidence
on this to date is somewhat mixed, with Wu et al. (2020), Coker
et al. (2020), Berg et al. (2021) and Mendy et al. (2021) all finding
significant effects of PM2.5 on Covid-19 deaths and morbidities. In
contrast, Konstantinoudis et al. (2021) and Sun et al. (2021) found no
significant effects of NO2 or PM2.5 on Covid-19 deaths. Additionally,
in a recent multi-country study (Huang et al., 2021) found significant
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Table 1
Summary of the spatial distribution of the data across the Intermediate Zones for the entire 17 month duration of the study. SIMD denotes the
Scottish index of multiple deprivation.

Variable Percentile

0% 25% 50% 75% 100%

Hospitalisations
Count 0 12 21 31 104
SMR 0.00 0.54 0.93 1.41 3.66

Deaths
Count 0 3 6 11 51
SMR 0.00 0.45 0.85 1.43 5.81

Air pollutants
NO2 (μg m−3) 1.32 5.20 8.66 12.04 31.48
PM2.5 (μg m−3) 2.49 4.95 5.56 6.07 7.74
PM10 (μg m−3) 4.46 8.15 9.16 9.96 13.22

Covariates
Covid-19 case rates (per 100,000 during the study) 0 3773 5647 7516 15,744
% vaccinated (2 doses) by April 2021 6.6 25.1 30.2 35.8 61.8
SIMD - employment domain 0.5 5.1 8.3 12.6 30.9
Carehome places (number) 0 0 0 52 312
Population density (people per hectare) 0.0 3.6 27.1 39.7 236.5
Black (%) 0.0 0.1 0.2 0.6 26.6
Chinese (%) 0.0 0.1 0.3 0.6 11.9
Indian/Pakistani/Bangladeshi (%) 0.0 0.3 0.7 1.7 48.5
effects of PM2.5 on Covid-19 incidence in the USA but not in Canada,
England or Italy.

This paper adds to this limited global evidence base, by presenting a
new study quantifying the effects of air pollution on Covid-19 outcomes
in Scotland, United Kingdom, which as of 1𝑠𝑡 March 2022 has seen over
1,390,000 cases and over 10,670 deaths (Johns Hopkins Coronavirus
Resource Centre) due to Covid-19. The impact of air pollution on health
more generally is a continuing priority for the Scottish government,
because it recently published its second Cleaner Air for Scotland (CAFS)
strategy in July 2021 (Scottish Government, 2021). Thus understanding
the role that air pollution may play on adverse health outcomes due to
Covid-19 is an important topic for the Scottish Government, and as no
study has yet examined this at the small-area scale, this is the evidence
gap that this paper fills.

Our study is based on small-area count data summarising Covid-
19 hospitalisations and deaths between March 2020 and July 2021,
which thus makes it one of the most up-to-date and comprehensive
studies in terms of its temporal duration (e.g. Wu et al., 2020 used
data up to 18𝑡ℎ June 2020 while Konstantinoudis et al., 2021 used
data up to 30𝑡ℎ June 2020). These small-area count data are modelled
using Poisson log-linear models, where the spatial variation in Covid-19
risk is explained by air pollution concentrations, a range of other im-
portant confounding factors, and random effects allowing for residual
spatial autocorrelation. When presenting the study results we conduct
a wide-ranging sensitivity analysis to our modelling assumptions, thus
quantifying the robustness of our results to model misspecification. The
study region and data are presented in Section 2, while the statistical
models we use are presented in Section 3. The results of the study are
presented in Section 4, while Section 5 concludes the paper highlighting
our key findings.

2. Data

The study region is Scotland, which for the purposes of this study
has been partitioned into 𝐾 = 1279 small areal units called Inter-
mediate Zones (IZ) that have an average population of around 4000
people. IZs are a Scottish Government developed geography for the
distribution of small-area statistics, and further details can be found
at https://www.spatialdata.gov.scot/geonetwork/srv/api/records/389
787c0-697d-4824-9ca9-9ce8cb79d6f5. The time period for our study
is from 1𝑠𝑡 March 2020 until 31𝑠𝑡 July 2021, a duration of 17 months.
We use a spatial rather than a spatio-temporal ecological design for our
2

study, where the data are aggregated over time to yield one summary
measure for each variable in each IZ representing the entire study
duration. We adopt this design because having a, say monthly, spatio-
temporal design would result in around 1 hospitalisation and less than
1 death on average in each spatio-temporal unit (see Table 1), which
would thus make regression effects hard to estimate due to the very
small numbers of disease events in each spatio-temporal unit.

2.1. Covid-19 hospitalisation and death data

There are two outcome variables in this study, namely the num-
bers of Covid-19 hospitalisations and deaths that occurred from the
population living in each IZ between 1𝑠𝑡 March 2020 and 31𝑠𝑡 July
2021. The hospitalisation data were obtained directly from Public
Health Scotland, while the death data were obtained from the National
Records for Scotland (https://www.nrscotland.gov.uk/covid19stats).

The numbers of Covid-19 hospitalisations and deaths in an IZ will
depend on the size and age–sex demographics of its population, which
we adjust for using indirect standardisation. Specifically, we compute
the expected numbers of Covid-19 hospitalisation and deaths in each
IZ, based on the assumption that Scotland-wide age–sex specific hos-
pitalisation/death rates apply in each IZ. National age–sex specific
Covid-19 hospitalisation/death rates for the study period by five year
age group were obtained from the sources listed above, while age–sex
specific population totals for 2019 (the closest year of data available)
were obtained from the Scottish Government. The expected number
of hospitalisations/deaths in each IZ is computed by multiplying the
number of people in each age–sex group by the national Covid-19
hospitalisation or death rate for that group, before summing over
groups to obtain the final expected count separately for hospitalisations
and deaths.

