### Buprenorphine compared with methadone in pregnancy: a systematic review and meta-analysis

Michael Kinsella<sup>a</sup>, Lucy O. E. Halliday<sup>a</sup>, Martin Shaw<sup>b</sup>, Yasmin Capel<sup>b</sup>, Scott M. Nelson<sup>a</sup>, Rachel J. Kearns<sup>a</sup>

Short Title: Opioid replacement in pregnancy

<sup>a</sup>School of Medicine, Dentistry and Nursing, University of Glasgow, UK <sup>b</sup>NHS Greater Glasgow and Clyde, Glasgow, UK

Corresponding author: Dr Michael Kinsella

School of Medicine, University of Glasgow

2nd Floor, Lister Building, Glasgow Royal Infirmary

10-16, Alexandra Parade, Glasgow, G31 2ER, United Kingdom.

0141 2013870

Michael.kinsella@glagow.ac.uk

Supplemental Table 1. Preferred Reporting Items for Systematic Review (PRISMA)

(PICO)

Pages 3-4

Supplemental Table 3. Definitions of outcomes of interest Supplemental Table 4. Search terms used per dataset Page 7 Supplemental Table 5. Risk of bias for cohort studies assessed by Newcastle Ottawa Scale

Supplemental Table 6. Assessment of bias in randomised studies via the Revised Cochrane Risk-of Bias tool for randomised trials 2 (RoB 2)

Supplemental Table 7. Meta-analysis of cohort studies - adjusted and unadjusted pooled outcome measures

Supplemental Figure 1. Funnel plots for outcomes measured in which ten or more studies have reported results

Supplemental Figure 2. Meta-analysis for each outcome

Page 14 – 17

Page 12 - 13

## Page 9 - 10

Page 11

Page 6

Page 8

Supplemental Table 2. Definitions of Population, Intervention, Comparator and Outcomes

Page 5

| Section/topi<br>c         | #    | Checklist item                                                                                                                                                                                                                                                                      | Page or<br>Table/Figure<br>Where<br>Reported |
|---------------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| TITLE                     |      |                                                                                                                                                                                                                                                                                     |                                              |
| Title                     | 1    | Identify the report as a systematic review, meta-<br>analysis, or both.                                                                                                                                                                                                             | 1                                            |
| ABSTRACT                  |      |                                                                                                                                                                                                                                                                                     |                                              |
| Structured<br>summary     | 2    | Provide a structured summary including, as<br>applicable: background; objectives; data sources;<br>study eligibility criteria, participants, and<br>interventions; study appraisal and synthesis methods;<br>results; limitations; conclusions and implications of<br>key findings. | 2                                            |
| INTRODUC                  | TION | 1                                                                                                                                                                                                                                                                                   |                                              |
| Rationale                 | 3    | Describe the rationale for the review in the context of what is already known.                                                                                                                                                                                                      | 4-5                                          |
| Objectives                | 4    | Provide an explicit statement of questions being<br>addressed with reference to participants, interventions,<br>comparisons, outcomes, and study design (PICOS).                                                                                                                    | 5                                            |
| METHODS                   |      | <u> </u>                                                                                                                                                                                                                                                                            |                                              |
| Protocol and registration | 5    | Indicate if a review protocol exists, if and where it can<br>be accessed (e.g., Web address), and, if available,<br>provide registration information including registration<br>number.                                                                                              | 5                                            |
| Eligibility<br>criteria   | 6    | Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.                                                                              | 5-6<br>(+<br>supplement)                     |
| Information<br>sources    | 7    | Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.                                                                                                          | 5-6                                          |
| Search                    | 8    | Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.                                                                                                                                                       | 5-6<br>(+<br>supplement)                     |
| Study<br>selection        | 9    | State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).                                                                                                                           | 5-6                                          |

# Supplemental Table 1. Preferred Reporting Items for Systematic Review (PRISMA)

| Data<br>collection<br>process            | 10 | Describe method of data extraction from reports (e.g.,<br>piloted forms, independently, in duplicate) and any<br>processes for obtaining and confirming data from<br>investigators.                                             | 6                      |
|------------------------------------------|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| Data items                               | 11 | List and define all variables for which data were<br>sought (e.g., PICOS, funding sources) and any<br>assumptions and simplifications made.                                                                                     | 5<br>(+<br>supplement) |
| Risk of bias<br>in individual<br>studies | 12 | Describe methods used for assessing risk of bias of<br>individual studies (including specification of whether<br>this was done at the study or outcome level), and how<br>this information is to be used in any data synthesis. | 6                      |
| Summary<br>measures                      | 13 | State the principal summary measures (e.g., risk ratio, difference in means).                                                                                                                                                   | 6                      |
| Synthesis of results                     | 14 | Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., $I^2$ ) for each meta-analysis.                                                                       | 6                      |

Supplemental Table 2. Definitions of Population, Intervention, Comparator and Outcomes (PICO)

| Population   | Mothers who are pregnant and prescribed opioid substitutes and offspring that<br>were exposed to opioids during their gestation                                                                                                                                                                                                                                                          |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Intervention | Buprenorphine drug therapy (with or without naloxone)                                                                                                                                                                                                                                                                                                                                    |
| Comparator   | Methadone drug therapy                                                                                                                                                                                                                                                                                                                                                                   |
| Outcomes     | Maternal outcomes: death, side-effects associated with treatment, maintenance<br>on treatment, illicit drug use, and mode of delivery.<br>Offspring outcomes: death, stillbirth, birthweight, small for gestational age,<br>length (at birth), head circumference (at birth), prematurity, opioid withdrawal<br>treatment, hospital stay, congenital anomalies and childhood development |

