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Abstract:

Weathering of silicate-rich industrial wastes such as slag can reduce 
emissions from the steelmaking industry. During slag weathering, 
different minerals spontaneously react with atmospheric CO2 to produce 
calcite. Here, we evaluate the CO2 uptake during slag weathering using 
image-based analysis. The analysis was applied on an X-ray Computed 
Tomography dataset of a slag sample associated with the former 
Ravenscraig steelworks in Lanarkshire, Scotland. The elements 
distribution of the sample was studied using scanning electron 
microscopy (SEM), coupled with energy dispersive spectroscopy (EDS). 
Two advanced image segmentation methods, namely trainable WEKA 
segmentation in the Fiji distribution of ImageJ and watershed 
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segmentation in Avizo ® 9.3.0, were used to segment the XCT images 
into matrix, pore space, calcite and other precipitates. Both methods 
yielded similar volume fractions of the segmented classes. However, 
WEKA segmentation performed better in segmenting smaller pores, while 
watershed segmentation was superior in overcoming the partial volume 
effect presented in the XCT data. We estimate that CO2 has been 
captured in the studied sample with an uptake between 20 and 17 kg 
CO2/1000 kg slag for TWS and WS, respectively, through calcite 
precipitation.
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Abstract

Weathering of silicate-rich industrial wastes such as slag can reduce emissions 

from the steelmaking industry. During slag weathering, different minerals 

spontaneously react with atmospheric CO2 to produce calcite. Here, we evaluate the 

CO2 uptake during slag weathering using image-based analysis. The analysis was 

applied on an X-ray Computed Tomography dataset of a slag sample associated with 

the former Ravenscraig steelworks in Lanarkshire, Scotland. The elements distribution 

of the sample was studied using scanning electron microscopy (SEM), coupled with 

energy dispersive spectroscopy (EDS). Two advanced image segmentation methods, 

namely trainable WEKA segmentation in the Fiji distribution of ImageJ and watershed 

segmentation in Avizo ® 9.3.0, were used to segment the XCT images into matrix, 

pore space, calcite and other precipitates. Both methods yielded similar volume 

fractions of the segmented classes. However, WEKA segmentation performed better 

in segmenting smaller pores, while watershed segmentation was superior in 

overcoming the partial volume effect presented in the XCT data. We estimate that CO2 
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has been captured in the studied sample with an uptake between 20 and 17 kg 

CO2/1000 kg slag for TWS and WS, respectively, through calcite precipitation.

Keywords

X-ray computed microtomography; EDS analysis; Image processing; Carbon capture; 

slag. 
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1. Introduction

Silicate weathering is a key mechanism by which nature controls the 

concentration of CO2 in the atmosphere (Berner et al., 1983; Schuiling and Krijgsman, 

2006). Silicate weathering includes the reaction of calcium and magnesium silicates 

with CO2 to produce carbonate minerals, resulting in an estimated global natural 

carbon uptake rate of 1x10-3-2.8x10-3 kg C m-2 y-1 (Amiotte Suchet et al., 2003; 

Gaillardet et al., 1999; Huh, 2003; Oskierski et al., 2013). Many studies investigated 

using different silicate rocks in negative emission technologies, and they showed that 

different sources, such as wastes from mining and steelmaking industries, have 

carbon uptake rates that are orders of magnitude larger than the corresponding natural 

values (Kelemen et al., 2020; Khudhur et al., 2022; Renforth et al., 2015; Zevenhoven 

and Kavaliauskaite, 2004). Using silicate-rich alkaline wastes like ironmaking and 

steelmaking slag to capture CO2 is particularly attractive since these wastes are 

produced in large quantities (7x1012-1.7 1013 kg y-1) with an annual carbon capture 

potential of 3.32x1011 kg C (Renforth et al., 2011). Slag is produced at different stages 

of ironmaking and steelmaking. Depending on the production method, ore composition 

and waste management practice, slag may be composed of several minerals such as 

larnite (Ca2SiO4), gehlenite (Ca2Al2SiO7), åkermanite (Ca2MgSi2O7), wustite (FeO) 

and other sulfur-containing minerals (Chukwuma et al., 2021; Scott et al., 1986). Ca 

and Mg minerals are added during ironmaking and steelmaking to remove the silicates 

that are present in the ore, resulting in producing slag that is rich in calcium silicates 