An exploratory measure of Covid-19 risk in each IZ is the standard-
ised morbidity/mortality (death) ratio (SMR), which is the observed
number of hospitalisations/deaths divided by the expected numbers of
hospitalisations/deaths. An SMR of 1 corresponds to an average risk
area relative to the national hospitalisation/death rates, values less
than one correspond to low risk areas, while values greater than one
correspond to high risk areas. Specifically, a value of 1.2 corresponds
to a 20% increased risk compared to the national average. Maps of the
spatial distributions of the SMR are displayed in panels A (hospitali-
sation) and B (death) of Fig. 1, while a numerical summary of their
quantiles across the IZs is given in Table 1. Both these displays highlight
the large amount of noise in the SMR, with values ranging between

(0, 3.66) for hospitalisations and (0, 5.81) for deaths. The increased
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Fig. 1. Maps of the study data. Panels (A) and (B) show the SMR for Covid-19 hospitalisations and deaths respectively, while panels (C) and (D) depict NO2 and PM2.5 concentrations
respectively.
amount of noise in the death SMRs is due to them being based on
smaller numbers of events compared to the hospitalisation SMRs, with
median sizes of 21 hospitalisations and 6 deaths in an IZ over the study
period. The SMRs also show little in the way of a clear spatial trend
across Scotland, which is also likely to be caused by the large amount
of noise.

2.2. Air pollution data

The network of air pollution monitors in Scotland is spatially sparse
(see http://www.scottishairquality.co.uk), and thus does not provide a
measurement for each of the 𝐾 = 1279 IZs in this study. Therefore,
in common with Haining et al. (2010) and Lee et al. (2019) we
utilise modelled concentrations instead, specifically annual averages
for 2019 from the Pollution Climate Mapping (PCM) model (https://
uk-air.defra.gov.uk/data/pcm-data) developed for the Department for
the Environment, Food and Rural Affairs (DEFRA). We use concentra-
tions for 2019 rather than for 2020, because the latter are artificially
3

lower than normal concentration levels. This is because lockdowns and
other mobility restrictions were introduced in Scotland during 2020,
which reduced transport usage and hence pollution concentrations for
a sizeable proportion of that year. A full lockdown was implemented
between 23𝑟𝑑 March–29𝑡ℎ May, while a range of other local restrictions
occurred across Scotland between June and December. However, to
assess the effect of using 2019 rather than 2020 concentrations we also
fit models based on the 2020 concentrations as a sensitivity analysis.

The PCM model produces estimated concentrations on a 1 km2

grid, which is spatially misaligned with the irregularly shaped IZs.
The problem of spatial misalignment between multiple data sets is
known as the change of support problem (Gelfand et al., 2001), and is
a common challenge in spatial epidemiology. For example, Berrocal
et al. (2010) and Forlani et al. (2020) proposed approaches for dealing
with spatial misalignment between multiple air pollution data sets,
specifically between point-level measurements and grid-based modelled
estimates. In contrast, a range of approaches have been proposed for
spatially re-aligning air pollution measurements to an irregular areal

http://www.scottishairquality.co.uk
https://uk-air.defra.gov.uk/data/pcm-data
https://uk-air.defra.gov.uk/data/pcm-data
https://uk-air.defra.gov.uk/data/pcm-data
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unit geography, which is the spatial footprint that population-level
disease data are typically available at. When the pollution data used in
a study are point-level measurements then geostatistical Kriging is often
used (e.g. Huang et al., 2021), while if modelled data with complete
spatial coverage are used then simple averaging (e.g. Haining et al.,
2010 and Lee et al., 2019) or area-based interpolation (Berg et al.,
2021) are most commonly adopted.

In this study as the pollution estimates from the PCM model have
complete spatial coverage of the study region, we use the simple aver-
aging approach in common with the authors outlined above. Specif-
ically, each 1 km2 gridded concentration has an associated centroid
central point), and we estimate the pollution concentration in an IZ as
he mean of the grid square concentrations whose centroids lie within
he IZ. Any IZ that does not contain a grid square centroid is assigned
he pollution concentration from the nearest grid square.

In this study we consider concentrations of nitrogen dioxide (NO2)
nd both coarse (PM10) and fine (PM2.5) particulate matter, all of which
re measured in μg m−3. We choose these pollutants because they are
he ones responsible for 35 out of the 36 air quality management
reas in Scotland, for details see http://www.scottishairquality.scot/
aqm/aqma. The spatial distributions of these pollutants are presented
n Fig. 1 and Table 1, with the former displaying NO2 (panel C)
nd PM2.5 (panel D) concentrations. The figure and table show that
igh NO2 concentrations are almost exclusively observed in the main
rban centres of Aberdeen, Dundee, Edinburgh and Glasgow, with the
emaining rural areas exhibiting very low concentrations. In contrast,
M2.5 concentrations are more evenly distributed spatially, albeit with
clear east–west trend, with higher concentrations in the east being

aused by transboundary pollution coming from continental Europe.

.3. Covariate data

We have also collected data on a number of confounding factors
hat will likely influence Covid-19 hospitalisation and death rates,
hich are summarised in Table 1. The main confounding factor when
odelling Covid-19 death rates is the numbers of Covid-19 cases, and
ata are available from Public Health Scotland (https://www.opendata.
hs.scot/dataset/covid-19-in-scotland) on the rate of cases per 100,000
eople over the 17 month duration of the study. Additionally, we have
ata on Covid-19 vaccination rates, which will likely affect hospitalisa-
ion and death rates during the latter part of the study period. The first
accinations were given in Scotland in December 2020, so while they
ould not affect the Covid-19 outcomes that occurred between March
020 and December 2020, they may have had an affect after that time.
owever, it is not clear what an appropriate cutoff date should be for
easuring vaccination rates in this study, because if one chooses an

arly date, such as 1st January 2021, then most areas will have a very
mall proportion of their population vaccinated by then and hence the
ariable will likely have little effect. In contrast, if one chooses a cutoff
ate of 31st July 2021 (the end of the study), then vaccination rates on
his date are unlikely to have affected the hospitalisations/deaths that
ccurred during the study. Therefore we compute the percentage of the
dult population (defined as people aged 20 or over because population
ounts are only available for 5-year age bands) who were either single
accinated or double vaccinated by the end of February 2021 and April
021, and determine which is the best predictor via a model building
xercise.