Supplemental Table 3. Definitions of outcomes of interest

| Outcomes                                           | Definition                                                                             |
|----------------------------------------------------|----------------------------------------------------------------------------------------|
| Maternal death                                     | Loss of life of mother                                                                 |
| Side effects of medication                         | Maternal side effects associated with treatment                                        |
| Maintenance on treatment                           | Maintenance on specific opioid replacement treatment                                   |
| Mode of delivery                                   | Type of delivery – SVD, assisted vaginal or caesarean section                          |
| Additional Opioid use                              | Use of illicit opioids through pregnancy                                               |
| Stillbirths                                        | Stillbirth offspring                                                                   |
| Offspring death                                    | Post-partum death of offspring                                                         |
| Birth weight                                       | Total body weight at birth in grams                                                    |
| Length                                             | Total body length at birth in centimetres                                              |
| Head circumference                                 | Head circumference at birth in centimetres                                             |
| Small for gestational age                          | Rate of small for gestational age, definitions as per study                            |
| Prematurity                                        | Birth before completion of 37 weeks gestation                                          |
| NAS (Neonatal<br>Abstinence Syndrome)<br>Treatment | Requirement for treatment of neonatal withdrawal                                       |
| Hospital stay                                      | Duration of neonatal hospital admission in days                                        |
| Congenital anomalies                               | Structural, metabolic, or functional defect present at birth or diagnosed as a neonate |
| Childhood development                              | Cognitive, functional, or behavioural development assessment                           |

Supplemental Table 4. Search terms used per dataset

| Medline                                                                                                                                                                                                                                                                                 | Embase                                                                                                          | Cochrane Database of Systematic Reviews                                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| (((((opiate substitution<br>treatment [MeSH Major<br>Topic]) OR<br>buprenorphine) OR<br>methadone) AND Humans<br>[Mesh])) AND<br>(((((infant[MeSH Major<br>Topic]) OR neonat*[MeSH<br>Major Topic]) OR<br>neonat*) OR<br>pregnan*[MeSH Major<br>Topic]) OR pregnan*)<br>Filters: Humans | Pregnancy OR<br>newborn AND<br>methadone OR<br>buprenorphine OR<br>"drugs used in<br>treatment of<br>addiction" | (MeSH (Pregnancy) OR MeSH(infant)) AND<br>(MeSH Opiate Substition Treatment) OR<br>(Methadone) OR (Buprenorphine)) |
| Web of Science                                                                                                                                                                                                                                                                          | Scopus                                                                                                          | Open Gray                                                                                                          |
| (("opiate substitution<br>treatment" OR buprenorp<br>hine OR methadone) AN<br>D (infan* OR neonat*<br>OR pregnan*)                                                                                                                                                                      | (Infan* OR neonat*<br>OR pregnan*) AND<br>(opiate substation<br>treatment OR<br>buprenorphine OR<br>methadone)  | (buprenorphine OR methadone) AND<br>pregnant                                                                       |
| Cinahl                                                                                                                                                                                                                                                                                  | Central                                                                                                         |                                                                                                                    |
| Pregnancy OR infant OR<br>Neonate AND Opiate<br>Substitution treatment OR<br>methadone OR<br>buprenorphine                                                                                                                                                                              | Pregnancy OR<br>Infant AND Opiate<br>substitution<br>treatment OR<br>Methadone OR<br>Buprenorphine              |                                                                                                                    |

| Supplemental | Table 5. Risk of bi | as for cohort studie | es assessed by | Newcastle Ottaw | va Scale ( | (Wells, et |
|--------------|---------------------|----------------------|----------------|-----------------|------------|------------|
| al., 2014).  |                     |                      |                |                 |            |            |

| Study (year of publication)   | <b>Selection</b>  | <b>Comparability</b> | <mark>Outcome</mark> | Total stars    |
|-------------------------------|-------------------|----------------------|----------------------|----------------|
| <mark>Beir (2015)</mark>      | ****              | <mark>0 star</mark>  | ***                  | <mark>7</mark> |
| Brogly (2017)                 | ***               | <mark>**</mark>      | ***                  | <mark>8</mark> |
| <mark>Colombini (2008)</mark> | ****              | <mark>0 star</mark>  | **                   | <mark>6</mark> |
| Ebner (2007)                  | ****              | <mark>0 star</mark>  | **                   | <mark>6</mark> |
| <mark>Gawronski (2014)</mark> | ****              | <mark>0 star</mark>  | ***                  | <mark>7</mark> |
| <mark>Kakko (2008)</mark>     | **                | <mark>0 star</mark>  | ***                  | <mark>5</mark> |
| Konijnenberg (2014)           | ****              | <mark>**</mark>      | **                   | <mark>8</mark> |
| Lacroix (2011)                | <mark>**</mark>   | <mark>0 star</mark>  | **                   | <mark>4</mark> |
| <mark>Lejeune (2006)</mark>   | <mark>****</mark> | <mark>0 star</mark>  | **                   | <mark>6</mark> |
| <mark>Meyer (2016)</mark>     | ****              | **                   | ***                  | <mark>9</mark> |
| <mark>Nechanska (2017)</mark> | ****              | **                   | ***                  | <mark>9</mark> |
| Norgaargd (2015)              | ****              | <mark>**</mark>      | **                   | <mark>8</mark> |
| Pritham (2013)                | <mark>****</mark> | **                   | ***                  | <mark>9</mark> |
| <mark>Tolia (2018)</mark>     | **                | <mark>**</mark>      | ***                  | <mark>7</mark> |
| Whitham (2010)                | ****              | **                   | ***                  | <mark>9</mark> |
| Wiegard (2015)                | ****              | **                   | <mark>***</mark>     | <mark>9</mark> |