(Ghosh and Chatterjee, 2013). To reduce the environmental footprint of the steel 

industry, slag has been incorporated in several industries, such as cement production 

and road construction, resulting in high utilization of slag in Japan and the EU, with 

only <15% of the produced slag being disposed of. However, in other countries like 
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China, which produces ~50% of the world’s crude steel, the utilization rate is low, 

resulting in over 70% of slag being sent for disposal (Guo et al., 2018).

Slag contains high concentrations of alkaline earth metal oxides which hydrate 

to produce hydroxides, which in turn generate alkalinity (Gomes et al., 2016). Such 

alkaline environments promote the ingassing and hydroxylation of atmospheric CO2 in 

water. When CO2 and water are in contact, equilibrium is established according to the 

following equations (Archer, 2007):

 (1)𝐶𝑂2 + 𝐻2𝑂→𝐻2𝐶𝑂3↔𝐻𝐶𝑂3
― + 𝐻 +

 (2)𝐻𝐶𝑂3
― ↔𝐻 + + 𝐶𝑂3

2 ―

As H+ is generated, it results in dissolving silicates as shown in equation 3 (Daval et 

al., 2009; Yadav and Mehra, 2017):

 (3)𝑀𝑥𝑆𝑖𝑦𝑂𝑥 + 2𝑦 ― 𝑡(𝑂𝐻)2𝑡 +2𝑥𝐻 + ↔  𝑥𝑀2 + + 𝑦𝑆𝑖𝑂2 + (𝑥 + 𝑡)𝐻2𝑂

Then, carbon sequestration occurs as a result of carbonates precipitation as illustrated 

in equation 4 and 5

 (4)𝑥𝑀2 + + 𝑥𝐶𝑂3
2 ― ↔ 𝑥𝑀𝐶𝑂3

Or

 (5)𝑥𝑀2 + +2𝑥𝐻𝐶𝑂3
― ↔𝑥𝑀𝐶𝑂3 +𝑥𝐶𝑂2 +𝑥𝐻2𝑂

The dissolution of silicates (equation 3) has been identified as the rate-limiting 

step, as silicate minerals contain several strong Si-O bonds that are difficult to break, 

resulting in nonstoichiometric dissolution of minerals that leave a Si-rich layer, as 

shown in Khudhur et al. (2022) and the referneces therein). This reaction can also be 

hindered due to carbonate precipitation that prevents further dissolution of silicates 

(Power et al., 2013). 

Carbon sequestration during slag weathering has been documented in several 

studies. For example, Mayes et al. (2018) investigated the carbonation of a 1.6x107 
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m3 slag heap located near Newcastle (UK), and they demonstrated that between 

2.8x105 and 2.9x106 kg CO2 has been captured within the slag heap since 1980. 

However, less than 3% of the CO2 sequestration potential of the slag heap was 

passively utilized due to the emplacement conditions of the legacy slag, which hinder 

the interaction between reactive minerals and atmospheric CO2 (Pullin et al., 2019).

Quantifying the amount of captured CO2 can be done through conventional 

methods such as thermogravimetric analysis (TGA) or total inorganic carbon (TIC). 