Another important confounding factor in spatial epidemiological
tudies is socio-economic deprivation, with poorer populations tending
o exhibit a greater burden of adverse health compared to more affluent
reas. In Scotland in 2020 socio-economic deprivation is measured by
he Scottish index of multiple deprivation (SIMD, https://simd.scot/),
hich is a composite index comprising indicators in the domains of
eographical access to services, crime, education, employment, health,
ousing and income. However, as our outcome variables are health
4

elated we do not consider indicators from the health domain. Full (
details of the individual indicators in the SIMD are given in Section
1 of the supplementary material accompanying this paper. The index
and its indicators are constructed at the Data Zone (DZ) scale, which is
a smaller small-area geography that nests exactly within the IZs used
here. Thus each individual indicator is aggregated to the IZ scale by
population weighted averaging. However, there are 9 incidences of
missing values across these SIMD indicators, which are estimated by
a spatially weighted average of the values in neighbouring areas (those
that they share a common border with).

We also consider a number of other covariates for possible inclusion
in the model, because existing studies have shown that they may affect
rates of Covid-19 ill health or death. The first is population density
computed as the number of people per hectare in each IZ, and areas
with higher population densities are likely to have higher Covid-19
hospitalisation/death rates due to the likely increased mixing of the
population as they live closer together. Secondly, care homes for elderly
people are known to have been substantially impacted by Covid-19
ill health throughout the pandemic. Therefore we obtained data for
each IZ on the number of registered places in care homes for older
adults in November 2020 (the middle of the study period) from the
Care Inspectorate (https://www.careinspectorate.com/). Additionally,
we have data on ethnicity from the 2011 Scottish census, with more
recent data not available because the census is only performed every
ten years and the 2021 census was pushed back to 2022 due to Covid-
19. For each IZ we have data on the percentage of people who are
from the following ethnic groups taken from the census: (i) black; (ii)
Chinese descent; (iii) Indian/Pakistani/Bangladeshi descent; and (iv)
white.

2.4. Exploratory analysis

We first built simple Poisson log-linear regression models separately
for the hospitalisation and death count data sets without allowing for
spatial autocorrelation, as this enables us to determine whether the
covariates capture all of the spatial autocorrelation present in the data.
We began by including the expected number of hospitalisations/deaths
as an offset term in each model, as well as adding in the covariates
relating to Covid-19 case rates, population density and the number of
carehome places. All of these covariates were significantly related to
both the hospitalisation and death counts, and were hence retained in
the model.

Next we considered how to account for socio-economic deprivation
in the model, and after ignoring the health domain the SIMD comprises
20 indicators of socio-economic deprivation from six domains, which
have pairwise correlations ranging between −0.83 and 0.98. Therefore

e included variables relating to each of the six remaining domains in
eparate models, and represent socio-economic deprivation by the do-
ain that minimises the AIC. For the Crime, Employment and Income
omains that are measured by only one indicator, we use that indicator
s the domain specific measure of socio-economic deprivation. For
he remaining domains we apply principal component analysis (PCA)
eparately to the indicators in that domain, and for simplicity use the
irst principal component (PC) as the domain specific measure of socio-
conomic deprivation. These first principal components account for
5% (Access), 99% (Education) and 95% (Housing) of the variation in
he domain specific indicators, suggesting that large proportions of the
ariation in each domain can be captured by just 1 PC. The employment
omain produced the best fitting model for both outcomes as measured
y AIC, and is the one that is retained in both cases.

Then we added in the four vaccination rate variables in separate
odels due to their high collinearity, and overall the percentage of

he adult population who were double vaccinated by the end of April
021 best fitted the data and was hence used in the final models for
oth disease outcomes. Finally we added in the ethnicity covariates,
pecifically the percentages of each IZ’s population who were: (i) black;

ii) from Indian/Pakistani / Bangladeshi descent; and (iii) from Chinese

http://www.scottishairquality.scot/laqm/aqma
http://www.scottishairquality.scot/laqm/aqma
http://www.scottishairquality.scot/laqm/aqma
https://www.opendata.nhs.scot/dataset/covid-19-in-scotland
https://www.opendata.nhs.scot/dataset/covid-19-in-scotland
https://www.opendata.nhs.scot/dataset/covid-19-in-scotland
https://simd.scot/
https://www.careinspectorate.com/
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descent. Note, the percentage of each IZ’s population who were white
was highly correlated with these three variables and was hence not
included. A single air pollutant was also added to the model at this
stage, and multiple pollutants are not considered in a single model in
the main set of results due to their high pairwise correlations (between
0.66 and 0.91).

The residuals from these final covariate only models were then
assessed for the presence of overdispersion and spatial autocorrelation.
The residuals exhibited substantial overdispersion for both outcomes,
with overdispersion parameters of 𝜉 = 2.13 (hospitalisations) and 𝜉 =
.96 (deaths) respectively, where Var[𝑌𝑘] = 𝜉E[𝑌𝑘]. They also exhibited
ignificant spatial autocorrelation, which was assessed via a Moran’s I
est (Moran, 1950) based on a neighbourhood matrix (see next section
or details) defined by the commonly used border sharing rule. The
esiduals had observed Moran’s I statistics of 0.26 for hospitalisations
nd 0.10 for deaths, with corresponding p-values of 0.0001 against
null hypothesis of independence (based on a permutation test with

0,000 random permutations) in both cases, suggesting that the data
ontain residual spatial autocorrelation after covariate adjustment.