Supplemental Table 6. Assessment of bias in randomised studies via the Revised Cochrane Risk-of-Bias tool for randomised trials 2 (RoB 2) (Sterne, et al., 2019)

| <u>Study</u>              | Outcome                           | Randomisation<br>process | Deviations<br>from the<br>intended<br>interventions | <mark>Missing</mark><br>outcome data | <mark>Measurement of</mark><br><mark>the outcome</mark> | Selection of<br>the reported<br>result | Overall |
|---------------------------|-----------------------------------|--------------------------|-----------------------------------------------------|--------------------------------------|---------------------------------------------------------|----------------------------------------|---------|
| Jones (2010)              | Length at birth                   | +                        | +                                                   | -                                    | +                                                       | +                                      | -       |
| <mark>Jones (2010)</mark> | Birth weight                      | +                        | +                                                   | -                                    | +                                                       | +                                      | •       |
| Jones (2010)              | Head circumference                | +                        | +                                                   | -                                    | +                                                       | +                                      |         |
| Jones (2010)              | Gestational age                   | +                        | +                                                   |                                      | +                                                       | +                                      | -       |
| <mark>Jones (2010)</mark> | Neonatal abstinence<br>syndrome   | •                        | •                                                   |                                      | •                                                       | •                                      | -       |
| <mark>Jones (2010)</mark> | Duration of hospital<br>admission | •                        | +                                                   | -                                    | !                                                       | +                                      | -       |
| <mark>Jones (2010)</mark> | Maternal outcomes                 | +                        | +                                                   | -                                    | +                                                       | !                                      | -       |
| Jones (2010)              | Prematurity                       | +                        | +                                                   | -                                    | +                                                       | +                                      | -       |
| Jones (2010)              | Caesarean section                 |                          | •                                                   |                                      | •                                                       | •                                      | -       |
| Jones (2005)              | Birth weight                      |                          | +                                                   |                                      | •                                                       | !                                      |         |
| Jones (2005)              | Length at birth                   | +                        | +                                                   | -                                    | +                                                       | !                                      |         |

| Jones (2005)              | Head circumference              | +         | +         | - | + | ! | - |
|---------------------------|---------------------------------|-----------|-----------|---|---|---|---|
| <mark>Jones (2005)</mark> | Gestational age                 | $\bullet$ | $\bullet$ | - | • | ! | - |
| <mark>Jones (2005)</mark> | Neonatal abstinence<br>syndrome | •         | +         | - | • | ! | - |
| <mark>Jones (2010)</mark> | <mark>Stillbirth</mark>         | +         | +         |   | + | ! | - |
| <mark>Jones (2005)</mark> | Hospital stay                   | +         | +         |   | + | ! | - |
| Jones (2005)              | Prematurity                     | $\bullet$ | +         |   | + | ! | - |
| Jones (2005)              | caesarean section               | +         | +         |   | + | ! | - |
| Jones (2005)              | <mark>Stillbirth</mark>         | +         | +         |   | + | ! | - |
| <b>Kaltenbach</b>         | Childhood outcomes              |           | +         | • | • | • | - |
| Fischer                   | Prematurity                     |           | +         | - | • | ! | - |
| Fischer                   | Gestational Age                 | +         | +         | - | + | ! | - |
| <mark>Fischer</mark>      | <mark>Stillbirth</mark>         | -         | +         |   | • | ! | - |

Supplemental Table 7. Meta-analysis of cohort studies - adjusted and unadjusted pooled outcome measures

| Outcome                                               | Studies with<br>adjusted<br>estimates for<br>outcomes                      | Pooled results<br>(adjusted outcomes) <sup>1</sup> | Pooled results<br>(unadjusted<br>outcomes, all<br>studies) <sup>1</sup> | Pooled results<br>(adjusted<br>where<br>available plus<br>unadjusted for<br>remaining<br>studies) <sup>1</sup> |
|-------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Small for gestational age                             | Brogly (2017)<br>Nechanska<br>[CR] (2017)<br>Nechanska<br>[Nor] (2017)     | RR 1.10 (95% CI: 0.79<br>- 1.52)                   | RR 0.76 (95% CI:<br>0.66 to 0.88)                                       | RR 0.88 (95%<br>CI: 0.67 to<br>1.15)                                                                           |
| Prematurity                                           | Brogly (2017)<br>Nechanska<br>[CR] (2017)<br>Nechanska<br>[Nor] (2017)     | RR 0.66 (95% CI: 0.42<br>- 1.04)                   | RR 0.62 (95% CI:<br>0.53 to 0.74)                                       | RR 0.60 (95%<br>CI: 0.50 - 0.73)                                                                               |
| Duration of hospital<br>admission                     | Brogly (2017)                                                              | Mean Difference –3.66<br>(95% CI: -5.46 - –1.87)   | WMD -6.84 days<br>(95% CI:<br>-11.37days –<br>-2.32days)                | NA <sup>2</sup>                                                                                                |
| NAS (Neonatal<br>Abstinence<br>Syndrome)<br>Treatment | Lacroix (2010) <sup>3</sup><br>Nechanska<br>[Nor] (2017)<br>Wiegard (2015) | RR 1.18 (95% CI: 0.78<br>- 1.79)                   | RR 0.58 (95% CI:<br>0.40 - 0.82)                                        | RR 0.60 (95%<br>CI: 0.50 - 0.73)                                                                               |

1. Results of buprenorphine compared to methadone, with methadone as reference group

 Adjusted and non-adjusted estimates not pooled as data could not be combined to form total estimate of effect

3. Adjustment of NAS requirements given maternal heroin use.

Supplemental Figure 1. Funnel plots for outcomes measured in which ten or more studies have reported results





#### Supplemental Figure 2. Meta-analysis for each outcome



circumference after exposure to buprenorphine or methadone during gestation, in centimetres.



Supplemental Fig. 2.c – Meta-analysis of the relative risk of small for gestation age after exposure to buprenorphine or methadone during gestation.