However, these methods are destructive and result in loss of information related to 

pore size distribution, pore connectivity and internal reactive surface area. To fully 

understand the potential of passive CO2 capture within slag deposits, non-destructive 

characterization of the porosity of slag and quantification of the captured CO2 is 

required. This may be achieved by using X-ray Computed Tomography (XCT), a 

technique that has been widely used to study rock microstructure and mineralogy (e.g., 

Baker et al., 2012; Hua et al., 2021; Ketcham and Carlson, 2001; Singh et al., 2019; 

Wildenschild and Sheppard, 2013). An XCT dataset yields 2-dimensional cross-

sections that are stacked to produce a three-dimensional rendering of the sample. This 

is particularly useful in different analyses, such as calculating porosity (e.g., 

Hyväluoma et al., 2012), visualizing minerals distribution (e.g., Garfi et al., 2020), 

understanding reaction mechanisms in heterogeneous rocks (e. g., Al-Khulaifi et al., 

2017) and analyzing multiphase flow in rocks (e.g., Andrew et al., 2015). 

The analysis of the XCT dataset is performed using image processing software. 

Software packages provide different methods for image segmentation, a process that 

enables image classification, according to specific criteria (e.g., image intensity), into 

discrete regions (Cheng et al., 2001; Sengur et al., 2019). Global segmentation 

methods, which depend on histogram evaluation and ignore pixel spatial distribution, 
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may give inaccurate results in segmenting low contrast samples (van Eijnatten et al., 

2018). This is because an image histogram represents the grey level values 

distribution of pixels, and the grey level of a particular pixel in an XCT image depends  

on its X-ray attenuation coefficient, which is a function of the density, atomic number 

and X-ray energy, amongst other things (Baker et al., 2012). Consequently, pixels 

belonging to different phases having similar X-ray attenuation coefficients may overlap 

(Deboodt et al., 2021; Schlüter et al., 2014; Wildenschild and Sheppard, 2013). 

Additionally, limited scan resolution causes blurring at phase boundaries, resulting in 

intermediate grey level values that resemble other phases that are present in the 

studied volume. Therefore, machine learning-based methods and local segmentation 

methods (which depend on some neighborhood statistics to compensate for local 

intensity variation) have been developed to tackle challenging segmentation problems. 

Schlüter et al. (2014) summarized different approaches to image segmentation and 

concluded that these approaches experience different degrees of success depending 

on the nature of the studied sample. When studying XCT images of slag samples, 

image segmentation becomes challenging since slag is composed of minerals that 

have similar X-ray attenuation coefficients (Hanna and Ketcham, 2017; Reddy et al., 

2019; Ter Teo et al., 2016). Consequently, the analysis of slag XCT images requires 

prior evaluation to define the advantages of different image processing pipelines.

In this work, we apply two robust image processing methods, namely, the 

machine learning-based Trainable WEKA Segmentation (TWS) in the Fiji distribution 

of ImageJ (Schindelin et al., 2012) and Watershed Segmentation (WS) in Avizo ® 

9.3.0 (http://www.fei.com/software/avizo3d/), to analyze the XCT images of a legacy 

slag sample associated with the former Ravenscraig Steelworks in Lanarkshire 

(Scotland), and to compare the quality and reliability of the extracted information. 

Page 7 of 65

Cambridge University Press

Microscopy and Microanalysis

http://www.fei.com/software/avizo3d/


For Peer Review

7

Results from both methods were compared to gain insights into the sensitivity of 

calculated properties to the processing pipeline. As TWS and WS require prior 

knowledge of the distribution of different elements within the studied sample, we used 

scanning electron microscopy (SEM) coupled with energy-dispersive X-ray 

spectroscopy (EDS) to identify features that can be used as training pixel and seed 

points in TWS and WS, respectively. Results of TWS and WS were used to study slag 

properties and to quantify passive CO2 uptake.
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2. Materials and Methods

2.1. Study Site

The slag sample was collected from Ravenscraig slag heap (55º 47’ 21’’ N, 3º 

56’ 25’’ W) located in Lanarkshire (Scotland) where steelworks were active from 1957 

to 1992 (Culture North Lanarkshire Museums, n.d.). The sample was collected from 

the surface of the heap, and it was cut into a small cube with a length of ~1 cm on 

each side using a water-cooled diamond saw to be studied to a high resolution using 

XCT and SEM-EDS.