. Statistical models

Let (𝑌𝑘, 𝑒𝑘) respectively denote the observed and expected num-
ers of hospitalisations or deaths from the population living in the
th IZ, where 𝑘 = 1,… , 𝐾(= 1279). We model hospitalisations and
eaths separately because this ensures that correlations are not induced
etween their risk estimates, as would be the case if a multivariate
AR type model (e.g. Gelfand and Vounatsou, 2003) was used. These
etween outcome correlations may affect the estimated covariate ef-
ects and their standard errors, and we do not want the death rates,
or example, to influence the relationship between air pollution and
ospitalisation rates. We fit the same univariate spatial models outlined
elow to the hospitalisation and death outcomes separately, and infer-
nce is based in a Bayesian paradigm using Integrated Nested Laplace
pproximations (INLA) via the R package INLA (Rue et al., 2009).

.1. Level 1 - Data likelihood model

As the response variable 𝐘 = (𝑌1,… , 𝑌𝐾 ) is a vector of spatially ag-
regated counts for the 𝐾 IZs, the first level of our Bayesian hierarchical
odel is the Poisson log-linear specification given by

𝑌𝑘 ∼ Poisson(𝑒𝑘𝜃𝑘) for 𝑘 = 1,… , 𝐾 (1)
n(𝜃𝑘) = 𝐱⊤𝑘 𝜷 + 𝜙𝑘.

Here 𝜃𝑘 denotes the risk (rate) of hospitalisation or death in the 𝑘th
Z relative to the expected count 𝑒𝑘, and is on the same scale as the SMR
escribed above for interpretation purposes. The spatial variation in 𝜃𝑘
s modelled by a 𝑝× 1 vector of covariates, including air pollution con-
entrations, {𝐱𝑘}, with regression parameters 𝜷, and a spatial random
ffect 𝜙𝑘. The air pollution concentrations are taken from the spatially
e-aligned PCM model output described in the previous section, and
or consistency with the existing air pollution and Covid-19 studies
e.g. Wu et al., 2020, Huang et al., 2021 and Konstantinoudis et al.,
021) we assume they are known concentrations. Additionally, these
oncentrations are used by the UK government advisory Committee
n the Medical Effects of Air Pollutants (COMEAP) in their reports
see for example COMEAP, 2010), which validates our use of them
n this study as known concentrations. We note that an alternative
odelling approach would be to allow for uncertainty in the estimated
ollution concentrations, using approaches similar to those proposed
y Blangiardo et al. (2016), Lee et al. (2016), Huang et al. (2018)
nd Cameletti et al. (2019). The next section describes the models we
it for the spatial random effects 𝝓 = (𝜙1,… , 𝜙𝐾 ), while the following
5

ection discusses prior specification. i
.2. Level 2 - Spatial random effects model

The random effects 𝝓 allow for any residual spatial autocorrelation
resent in the data after covariate adjustment, which is caused by
actors such as unmeasured confounding. The spatial autocorrelation
tructure in the random effects is controlled by a 𝐾 × 𝐾 binary neigh-
ourhood matrix 𝐖, which specifies which pairs of areas are spatially
lose together, i.e. are defined to be neighbours. If two areas (𝑘, 𝑗)
re defined to be neighbours then their random effects (𝜙𝑘, 𝜙𝑗 ) are
odelled as partially autocorrelated, while if they are defined not to

e neighbours then (𝜙𝑘, 𝜙𝑗 ) are modelled as conditionally independent.
n this paper we consider the two commonly used specifications of 𝐖
escribed below, which allows us to assess the sensitivity of our results
o this modelling choice.

order sharing - The border sharing rule is the most commonly used
method for specifying 𝐖, and 𝑤𝑘𝑗 = 1 if areal units (𝑘, 𝑗)
share a common border and 𝑤𝑘𝑗 = 0 otherwise, with 𝑤𝑘𝑘 =
0 ∀ 𝑘. However, in our data there are 6 island IZs that have no
neighbours under this definition, which we rectify by assigning
the mainland IZ that is closest to each of these island IZs as a
neighbour. The matrix is further adjusted by adding in 5 addi-
tional neighbour relations linking island groups to the mainland,
which ensures the neighbourhood graph has only one connected
component.

earest neighbour - The border sharing rule results in vastly differ-
ent numbers of neighbours across the set of IZs (between 1 and
26), so we compare this to the 𝑑−nearest neighbour rule where
every IZ has a similar number of neighbours. Specifically, area 𝑗
is a neighbour of area 𝑘, and hence 𝑤𝑘𝑗 = 1, if it is one of the 𝑑
nearest to it in terms of inter-centroid distances, with 𝑤𝑘𝑘 = 0 ∀ 𝑘
as before. This matrix is asymmetric, and is made symmetric
by if 𝑤𝑘𝑗 = 1 and 𝑤𝑗𝑘 = 0 then setting 𝑤𝑗𝑘 = 1. Here we
choose 𝑑 = 4 because it has an almost identical mean number of
neighbours for each IZ as the border sharing specification (5.162
compared to 5.163). However, these specifications only agree
on around 60% of their neighbours, meaning they are somewhat
different specifications of spatial closeness. Finally, the matrix is
adjusted by adding in 2 additional neighbour relations to ensure
the neighbourhood graph has only one connected component.

The adjustments described above to ensure the neighbourhood
raphs each have one connected component ensures that multiple
dentifiability constraints (one for each connected component) are
ot required when fitting the model. A number of conditional au-
oregressive (CAR) priors have been proposed for modelling spatial
utocorrelation in areal unit data using a neighbourhood matrix, and
ere we consider the following three specifications to see how robust
ur results are to this modelling choice.

eroux - The CAR prior proposed by Leroux et al. (2000) for globally
smooth spatial autocorrelation.

odified BYM - The CAR prior proposed by Simpson et al. (2017)
for globally smooth spatial autocorrelation whose scale is not
affected by 𝐖.