| Author                               | Buprenorph<br>N Mean                      | hine<br>SD | N    | Metha<br>MEAN | done<br>SD |                               | MD    | 95%-CI        | Weight |
|--------------------------------------|-------------------------------------------|------------|------|---------------|------------|-------------------------------|-------|---------------|--------|
| study type = Cohort                  |                                           |            |      |               |            |                               |       |               |        |
| Beir                                 | 55 38.00 3                                | 3.00       | 165  | 37.50         | 3.00       |                               | 0.50  | [-0.42; 1.42] | 7.2%   |
| Colombini                            | 13 39.90 (                                | 0.80       | 9    | 39.10         | 1.80       |                               | 0.80  | [-0.45; 2.05] | 4.3%   |
| Gawronshi                            | 58 38.00 2                                | 2.00       | 92   | 38.00         | 2.00       |                               | 0.00  | [-0.66; 0.66] | 11.4%  |
| Kakko                                | 47 39.50 2                                | 2.00       | 36   | 38.60         | 1.50       |                               | 0.90  | [0.15; 1.65]  | 9.6%   |
| Myer                                 | 361 39.20 2                               | 2.20       | 248  | 38.20         | 2.50       |                               | 1.00  | [0.61; 1.39]  | 19.3%  |
| Nechanska (CR)                       | 152 38.50 2                               | 2.70       | 152  | 38.30         | 2.60       |                               | 0.20  | [-0.40; 0.80] | 12.9%  |
| Nechanska (NOR)                      | 97 39.20 2                                | 2.40       | 99   | 38.90         | 1.90       |                               | 0.30  | [-0.31; 0.91] | 12.6%  |
| Pritham                              | 15 38.30                                  | 1.80       | 133  | 37.70         | 2.10       |                               | 0.60  | [-0.38; 1.58] | 6.5%   |
| Whitham                              | 30 38.73                                  | 1.95       | 22   | 38.09         | 1.95       |                               | 0.64  | [-0.43; 1.71] | 5.6%   |
| Overall effect                       | 828                                       |            | 956  |               |            |                               | 0.55  | [ 0.25; 0.84] | 89.5%  |
| Heterogeneity: $I^2 = 26\%$ ,        | $\tau^2 = 0.0671, p$                      | = 0.21     |      |               |            |                               |       |               |        |
| study type = RCT                     |                                           |            |      |               |            |                               |       |               |        |
| Jones (2005)                         | 7 38.80 2                                 | 2.01       | 11   | 38.80         | 1.86       |                               | 0.00  | [-1.85; 1.85] | 2.2%   |
| Jones (2010)                         | 58 39.10 2                                | 2.28       | 73   | 37.90         | 2.56       |                               | 1.20  | [ 0.37; 2.03] | 8.3%   |
| Overall effect                       | 65                                        |            | 84   |               |            |                               | 0.90  | [-0.13; 1.92] | 10.5%  |
| Heterogeneity: $I^2 = 26\%$ ,        | $\tau^2 = 0.1844, p$                      | = 0.25     |      |               |            |                               |       |               |        |
| Overall effect                       | 893                                       | 1          | 040  |               |            |                               | 0.59  | [ 0.31; 0.87] | 100.0% |
| Heterogeneity: I <sup>2</sup> = 24%, | $\tau^2 = 0.0693, p$                      | = 0.22     |      |               |            |                               |       |               |        |
| Test for subgroup differe            | nces: χ <sub>1</sub> <sup>2</sup> = 0.41, | , df = 1   | (p = | 0.52)         |            | 2 -1 0 1 2                    |       |               |        |
|                                      |                                           |            |      | li li         | n favo     | of methadone In favor of bupr | enorp | hine          |        |
|                                      |                                           |            |      |               |            |                               |       |               |        |

exposure to buprenorphine or methadone.