2.2. XCT Analysis

In this work, we used the Nikon XT H320 LC X-ray computed tomography 

system of the Civil and Environmental Engineering department at the University of 

Strathclyde. System settings are summarized in Table 1. During XCT acquisition, the 

sample was mounted on a rotational stage, and 3141 X-ray 2D projections were 

collected over a 360° rotation, and were then mathematically converted to a stack of 

2D reconstructed slices using the Nikon proprietary software through a mathematical 

operation known as filtered back-projection (Ketcham and Carlson, 2001). During 

reconstruction, data are converted into 16-bit grey scale images, where the intensity 

of grey is proportional to their attenuation coefficient: bright areas have higher 

attenuation values (e.g., oxides), whereas dark areas have low attenuation values 

(e.g., pores). The reconstructed images were then imported into different image 

processing software, to allow for 3D visualization and further analysis.

2.3. SEM Analysis

The sample that had been scanned by XCT was dissected using the diamond 

saw and mounted into a resin/hardener mixture so that it can be analyzed with the 
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SEM-EDS. The sample was grinded ground and then mechanically polished using a 

glycol suspension of 1-µm aluminum spheres for 5 minutes followed by a glycol 

suspension of 0.3-µm aluminum spheres for another 5 minutes. The final polishing 

step was carried out in a colloidal silica suspension for 4 hours.

The polished sample was sputter coated with a 20 nm conductive carbon layer. 

Then, sample imaging was conducted using a Zeiss Sigma VP Field-Emission Gun 

SEM (VP-FEG-SEM) equipped with X-Max 80 mm2 silicon drift X-ray detector (Oxford 

Instrument), based in the ISAAC facility at the University of Glasgow (system settings 

are summarized in Table 1). Backscattered electron (BSE) images and EDS signals 

were acquired across the entire sample surface and were analyzed with Oxford 

Instrument AZtec ® 4.3 and AZtec ® Flex software. 

Table 1 hereabout.

2.4. Conventional Analysis

To provide better understanding of the studied slag sample, offcut material was 

pulverized using mortar and pestle until it passed through a 45 µm sieve, and it was 

analyzed using thermogravimetric analysis (TGA) and X-ray diffraction analysis 

(XRD). The former provides an estimate regarding the CaCO3 content of the studied 

material while the latter provides an idea about the mineral composition of the studied 

sample. TGA was performed on TGA 5500 (TA Instruments, USA) under N2 

atmosphere, with a heating rate of 10 ºC/min, while powder XRD patterns were 

collected using a Rigaku MiniFlex 6G equipped with a Cu sealed tube (Ka1 and Ka2 

wavelengths - 1.5406 and 1.5444 Å respectively). Data collection and analysis were 

performed using Rigaku SmartLab Studio II software (Rigaku Corporation, 2022).
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2.5. Image Processing 

 The reconstructed XCT volume was cropped to remove external space and to 

remove noise and artifacts near sharp edges, resulting in a studied volume of 11.41 x 

11.98 x 5.97 mm3. In Avizo ® 9.3.0, The slice module was used to find the cross-

section within the studied volume that is well-aligned with the collected BSE/EDS 

images (Supplementary Information S1). Such alignment is essential in finding pixels 

that can be used as training pixels and seed points in TWS and WS, respectively, and 

to identify features that are below the XCT resolution. Since XCT and BSE images rely 

on the composition of the studied sample, the coefficient of correlation was used as a 

metric for alignment quality, as explained in a previous study (Latham et al., 2008). 

From there, two different image processing pipelines were used: the machine learning-

based TWS in Fiji, and the WS in Avizo ® 9.3.0 (Fig.1).

Fig. 1 hereabout.

Machine learning-based segmentation involves training a computer to 

recognize patterns in the same (or improved) manner that a human operator 

recognizes them. In the TWS plugin of Fiji, the operator manually labels pixels and 

assigns them to different classes (Arganda-Carreras et al., 2016). These “training 

pixels” are then used to extract different features needed to classify the entire dataset. 