CAR - The CAR prior proposed by Lee and Mitchell (2013) for locally
smooth spatial autocorrelation.

A full mathematical specification of each of these random effects
riors is given in Section 2 of the supplementary material accompany-

ng this paper.
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3.3. Level 3 - Prior distributions

The regression parameters 𝜷 = (𝛽1,… , 𝛽𝑝) are assigned independent
weakly informative zero-mean Gaussian prior distributions with a large
variance, i.e. 𝛽𝑗 ∼ N(0, 100000) for 𝑗 = 1,… , 𝑝, to ensure the data
play the dominant role in estimating their values. This choice of prior
distribution for the regression parameters is commonly used in the
literature, but the choice of prior distributions for the precision and
spatial dependence parameters (𝜏, 𝜌) described in Section 2 of the
supplementary material is less straightforward. Therefore we fit the
three hierarchical spatial models described above to the data with two
different choices of prior distributions for (𝜏, 𝜌), so that its impact on
the results can be assessed. These two sets of prior distributions are
given by:

Main - ln(𝜏) ∼ log-gamma(1, 0.01) and ln
(

𝜌
1−𝜌

)

∼ N(0, 100), which are
chosen to be weakly informative, thus letting the data speak for
themselves.

Alternative - ln(𝜏) ∼ log-gamma(1, 0.0005) and ln
(

𝜌
1−𝜌

)

∼ N(0, 2.22),
which are chosen as they are the default priors suggested for
the Leroux CAR model by the INLA software that we use for
inference.

4. Study results

The results of our study are presented below, and in all cases in-
ference is based on integrated nested Laplace approximations using the
full Laplace approximation. To illustrate the sensitivity of our results to
model specification, we compare models with all possible combinations
of the following three factors:

• Spatial random effects priors - the three CAR priors for the
spatial random effects listed in Section 3.2 denoted by Leroux,
Modified BYM, and LCAR.

• Neighbourhood matrix - the two specifications of the neighbour-
hood matrix described in Section 3.2, namely the border sharing
rule denoted Border and the 4 nearest neighbour rule denoted
4NN.

• Priors - the two sets of prior distributions for (𝜏, 𝜌) outlined in
Section 3.3 and denoted by Main and Alternative.

In all cases the models include the following covariates, which were
chosen following the model building exercise outlined in Section 2.4:
Covid-19 case rates per 100,000 people over the study period; number
of carehome places; population density; the percentage of working age
people defined to be employment deprived; the percentage of the adult
population who were double vaccinated by the end of April 2021;
and the percentages of people who are black, Chinese, or from In-
dian/Pakistani/Bangladeshi descent. Finally, each model includes one
of the three air pollutants (NO2, PM2.5, PM10). Note, multiple pollutants
are not included in the same model in this main analysis due to their
high collinearity. The next sub-section describes the overall fit of each
model (4.1), while subsequent sub-sections present the results of the
air pollution effects (4.2), the other covariate effects (4.3), and outlines
the further sensitivity analyses presented in the supplementary material
accompanying this paper (4.4).

4.1. Overall model fit

The overall fit to the data of each model specification is summarised
by the deviance information criterion (DIC, Spiegelhalter et al., 2002)
in Table 2, where smaller values represent a better fitting model.
Also presented in the table is the effective number of independent
parameters 𝑝.𝑑, where smaller values represent a less complex model.
The values in the table relate to models including PM2.5 as the only
6

pollutant. The table shows that for both the hospitalisation and death
Table 2
Overall fit of the different models to each data set as measured by the deviance
information criterion (DIC) and the effective number of independent parameters (𝑝.𝑑)
in brackets.

W matrix Priors Random effects model

Leroux Modified BYM LCAR

Hospitalisation data

Border Main 7917 (405) 7914 (439) 7907 (401)
Alternative 7917 (414) 7911 (451) 7908 (409)

4NN Main 7962 (363) 7938 (447) 7944 (361)
Alternative 7956 (382) 7937 (451) 7942 (376)

Death data

Border Main 6427 (439) 6378 (509) 6412 (436)
Alternative 6426 (454) 6378 (509) 6409 (446)

4NN Main 6418 (503) 6391 (513) 6403 (466)
Alternative 6417 (503) 6391 (512) 6402 (470)

outcomes changing the model has relatively little impact on the DIC,
with maximum reductions of 55 for hospitalisations and 49 for deaths
between the best and worst fitting models. The LCAR prior fits the
hospitalisation data best while the modified BYM CAR prior fits the
death data best, although as described above the differences in DICs are
not large. The effect of changing the specification of 𝐖 is smaller for
the death outcome and slightly larger for the hospitalisation outcome,
and for the latter the border sharing specification consistently best fits
the data. Finally, the choice of priors for (𝜏, 𝜌) have almost no impact
on model fit for either disease outcome as measured by the DIC.

4.2. Pollution-health effects

The estimated relative risks between each pollutant and disease
outcome for all model specifications are displayed in Tables 3 and 4,
which respectively relate to the hospitalisation and death outcomes. In
all cases these relative risks are estimated from single pollutant models,
and relate to a 5 μg m−3 increase in NO2 and a 1 μg m−3 increase in both
PM2.5 and PM10 as these are realistic increases in the concentrations
hat might occur in Scotland (see Table 1).

For the hospitalisation outcome the estimated relative risks are
airly consistent across the different models, suggesting the results are
elatively robust to model misspecification. The main finding is that
levated PM2.5 concentrations are consistently statistically significantly
ssociated with Covid-19 hospitalisations, with a 1 μg m−3 increase

in concentrations being associated with between a 7.4% and a 9.3%
increased risk. To further examine the consistency of these estimated
associations between the models we summarise their entire poste-
rior distributions via density strips in Section 3 of the supplementary
material accompanying this paper.