| Author                                                                                                                                                                                               | Buprenorp<br>N Mean                                                                                                                                           | ohine<br>SD N                                                                                                                                                                                                                                                                                                                                                                                                                       | Methadone<br>MEAN SD                                                                                                                                     |                                                                                     | MD                                                                                                                                        | 95%-CI Weight                                                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| study type = Cohort                                                                                                                                                                                  |                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                          | : 1                                                                                 |                                                                                                                                           |                                                                                                |
| Beir                                                                                                                                                                                                 | 55 21.00 <sup>2</sup>                                                                                                                                         | 13.00 165                                                                                                                                                                                                                                                                                                                                                                                                                           | 39.90 24.30                                                                                                                                              |                                                                                     | -18.90 [-2                                                                                                                                | 3.95: -13.851 10.2%                                                                            |
| Brogly                                                                                                                                                                                               | 518 13.90                                                                                                                                                     | 12.60 433                                                                                                                                                                                                                                                                                                                                                                                                                           | 21.00 15.70                                                                                                                                              |                                                                                     | -7.10                                                                                                                                     | -8.93: -5.271 12.3%                                                                            |
| Gawronshi                                                                                                                                                                                            | 58 9.00                                                                                                                                                       | 6 00 92                                                                                                                                                                                                                                                                                                                                                                                                                             | 10.00 8.00                                                                                                                                               |                                                                                     | -1 00 [                                                                                                                                   | -3 25 1 25 12 1%                                                                               |
| Kakko                                                                                                                                                                                                | 47 940                                                                                                                                                        | 8 40 36                                                                                                                                                                                                                                                                                                                                                                                                                             | 19 70 18 80                                                                                                                                              |                                                                                     | -10.30                                                                                                                                    | 16 89: -3 711 8 9%                                                                             |
| Mver                                                                                                                                                                                                 | 325 4 20                                                                                                                                                      | 12 60 205                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.60 2.80                                                                                                                                                | _                                                                                   | -140 [                                                                                                                                    | -2.82: 0.021 12.5%                                                                             |
| Pritham                                                                                                                                                                                              | 15 13 70                                                                                                                                                      | 11 90 134                                                                                                                                                                                                                                                                                                                                                                                                                           | 21.30 12.60                                                                                                                                              |                                                                                     | -7.60 [-                                                                                                                                  | 13.99 -1.211 9.1%                                                                              |
| Wiegard                                                                                                                                                                                              | 31 5.60                                                                                                                                                       | 5.00 29                                                                                                                                                                                                                                                                                                                                                                                                                             | 980 740                                                                                                                                                  |                                                                                     | -4 20 [                                                                                                                                   | -7 42: -0.981 11.6%                                                                            |
| Overall effect                                                                                                                                                                                       | 1049                                                                                                                                                          | 1094                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00 7.10                                                                                                                                                | $\langle \rangle$                                                                   | -6.84 [-1                                                                                                                                 | 1.37: -2.32] 76.7%                                                                             |
| Heterogeneity: $I^2 = 91\%$ ,                                                                                                                                                                        | $\tau^2 = 32.9029, p$                                                                                                                                         | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                          |                                                                                     | 0.01                                                                                                                                      |                                                                                                |
| study type = PCT                                                                                                                                                                                     |                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                          |                                                                                     |                                                                                                                                           |                                                                                                |
| longe (2005)                                                                                                                                                                                         | 10 6 90                                                                                                                                                       | 2 72 11                                                                                                                                                                                                                                                                                                                                                                                                                             | 9 10 2 50                                                                                                                                                |                                                                                     | 1 20 [                                                                                                                                    | 3 59. 0 091 12 1%                                                                              |
| Jones (2005)                                                                                                                                                                                         | 10 0.00<br>59 10 00                                                                                                                                           | 2.72 11                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.10 2.09                                                                                                                                                |                                                                                     | -1.30 [<br>7.50 [                                                                                                                         | -3.30, 0.90] 12.1%                                                                             |