TWS has different training features (e.g. image filters) that can be selected as per 

different training needs, such as noise reduction (e.g., gaussian blur),  detection of 

objects boundaries (e.g., sobel), extraction of information related to image texture and 

localization of membrane-like structures (e.g., structure) (Arganda-Carreras et al., 

2017; Hall et al., 2009). TWS has been successfully used in segmenting geological 

samples without requiring prefiltering steps (Garfi et al., 2020; Purswani et al., 2020). 

Therefore, we used the TWS to segment XCT images of the slag sample, and we used 
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the default classifier of TWS, which is the fast random forest that uses 200 trees, 

constructed while considering 2 random features. It should be noted that based on the 

complexity of the mathematical operations embedded within each feature, the 

combination of the selected features can result in long processing time (up to 10 

hours). Initially, we created 14 different training files that contain different training 

features (Supplementary Information S2) to investigate how feature selection affected 

calculation time and segmentation quality. A subset of the sample (a stack of 51 

images) was segmented using these training features (while using the same training 

pixels). Evaluation of the different training files was based on visual inspection of the 

results, the processing time (including features extraction time and classifying time), 

and the complexity of the segmentation, which is reflected by the number of features. 

Additionally, the prediction quality of the machine learning classifier was considered 

through a comparison of the out-of-bag error that TWS reports for each segmentation 

file (Supplementary Information S2). The classifiers with the lowest out-of-bag error 

are the most suited for the classification. These criteria were used to find the 

combination of the features that was used to segment the entire studied volume in a 

reasonable time (less than 2 hours).

In the second pipeline, watershed segmentation (WS) in Avizo ® 9.3.0 was 

used to segment the same sample. WS has been widely used in segmenting 

geological samples and cementitious composites (Berg et al., 2016; Lee et al., 2009; 

Rücker et al., 2015), and it succeeded in segmenting low contrast samples (Deboodt 

et al., 2021). The watershed concept was first introduced by Digabel and Lantuejoul 

(1978) and was later improved by Beucher and Lantuéjoul (1979) who used it for 

contours detection. A major improvement to the watershed algorithm was introduced 

by Vincent and Soille (1991) who provided an algorithm that is orders of magnitude 
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faster than the previous version (Preim and Botha, 2014). Several watershed-based 

algorithms have been developed since then as summarized by Roerdink and Meijster 

(2000). The WS can be thought of as a conversion of an image to a topographical 

landscape, where the height of each point reflects the pixel value at that point 

(Deboodt et al., 2021; Leu et al., 2014). This segmentation is performed by first 

identifying how many phases need to be segmented. Then, boundaries between 

different classes are identified by finding the lines of highest gradients via a small cubic 

kernel or an edge detection filter, assuming that boundaries between different classes 

are distinguished by a high gradient. Then, seed points for distinguishing different 

classes are identified by thresholding (Deboodt et al., 2021). A watershed algorithm is 

then applied to grow the seeds until watershed lines are met, analogous to how 

rainwater fills valleys until it meets (but does not mix) the watershed lines. Points on 

the watershed lines are assigned according to their neighborhood (Schlüter et al., 

2014).

 The WS aims to overcome the partial volume effect, a common problem 

caused by resolution limitation that makes voxels at transitional regions blurry and 

prone to misclassification (Schlüter et al., 2014). The image stack was imported to 

Avizo ® 9.3.0 and then the non-local means denoising filter (NLMD) with search 

window=20 pixels, local neighborhood=5 pixels and similarity value=0.4 was applied. 

This filter was selected as it removes image noise without significant blurring to edges, 

and it was successfully used in several studies for noise removal (Garfi et al., 2020; 

Schlüter et al., 2014; Shah et al., 2016).  The watershed wizard was used to define 

watershed lines and seed points for the different phases. 