Increasing PM10 concentrations by 1 μg m−3 is estimated to increase
the risk of hospitalisation by between 1.9% and 2.9%, with half of
these estimated associations (those based on the border sharing 𝐖)
being just statistically significant at the 5% level while the other half
(those based on the 4 nearest neighbour 𝐖) are nearly statistically
significant. Finally, the estimated relative risks for NO2 correspond to
between a 1.6% and a 2.8% increased risk for a 5 μg m−3 increase
in concentrations for all models considered, but these effects are not
statistically significant as all the 95% credible intervals contain the null
risk of one.

For the death outcome the estimated relative risks are more variable
across the different model specifications for NO2 and PM2.5 compared
to the corresponding results for hospitalisations. This is most likely
to be because the death outcome has many fewer events in each IZ
compared to the hospitalisation outcome (6 vs. 21 on average), leading
to less precise and consistent inference and a stronger impact of the
prior distributions. For PM2.5 a 1 μg m−3 increase in concentrations
is associated with between a 2.9% and a 10.3% increased risk, and
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Table 3
Estimated relative risks and 95% credible intervals for the effects of each pollutant on Covid-19 hospitalisation rates using 2019 pollution data.
The relative risks relate to a 5 μg m−3 increase in NO2 and a 1 μg m−3 increase in both PM2.5 and PM10.

Pollutant W matrix Priors Random effects model

Leroux Modified BYM LCAR

NO2

Border Main 1.016 (0.980, 1.053) 1.020 (0.984, 1.056) 1.020 (0.985, 1.056)
Alternative 1.018 (0.982, 1.056) 1.020 (0.984, 1.057) 1.022 (0.987, 1.059)

4NN Main 1.021 (0.985, 1.058) 1.021 (0.985, 1.058) 1.025 (0.985, 1.058)
Alternative 1.024 (0.988, 1.062) 1.021 (0.986, 1.058) 1.028 (0.991, 1.065)

PM2.5

Border Main 1.082 (1.030, 1.136) 1.090 (1.038, 1.143) 1.086 (1.034, 1.140)
Alternative 1.089 (1.037, 1.144) 1.090 (1.039, 1.144) 1.093 (1.041, 1.147)

4NN Main 1.074 (1.022, 1.128) 1.082 (1.029, 1.137) 1.080 (1.028, 1.135)
Alternative 1.086 (1.033, 1.142) 1.083 (1.030, 1.138) 1.089 (1.036, 1.144)

PM10

Border Main 1.025 (1.002, 1.048) 1.029 (1.006, 1.052) 1.025 (1.003, 1.048)
Alternative 1.026 (1.004, 1.050) 1.029 (1.006, 1.052) 1.027 (1.004, 1.050)

4NN Main 1.019 (0.996, 1.042) 1.021 (0.998, 1.045) 1.019 (0.997, 1.043)
Alternative 1.021 (0.998, 1.045) 1.021 (0.998, 1.045) 1.021 (0.998, 1.044)
Table 4
Estimated relative risks and 95% credible intervals for the effects of each pollutant on Covid-19 death rates using 2019 pollution data. The
relative risks relate to a 5 μg m−3 increase in NO2 and a 1 μg m−3 increase in both PM2.5 and PM10.

Pollutant W matrix Priors Random effects model

Leroux Modified BYM LCAR

NO2

Border Main 1.023 (0.958, 1.091) 1.017 (0.958, 1.080) 1.027 (0.963, 1.095)
Alternative 1.032 (0.967, 1.101) 1.017 (0.958, 1.080) 1.034 (0.970, 1.102)

4NN Main 1.058 (0.996, 1.124) 1.018 (0.959, 1.081) 1.049 (0.985, 1.116)
Alternative 1.059 (0.997, 1.124) 1.018 (0.959, 1.081) 1.052 (0.988, 1.118)

PM2.5

Border Main 1.035 (0.940, 1.140) 1.029 (0.948, 1.117) 1.051 (0.956, 1.152)
Alternative 1.068 (0.971, 1.168) 1.029 (0.948, 1.117) 1.077 (0.982, 1.173)

4NN Main 1.102 (1.028, 1.179) 1.029 (0.944, 1.121) 1.091 (1.005, 1.175)
Alternative 1.103 (1.030, 1.180) 1.029 (0.944, 1.120) 1.096 (1.014, 1.177)

PM10

Border Main 1.002 (0.963, 1.043) 1.006 (0.968, 1.044) 1.005 (0.966, 1.046)
Alternative 1.009 (0.969, 1.050) 1.006 (0.968, 1.044) 1.010 (0.970, 1.050)

4NN Main 1.018 (0.981, 1.056) 0.999 (0.960, 1.039) 1.008 (0.966, 1.048)
Alternative 1.019 (0.983, 1.056) 0.999 (0.960, 1.039) 1.011 (0.971, 1.050)
4 of these 12 associations are statistically significant at the 5% level.
The corresponding risks for NO2 range between 1.7% and 5.9% for
a 5 μg m−3 increase in concentrations, although in all cases these
effects are not statistically significant. Finally, the effects of PM10 are
consistent across all 12 models, with non-significant relative risks close
to one in all cases.

4.3. Non-pollution covariate effects

The estimated relative risks and 95% credible intervals for the non-
pollution covariates are presented in Tables 5 and 6, which respectively
relate to hospitalisations and deaths. In all cases the relative risks relate
to realistic increases in each covariate, which are given in brackets in
column 1 of the tables. The tables present relative risks from models
with the three types of spatial CAR prior assumed for the random effects
that allow for spatial autocorrelation. However, for brevity all results
relate to the border sharing neighbourhood matrix with the main priors
for (𝜏, 𝜌) and PM2.5 being the pollutant included in the model. The
tables show that in all cases the estimated relative risks are almost
identical across the three spatial correlation structures, suggesting that
the results are robust to this choice.