| Jones (2010)                                                                                                                                                                                         | 58 10.00                                                                                                                                                      | 9.14 73                                                                                                                                                                                                                                                                                                                                                                                                                             | 17.50 12.62                                                                                                                                              |                                                                                     | -7.50 [-                                                                                                                                  | 11.20, -3.74] 11.2%                                                                            |
| Hotorogonoity: $l^2 = 87\%$                                                                                                                                                                          | $-^2 - 167010$ p                                                                                                                                              | - 0.01                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                          |                                                                                     | -4.ZI [-                                                                                                                                  | 10.20, 1.05] 25.570                                                                            |
| Heterogeneity: $T = 67\%$ ,                                                                                                                                                                          | $\tau = 10.7010, p$                                                                                                                                           | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                          |                                                                                     |                                                                                                                                           |                                                                                                |
| Overall effect                                                                                                                                                                                       | 1117                                                                                                                                                          | 1179                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                          |                                                                                     | 6 10 T                                                                                                                                    | 0 81: 2 571 100 0%                                                                             |
| Hotorogonoity: $I^2 = 0.0\%$                                                                                                                                                                         | $r^2 = 26.7430$ p.                                                                                                                                            | ~ 0.01                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                          |                                                                                     |                                                                                                                                           | -9.61, -2.57] 100.0%                                                                           |
| Helefogeneity. $I = 30 \%$ ,                                                                                                                                                                         | $\tau = 20.7430, p$                                                                                                                                           | < 0.01                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                          |                                                                                     |                                                                                                                                           |                                                                                                |
| Test for subgroup differen                                                                                                                                                                           | $n \cos x^2 = 0.47$                                                                                                                                           | df = 1 (n = 0)                                                                                                                                                                                                                                                                                                                                                                                                                      | 50)                                                                                                                                                      | -20 -10 0 10                                                                        | 20                                                                                                                                        |                                                                                                |
| Test for subgroup differen                                                                                                                                                                           | nces: $\chi_1^2 = 0.47$ , c                                                                                                                                   | df = 1 (p = 0.                                                                                                                                                                                                                                                                                                                                                                                                                      | .50)<br>In favor of                                                                                                                                      | -20 -10 0 10                                                                        | 20<br>methadone                                                                                                                           |                                                                                                |
| Test for subgroup differen                                                                                                                                                                           | nces: $\chi_1^2 = 0.47$ , c                                                                                                                                   | df = 1 (p = 0.                                                                                                                                                                                                                                                                                                                                                                                                                      | 50)<br>In favor of                                                                                                                                       | -20 -10 0 10<br>buprenorphine In favor of                                           | 20<br>methadone                                                                                                                           |                                                                                                |
| Test for subgroup differen                                                                                                                                                                           | nces: $\chi_1^2 = 0.47$ , c                                                                                                                                   | df = 1 (p = 0)                                                                                                                                                                                                                                                                                                                                                                                                                      | 50)<br>In favor of                                                                                                                                       | -20 -10 0 10<br>buprenorphine In favor of                                           | 20<br>methadone                                                                                                                           | hospital                                                                                       |
| Test for subgroup differen                                                                                                                                                                           | nces: $\chi_1^2 = 0.47$ , c<br>2.e Meta-ar                                                                                                                    | $df = 1 \ (p = 0)$                                                                                                                                                                                                                                                                                                                                                                                                                  | 50)<br>In favor of                                                                                                                                       | -20 -10 0 10<br>buprenorphine In favor of<br>ed mean difference in                  | 20<br>methadone<br>duration of                                                                                                            | hospital                                                                                       |
| Test for subgroup different Supplemental Fig.                                                                                                                                                        | nces: $\chi_1^2 = 0.47$ , c<br>2.e Meta-ar<br>pring exposi                                                                                                    | df = 1 (p = 0) $nalysis of$ $ure to bu$                                                                                                                                                                                                                                                                                                                                                                                             | 50)<br>In favor of<br>the weighte<br>prenorphine                                                                                                         | -20 -10 0 10<br>buprenorphine In favor of<br>ed mean difference in<br>or methadone. | 20<br>methadone<br><mark>duration of</mark>                                                                                               | hospital                                                                                       |
| Test for subgroup differen<br>Supplemental Fig.<br>admission for offs                                                                                                                                | nces: $\chi_1^2 = 0.47$ , c<br>2.e Meta-ar<br>pring exposi                                                                                                    | df = 1 (p = 0)                                                                                                                                                                                                                                                                                                                                                                                                                      | 50)<br>In favor of<br>the weighte<br>prenorphine                                                                                                         | -20 -10 0 10<br>buprenorphine In favor of<br>ed mean difference in<br>or methadone. | 20<br>methadone<br>duration of                                                                                                            | hospital                                                                                       |
| Test for subgroup differen<br>Supplemental Fig.<br>admission for offs                                                                                                                                | nces: $\chi_1^2 = 0.47$ , c<br>2.e Meta-ar<br>pring exposi<br>Buprer                                                                                          | $\frac{df = 1}{p = 0}$                                                                                                                                                                                                                                                                                                                                                                                                              | 50)<br>In favor of<br>f the weighte<br>prenorphine<br>Methadone                                                                                          | -20 -10 0 10<br>buprenorphine In favor of<br>ed mean difference in<br>or methadone. | 20<br>methadone<br>duration of                                                                                                            |                                                                                                |
| Test for subgroup differen<br>Supplemental Fig.<br>admission for offs<br>Study                                                                                                                       | nces: $\chi_1^2 = 0.47$ , c<br>2.e Meta-ar<br>pring exposi<br>Buprer<br>Ever                                                                                  | $\frac{df = 1 \ (p = 0)}{ure \ to \ bu}$ norphine nts Total E                                                                                                                                                                                                                                                                                                                                                                       | 50)<br>In favor of<br>f the weighte<br>prenorphine<br>Methadone<br>ivents Total                                                                          | -20 -10 0 10<br>buprenorphine In favor of<br>ed mean difference in<br>or methadone. | 20<br>methadone<br>duration of<br>RR 95%                                                                                                  | <mark>hospital</mark><br>6-Cl Weight                                                           |