The tables show that unsurprisingly increased Covid-19 case rates
are significantly associated with increased hospitalisations and deaths,
as increasing the case rate per 100,000 people over the entire study du-
ration by 1000 is estimated to increase hospitalisations by around 12%
and deaths by around 13.5%. Covid-19 vaccination rates, as measured
by the percentage of adults who were double vaccinated by the end of
April 2021, are significantly associated with reduced deaths, with a 5%
increase in vaccination rates estimated to lead to a 4% reduction in the
risk of death. This relatively small effect size occurs because a sizeable
proportion of the deaths occurred before the vaccination programme
7

began, thus attenuating its effect size. In contrast, vaccinations appear
to have no effect on the risk of hospitalisation after adjusting for the
other covariates, as the estimated relative risks in Table 5 are close to
the null risk of one and are not significant at the 5% level. This may
be because the cohort of people who were vaccinated by April 2021
were the mostly vulnerable individuals in health terms (either in the
highest age groups or people with underlying health conditions), and
hence vaccination reduced their likelihood of death but not of being
hospitalised. Alternatively, the lack of an effect may be due to a sizeable
proportion of the study duration occurring before vaccination began,
which means we should treat the results of this variable with extreme
caution.

In addition to Covid-19 case rates, the other main driver of elevated
risks of hospitalisation and death is socio-economic deprivation. A 5%
increase in the percentage of the working age population who are
defined to be employment deprived is significantly associated with
a 16% increased risk of hospitalisation and a 8.5% increased risk of
death. The number of care home places is also significantly associated
with Covid-19 deaths, because if an area increases its care home places
by 10 the estimated risk of death increases by around 4%. In contrast,
care homes appear to exhibit no association with hospitalisation risk,
as the relative risks are all close to one. Population density appears
to have no significant associations with either hospitalisation or death
once the other covariate effects are accounted for, as all the estimated
relative risks are close to one. Finally, ethnicity does not appear overall
to have a strong association with Covid-19 hospitalisations or deaths, as
14 of the 18 estimated associations are not significant at the 5% level.
An exception to this is for the risk of hospitalisation for people from
Chinese descent, as for every 1% increase in an areas’ Chinese popula-
tion, the relative risk reduces by between 2.3% and 2.6%. Additionally,

people who are black appear to have a small increased risk of both
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Table 5
Estimated relative risks and 95% credible intervals for the effects of the non-pollution covariates on Covid-19 hospitalisation.
The relative risks relate to the increases given in brackets in the first column of the table. Note, the final row of the table
relates to the % of the population in each IZ that are from Indian, Pakistani or Bangladeshi origin.

Covariate Random effects model

Leroux Modified BYM LCAR

Case rates (1000) 1.117 (1.105, 1.129) 1.120 (1.108, 1.132) 1.122 (1.110, 1.134)
Carehome places (10) 0.998 (0.995, 1.001) 0.998 (0.995, 1.001) 0.998 (0.995, 1.001)
Population density (10) 1.004 (0.996, 1.012) 1.004 (0.996, 1.012) 1.004 (0.996, 1.012)
% Employment deprivation (5) 1.161 (1.141, 1.181) 1.159 (1.138, 1.179) 1.159 (1.139, 1.179)
% Vaccinated (5) 1.006 (0.991, 1.022) 1.004 (0.989, 1.020) 1.007 (0.992, 1.022)
% Black (1) 1.013 (0.998, 1.028) 1.015 (1.000, 1.030) 1.014 (0.999, 1.028)
% Chinese (1) 0.977 (0.956, 0.998) 0.974 (0.953, 0.996) 0.975 (0.954, 0.996)
% Ind/Pak/Ban (1) 1.001 (0.994, 1.008) 1.001 (0.994, 1.008) 1.001 (0.994, 1.007)
Table 6
Estimated relative risks and 95% credible intervals for the effects of the non-pollution covariates on Covid-19 death. The
relative risks relate to the increases given in brackets in the first column of the table. Note, the final row of the table relates
to the % of the population in each IZ that are from Indian, Pakistani or Bangladeshi origin.

Covariate Random effects model

Leroux Modified BYM LCAR

Case rates (1000) 1.134 (1.112, 1.156) 1.139 (1.118, 1.161) 1.135 (1.114, 1.157)
Carehome places (10) 1.040 (1.034, 1.045) 1.040 (1.035, 1.046) 1.040 (1.035, 1.045)
Population density (10) 1.005 (0.991, 1.019) 1.008 (0.993, 1.022) 1.004 (0.990, 1.019)
% Employment deprivation (5) 1.086 (1.053, 1.120) 1.084 (1.050, 1.120) 1.086 (1.053, 1.120)
% Vaccinated (5) 0.963 (0.938, 0.990) 0.960 (0.935, 0.986) 0.963 (0.937, 0.989)
% Black (1) 1.023 (0.996, 1.051) 1.023 (0.995, 1.053) 1.023 (0.995, 1.050)
% Chinese (1) 0.990 (0.951, 1.030) 0.986 (0.947, 1.026) 0.990 (0.951, 1.029)
% Ind/Pak/Ban (1) 0.994 (0.981, 1.007) 0.994 (0.982, 1.006) 0.994 (0.982, 1.007)
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hospitalisation and death, although the results are not quite statistically
significant. However, given the only ethnicity data available relate to
2011 these results should again be interpreted with caution.

4.4. Further sensitivity analyses

We have conducted a number of further sensitivity analyses to assess
the robustness of our results, and they are presented in Sections 4 to 7 of
the supplementary material accompanying this paper. The first of these
relates to how we estimate pollution concentrations, and in the main
study we have used annual average pollution concentrations for 2019
to represent population exposure, because as previously discussed it is
likely to be more representative of normal concentrations than annual
average concentrations in 2020. However, in Section 4 of the supple-
mentary material we present estimated relative risks and 95% credible
intervals based on the 2020 annual average pollution concentrations as
a sensitivity analysis, and the results show broadly similar messages to
those presented in Tables 3 and 4.