| Test for subgroup different<br>Supplemental Fig.<br>admission for offs<br>Study<br>study type =                                                                                                      | nces: $\chi_1^2 = 0.47$ , c<br>2.e Meta-ar<br>pring exposi<br>Buprer<br>Ever<br>Cohort                                                                        | df = 1 (p = 0.<br>nalysis of<br>ure to bu<br>norphine<br>nts Total E                                                                                                                                                                                                                                                                                                                                                                | 50)<br>In favor of<br><u>f the weighto</u><br>prenorphine<br>Methadone<br>ivents Total                                                                   | -20 -10 0 10<br>buprenorphine In favor of<br>ed mean difference in<br>or methadone. | 20<br>methadone<br>duration of<br>RR 95%                                                                                                  | hospital<br>6-Cl Weight                                                                        |
| Test for subgroup different Supplemental Fig.<br>admission for offs<br>Study<br>study type =<br>Lacroix                                                                                              | nces: $\chi_1^2 = 0.47$ , c<br>2.e Meta-ar<br>pring exposi<br>Buprer<br>Ever<br>Cohort                                                                        | $\frac{df = 1 \ (p = 0)}{\frac{nalysis}{ure} to bu}$                                                                                                                                                                                                                                                                                                                                                                                | 50)<br>In favor of<br>f the weighte<br>prenorphine<br>Methadone<br>ivents Total<br>2 45                                                                  | -20 -10 0 10<br>buprenorphine In favor of<br>cd mean difference in<br>or methadone. | 20<br>methadone<br>duration of<br>RR 95%<br>1.25 [0.25; 6                                                                                 | hospital<br>6-Cl Weight<br>.19] 13.5%                                                          |
| Test for subgroup different Supplemental Fig.<br>admission for offs<br>Study<br>study type =<br>Lacroix<br>Myer                                                                                      | nces: $\chi_1^2 = 0.47$ , c<br>2.e Meta-ar<br>pring exposi<br>Buprer<br>Ever<br>Cohort                                                                        | $\frac{df = 1 \ (p = 0)}{\frac{nalysis}{ure} to bu}$                                                                                                                                                                                                                                                                                                                                                                                | 50)<br>In favor of<br>f the weighte<br>prenorphine<br>Methadone<br>Events Total<br>2 45<br>1 248 —                                                       | -20 -10 0 10<br>buprenorphine In favor of<br>cd mean difference in<br>or methadone. | 20<br>methadone<br>duration of<br>RR 95%<br>1.25 [0.25; 6<br>0.69 [0.04; 10                                                               | hospital<br>6-Cl Weight<br>.19] 13.5%<br>.93] 4.5%                                             |
| Test for subgroup different<br>Supplemental Fig.<br>admission for offs<br>Study<br>study type =<br>Lacroix<br>Myer<br>Norgaard                                                                       | nces: $\chi_1^2 = 0.47$ , c<br>2.e Meta-ar<br>pring exposi<br>Buprer<br>Ever<br>Cohort                                                                        | $\frac{df = 1 \ (p = 0)}{\text{nalysis of}}$ $\frac{1}{\text{ure to bu}}$ $\frac{1}{\text{norphine}}$ $\frac{5}{1} \frac{90}{361}$ $\frac{1}{14} \frac{361}{167}$                                                                                                                                                                                                                                                                   | 50)<br>In favor of<br>the weighte<br>prenorphine<br>Methadone<br>vents Total<br>2 45<br>1 248 –<br>20 193                                                | -20 -10 0 10<br>buprenorphine In favor of<br>ed mean difference in<br>or methadone. | 20<br>methadone<br>duration of<br>RR 95%<br>1.25 [0.25; 6<br>0.69 [0.04; 10<br>0.81 [0.42; 1                                              | hospital<br>6-Cl Weight<br>.19] 13.5%<br>.93] 4.5%<br>.55] 81.9%                               |
| Test for subgroup different<br>Supplemental Fig.<br>admission for offs<br>Study<br>study type =<br>Lacroix<br>Myer<br>Norgaard<br>Total per gro                                                      | nces: $\chi_1^2 = 0.47$ , c<br>2.e Meta-ar<br>pring exposu<br>Buprer<br>Ever<br>Cohort                                                                        | $\frac{df = 1 \ (p = 0)}{\text{nalysis of}}$ $\frac{df = 1 \ (p = 0)}{\text{ure to bu}}$ $\frac{df = 1 \ (p = 0)}{\text{norphine}}$ $\frac{f = 0}{\text{norphine}}$ | 50)<br>In favor of<br>the weighte<br>prenorphine<br>Methadone<br>ivents Total<br>2 45<br>1 248 –<br>20 193<br>486                                        | -20 -10 0 10<br>buprenorphine In favor of<br>ed mean difference in<br>or methadone. | 20<br>methadone<br>duration of<br>RR 95%<br>1.25 [0.25; 6<br>0.69 [0.04; 10<br>0.81 [0.42; 1<br>0.85 [0.47; 1                             | hospital<br><b>6-CI Weight</b><br>.19] 13.5%<br>.93] 4.5%<br>.55] 81.9%<br>.54] 100.0%         |
| Test for subgroup different<br>Supplemental Fig.<br>admission for offs<br>Study<br>study type =<br>Lacroix<br>Myer<br>Norgaard<br>Total per gro<br>Heterogeneity:                                    | nces: $\chi_1^2 = 0.47$ , c<br>2.e Meta-ar<br>pring exposi<br>Bupren<br>Ever<br>Cohort<br>pup<br>$l^2 = 0\%$ , $\tau^2 = 0$ , p                               | df = 1 (p = 0) $nalysis of$ $ure to bu$ $norphine$ $nts Total E$ $5  90$ $1  361$ $14  167$ $618$ $p = 0.87$                                                                                                                                                                                                                                                                                                                        | 50)<br>In favor of<br>f the weighte<br>prenorphine<br>Methadone<br>Events Total<br>2 45<br>1 248 –<br>20 193<br>486                                      | -20 -10 0 10<br>buprenorphine In favor of<br>cd mean difference in<br>or methadone. | 20<br>methadone<br>duration of<br>RR 95%<br>1.25 [0.25; 6<br>0.69 [0.04; 10<br>0.81 [0.42; 1<br>0.85 [0.47; 1                             | hospital<br>6-Cl Weight<br>.19] 13.5%<br>.93] 4.5%<br>.55] 81.9%<br>.54] 100.0%                |
| Test for subgroup different<br>Supplemental Fig.<br>admission for offs<br>Study<br>study type =<br>Lacroix<br>Myer<br>Norgaard<br>Total per gro<br>Heterogeneity:<br>Total per gro                   | nces: $\chi_1^2 = 0.47$ , c<br>2.e Meta-ar<br>pring exposi<br>Bupren<br>Ever<br>Cohort<br>$p_1^2 = 0\%$ , $\tau^2 = 0$ , p                                    | df = 1 (p = 0) $nalysis of$ $ure to bu$ $norphine$ $norphine$ $5 	 90$ $1 	 361$ $14 	 167$ $618$ $p = 0.87$ $c48$                                                                                                                                                                                                                                                                                                                  | 50)<br>In favor of<br>f the weighte<br>prenorphine<br>Methadone<br>Events Total<br>2 45<br>1 248 –<br>20 193<br>486                                      | -20 -10 0 10<br>buprenorphine In favor of<br>cd mean difference in<br>or methadone. | 20<br>methadone<br>duration of<br>RR 95%<br>1.25 [0.25; 6<br>0.69 [0.04; 10<br>0.81 [0.42; 1<br>0.85 [0.47; 1                             | hospital<br>6-Cl Weight<br>.19] 13.5%<br>.93] 4.5%<br>.55] 81.9%<br>.54] 100.0%                |
| Test for subgroup different<br>Supplemental Fig.<br>admission for offs<br>Study<br>study type =<br>Lacroix<br>Myer<br>Norgaard<br>Total per gro<br>Heterogeneity:<br>Total per gro                   | nces: $\chi_1^2 = 0.47$ , c<br>2.e Meta-ar<br>pring exposi<br>Bupren<br>Ever<br>Cohort<br>pup<br>$l^2 = 0\%$ , $\tau^2 = 0$ , p                               | df = 1 (p = 0) $nalysis of$ $ure to bu$ $norphine$ $norphine$ $5 	 90$ $1 	 361$ $14 	 167$ $618$ $p = 0.87$ $618$                                                                                                                                                                                                                                                                                                                  | 50)<br>In favor of<br>f the weighte<br>prenorphine<br>Methadone<br>Events Total<br>2 45<br>1 248 –<br>20 193<br>486<br>486                               | -20 -10 0 10<br>buprenorphine In favor of<br>cd mean difference in<br>or methadone. | 20<br>methadone<br>duration of<br>RR 95%<br>1.25 [0.25; 6<br>0.69 [0.04; 10<br>0.81 [0.42; 1<br>0.85 [0.47; 1                             | hospital<br>6-Cl Weight<br>.19] 13.5%<br>.93] 4.5%<br>.55] 81.9%<br>.54] 100.0%                |
| Supplemental Fig.<br>admission for offs<br>Study<br>study type =<br>Lacroix<br>Myer<br>Norgaard<br>Total per gro<br>Heterogeneity:<br>Total per gro<br>Heterogeneity:                                | nces: $\chi_1^2 = 0.47$ , c<br>2.e Meta-ar<br>pring exposi<br>Buprer<br>Ever<br>Cohort<br>pup<br>$l^2 = 0\%$ , $\tau^2 = 0$ , p<br>pup differences $\tau^2$   | df = 1 (p = 0.) $nalysis of ure to bu$ norphine $fs Total E$ $5 90$ $1 361$ $14 167$ $618$ $p = 0.87$ $618$ $p = 0.87$                                                                                                                                                                                                                                                                                                              | 50)<br>In favor of<br>the weighte<br>prenorphine<br>Methadone<br>vents Total<br>2 45<br>1 248 —<br>20 193<br>486<br>486<br>0 (n = NA)                    | -20 -10 0 10<br>buprenorphine In favor of<br>cd mean difference in<br>or methadone. | 20<br>methadone<br>duration of<br>RR 95%<br>1.25 [0.25; 6<br>0.69 [0.04; 10<br>0.81 [0.42; 1<br>0.85 [0.47; 1                             | hospital<br>6-Cl Weight<br>.19] 13.5%<br>.93] 4.5%<br>.55] 81.9%<br>.54] 100.0%                |
| Test for subgroup different<br>Supplemental Fig.<br>admission for offs<br>Study<br>study type =<br>Lacroix<br>Myer<br>Norgaard<br>Total per gro<br>Heterogeneity:<br>Test for subgro                 | nces: $\chi_1^2 = 0.47$ , c<br>2.e Meta-ar<br>pring exposi<br>Bupren<br>Ever<br>Cohort<br>pup<br>$l^2 = 0\%, \tau^2 = 0, p$<br>pup differences: $\chi_1^2$    | df = 1 (p = 0.) $nalysis of$ $ure to bu$ $norphine$ $nts Total E$ $5 90$ $1 361$ $14 167$ $618$ $p = 0.87$ $618$ $p = 0.87$ $c = 0.00, df = 0.00$                                                                                                                                                                                                                                                                                   | 50)<br>In favor of<br>the weighte<br>prenorphine<br>Methadone<br>vents Total<br>2 45<br>1 248 —<br>20 193<br>486<br>486<br>0 (p = NA)<br>In favor of h   | -20 -10 0 10<br>buprenorphine In favor of<br>cd mean difference in<br>or methadone. | 20<br>methadone<br>duration of<br>RR 95%<br>1.25 [0.25; 6<br>0.69 [0.04; 10<br>0.81 [0.42; 1<br>0.85 [0.47; 1<br>0.85 [0.47; 1            | hospital<br>6-CI Weight<br>.19] 13.5%<br>.93] 4.5%<br>.55] 81.9%<br>.54] 100.0%                |
| Test for subgroup different<br>Supplemental Fig.<br>admission for offs<br>Study<br>study type =<br>Lacroix<br>Myer<br>Norgaard<br>Total per gro<br>Heterogeneity:<br>Total per gro<br>Heterogeneity: | nces: $\chi_1^2 = 0.47$ , c<br>2.e Meta-ar<br>pring expose<br>Buprer<br>Ever<br>Cohort<br>pup<br>$l^2 = 0\%$ , $\tau^2 = 0$ , p<br>pup liferences: $\chi_1^2$ | $df = 1 (p = 0.)$ $nalysis of$ $ure to bu$ $norphine$ $nts Total E$ $5 90$ $1 361$ $14 167$ $618$ $p = 0.87$ $618$ $p = 0.87$ $c^{2} = 0.00, df = 0.00$                                                                                                                                                                                                                                                                             | 50)<br>In favor of<br>the weighte<br>prenorphine<br>Methadone<br>wents Total<br>2 45<br>1 248<br>20 193<br>486<br>486<br>0 ( $p$ = NA)<br>In favor of bu | -20 -10 0 10<br>buprenorphine In favor of<br>cd mean difference in<br>or methadone. | 20<br>methadone<br>duration of<br>RR 95%<br>1.25 [0.25; 6<br>0.69 [0.04; 10<br>0.81 [0.42; 1<br>0.85 [0.47; 1<br>0.85 [0.47; 1<br>thadone | hospital<br>6-CI Weight<br>.19] 13.5%<br>.93] 4.5%<br>.55] 81.9%<br>.54] 100.0%<br>.54] 100.0% |
| Test for subgroup different<br>Supplemental Fig.<br>admission for offs<br>Study<br>study type =<br>Lacroix<br>Myer<br>Norgaard<br>Total per gro<br>Heterogeneity:<br>Total per gro<br>Heterogeneity: | nces: $\chi_1^2 = 0.47$ , c<br>2.e Meta-ar<br>pring expose<br>Bupren<br>Ever<br>Cohort<br>pup<br>$l^2 = 0\%$ , $\tau^2 = 0$ , p<br>pup liferences: $\chi_1^2$ | $df = 1 (p = 0)$ $nalysis of$ $ure to bu$ $norphine$ $nts Total E$ $5 90$ $1 361$ $14 167$ $618$ $p = 0.87$ $618$ $p = 0.87$ $c^{2} = 0.00, df = 0$                                                                                                                                                                                                                                                                                 | 50)<br>In favor of<br>the weighte<br>prenorphine<br>Methadone<br>ivents Total<br>2 45<br>1 248<br>20 193<br>486<br>486<br>0 (p = NA)<br>In favor of bu   | -20 -10 0 10<br>buprenorphine In favor of<br>cd mean difference in<br>or methadone. | 20<br>methadone<br>duration of<br>RR 95%<br>1.25 [0.25; 6<br>0.69 [0.04; 10<br>0.81 [0.42; 1<br>0.85 [0.47; 1<br>0.85 [0.47; 1<br>thadone | hospital<br>6-CI Weight<br>.19] 13.5%<br>.93] 4.5%<br>.55] 81.9%<br>.54] 100.0%<br>.54] 100.0% |

exposure to buprenorphine or methadone during gestation.

| Study                      | Events                           | Total   | Events        | Total   |              | RR     | 95%-CI        | Weight |
|----------------------------|----------------------------------|---------|---------------|---------|--------------|--------|---------------|--------|
| study type = RCT           |                                  |         |               |         |              |        |               |        |
| Fischer                    | 0                                | 9       | 1             | 9       |              | 0.33   | [0.02; 7.19]  | 12.3%  |
| Jones (2005)               | 0                                | 9       | 0             | 11      |              |        |               | 0.0%   |
| Jones (2010)               | 0                                | 86      | 0             | 89      |              |        |               | 0.0%   |
| study type = Cohor         | t                                |         |               |         |              |        |               |        |
| Kakko                      | 2                                | 49      | 0             | 36      |              | - 3.69 | [0.18; 74.51] | 12.8%  |
| Lacroix                    | 1                                | 90      | 2             | 45      |              | 0.25   | [0.02; 2.68]  | 20.6%  |
| Myer                       | 2                                | 361     | 4             | 248     | <del>_</del> | 0.34   | [0.06; 1.86]  | 40.6%  |
| Nechanska (CR)             | 0                                | 154     | 4             | 158     |              | 0.11   | [0.01; 2.10]  | 13.7%  |
| Total per group            |                                  | 654     |               | 487     | $\sim$       | 0.38   | [0.12; 1.20]  | 87.7%  |
| Heterogeneity: $I^2 = 0\%$ | $t_{\rm o},  \tau^2 = < 0.000$   | 01, p = | 0.39          |         |              |        |               |        |
| Total per group            |                                  | 758     |               | 596     |              | 0.37   | [0.13; 1.10]  | 100.0% |
| Heterogeneity: $I^2 = 0\%$ | $f_{\rm p},  \tau^2 = 0,  p = 0$ | 0.56    |               |         |              |        |               |        |
| Test for subgroup diffe    | rences: $\gamma_1^2 = 0$         | 0.01 dt | f = 1 (p = 1) | 0.94) ( | 01 01 1 10   | 100    |               |        |

# Supplemental Fig. 2.g - Meta-analysis of relative risk of stillbirth after exposure to buprenorphine or methadone during gestation.



buprenorphine or methadone during gestation