Section 5 of the supplementary material investigates the potential
for spatially varying effects across Scotland, specifically estimating sep-
arate effects for the health boards containing the four largest cities in
Scotland (Grampian–Aberdeen; Tayside–Dundee; Lothian–Edinburgh;
and Greater Glasgow and Clyde–Glasgow). Additionally, the models
fitted so far in this study consider each pollutant separately in single
pollutant models, because this is the norm in the existing air pollution
and Covid-19 literature. However, we extend this in Section 6 of the
supplementary material by estimating the joint effects of NO2 and
M2.5 / PM10, because individuals are simultaneously exposed to multi-
le different pollutants. Finally, as the estimated PM2.5 association with
ospitalisations is the strongest of all those considered, we examine
ow this association varies by age group and period of the study in
ection 7 of the supplementary material.

. Discussion

This paper presents the first study examining the potential effects
hat air pollution may have on worsening Covid-19 outcomes at the
8

t

mall-area scale in Scotland, and adds to the relatively small interna-
ional evidence base on this topic that includes (Coker et al., 2020; Wu
t al., 2020; Berg et al., 2021; Konstantinoudis et al., 2021; Sun et al.,
021). The major strength of our study is the extensive sensitivity anal-
sis we have performed, which allows us to quantify the robustness of
ur results to model misspecification. This sensitivity analysis includes
hanging the residual spatial autocorrelation structure (both 𝐖 and the

random effects model), the prior distributions assumed, the estimation
of air pollution concentrations, the potential for regional variation in
effect sizes, the simultaneous effects of multiple pollutants, and how
the effects vary with age and vaccination.

The major limitation of our study is its ecological (population-level)
design, as the unit of inference is the group of individuals who live
in each IZ rather than having data for each individual. Ecological-
level studies are prone to ecological bias and the ecological fallacy
(Wakefield and Salway, 2001), the latter of which is where one in-
correctly assumes that the estimated group-level association holds at
the individual-level. This estimated group-level association does not in
any way equate to individual-level cause-and-effect, because it may be
affected by factors such as within-area variation in either the exposure
or the confounders. We used this ecological study design because the
data required for an individual-level study were not available for confi-
dentiality reasons, and this ecological approach has been predominant
in the air pollution and Covid-19 literature to date (see for exam-
ple Konstantinoudis et al., 2021 and Berg et al., 2021, while Mendy
et al., 2021 is a notable exception). Thus our findings outlined below
should be treated as indicative associations, rather than evidence of
individual-level cause-and-effect.

Our main finding is that fine particulate matter air pollution mea-
sured as PM2.5 is significantly associated with increased risks of hos-
pitalisation due to Covid-19, as all 12 estimated relative risks for this
pollutant-outcome pair are statistically significant at the 5% level. The
size of the estimated relative risks are also fairly consistent, ranging
between a 7.4% and a 9.3% increase in risk for each 1μg m−3 increase
n concentrations. This compares to estimates of around 18% in Ohio
rom Mendy et al. (2021) in an individual-level study, and 26% in
olorado from Berg et al. (2021) in a spatial ecological study similar

o this one.
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Similarly, when considering death as the outcome measure, Coker
et al. (2020) and Wu et al. (2020) report significant increased risks
of 9% and 11% for each 1 μg m−3 increase in PM2.5 concentrations in
orthern Italy and the USA respectively. In contrast, Konstantinoudis
t al. (2021) report insignificant results in England, but this may be
ue to their use of estimated (using a downscaling model) rather than
nown Covid-19 death counts at the small-area scale. It may also be
ue to the small number of deaths they had in each areal unit, which
umbered just over 1 on average. Our present study has an average
f only 6 deaths in each IZ, and this could also be the reason why 8
f the 12 estimated relative risks between PM2.5 and Covid-19 deaths
ere not statistically significant. Our estimated relative risks ranged
etween around a 2.9% and a 10.3% increased risk, but the small
umbers of deaths caused these estimates to have relatively wide and
ence non-significant 95% credible intervals in the majority of cases.

Overall then this study corroborates the majority of the earlier
esearch findings situated in different countries, which adds weight
o the international evidence that fine particulate matter air pollution
orsens Covid-19 outcomes. The sizes of these estimates across the
ifferent studies is however quite variable, which could be due to
umerous factors including the varying concentrations of air pollution
nd the small numbers of Covid-19 events in each areal unit making the
stimates slightly unstable. Thus an important area of future work will
e to conduct a meta-analysis of these studies, which will allow a more
recise global effect estimate to be produced that borrows strength
cross the individual studies. A further area of future work will be
o investigate the impact of allowing for pollution uncertainty in the
isease models, for example using an approach similar to that proposed
y Cameletti et al. (2019).

Our overall conclusions around the effects of the other two pol-
utants on Covid-19 ill health are less clear cut. For example, PM10
ppears to have a borderline significant association with hospitalisa-
ions (6 out of 12 associations were significant), with increased risks of
etween 2% and 3% for a 1 μg m−3 increase in concentrations. In con-
rast, no effects are observed with Covid-19 death, as all 12 estimated
elative risks are very close to one and non-significant. For NO2 the
ncreased risks are estimated to be around 1%–3% for hospitalisations
nd between 2% and 6% for deaths, but in all cases they are not
ignificant at the 5% level. The effects of NO2 and PM10 on Covid-19
utcomes appear to have been examined less frequently than those of
M2.5, and of the studies referenced here only (Konstantinoudis et al.,
021) has considered NO2 while none considered PM10. This suggests
hat future studies are needed to examine the effects that both these
ollutants may have on Covid-19 outcomes, to provide more conclusive
vidence on their effects than have been possible to draw here.
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