After segmentation of the entire dataset, the remove island filter was used to 

discard features that are less than 27 voxels which, due to limitations in resolution, 
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can be misclassified, as described elsewhere (Oluwadebi et al., 2019). The volume 

fraction module in Avizo ® 9.3.0 was used to calculate the volume fractions of the 

segmented phases. Error bars were calculated by finding the change of volume 

fractions after applying morphological dilation and erosion operations to the 

segmentation results, with a cubic structural element, a 6-pixel neighborhood and a 

half-kernel size of 1 pixel to the segmentation results. Using morphological operations 

in error estimation is arguably conservative, and has been used for this purpose in 

previous research (Fusseis et al., 2012; Macente et al., 2018, 2017). To visualize the 

connected pore space, the connected components module in Avizo ® was used to 

show the voxels that have at least one common face, as described by Sarkar and 

Siddiqua (2016). Finally, a separate object module, with a marker extent =1 and 

neighborhood=26, was used to separate the pores individually based on their pore 

throats. A label analysis module was used on the separated pores to calculate 

equivalent pore diameter and mean equivalent diameter. The studied volume size is 

1.36 GB and all processing was performed on a desktop with Intel ® Xeon ® CPU with 

a clock speed of 3.5 GHz and 128 GB RAM. 

3. Results and Discussion

3.1. Microstructural and textural characterization

Fig. 2 presents different results of the XCT analysis process. Fig. 2a represents 

a 2D radiograph of the scanned sample, whereas Fig. 2b and 2c represent an XY 

cross-sectional slice of the sample after reconstruction before and after cropping, 

respectively. In these images, dark and bright regions refer to void space and slag 

matrix, respectively. Areas that have intermediate grey level values, such as those 

marked in Fig. 2e represent calcite and other precipitates.  Fig. 2d shows the intensity 

frequency histogram of the studied sample, demonstrating a bimodal distribution, 
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where the low and high peaks represent the void space and the matrix, respectively. 

Due to the low abundance of calcite and other precipitates and due to the similarity of 

X-ray attenuation coefficients of the former to other minerals in the slag, there seems 

to be no distinctive peaks for calcite and other precipitates, resulting in a complex 

segmentation procedure. Therefore, BSE and EDS results (Fig. 3 and Fig. 4) were 

used to identify the chemistry of different regions in the acquired XCT data. To 

illustrate, in Fig. 3b the region depicted by spectrum A (Fig. 3c) is rich in Si, while 

spectrum B shows enrichment in Ca and depletion in Si content, suggesting 

conversion of calcium silicates to carbonate, in agreement with equations (1) through 

(5). Other regions have elevated contents of elements such as sulfur (spectrum C in 

Fig. 3b, c) reflecting other components in the slag. Fig. 4 shows EDS maps for Si, Ca, 

S, C and O, indicating that the studied sample is generally dominated by Ca-silicates 

rich phases, with minor amounts of other compounds. 

Fig. 2 hereabout.

Fig. 3 hereabout.

Fig. 4 hereabout.
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3.2. TWS Features Selection

Representative segmentation results of different TWS training sets are 

portrayed in the Supplementary Information (S2). As the number of features increased, 

segmentation time also increased (Supplementary Fig. S4), although no specific trend 

(e.g., linear or exponential) was observed. Default training settings, represented by 

training set 1, require 76 training features and it took longer time compared to other 

training settings (Supplementary Table S1). The selection of training features affects 

the volume fraction of the classified phases (Supplementary Fig. S5), and 

segmentation errors were observed to occur near the boundaries between void space 

and other phases, analogous to misclassification observed in a related study where 

similar image processing pipelines were used (Garfi et al., 2020). These errors result 

in segmenting small pores as precipitates and classifying the borders between pores 

and matrix as calcite. 

To identify the best training features to be used in segmenting the entire dataset 

(i.e., the 576-image stack), segmentation time and quality were used as selection 

criteria. The former was qualitatively predicted based on the number of features (i.e., 

higher number of features results in longer segmentation time), while the latter was 

based on comparing calcite distribution with SEM data and based on misclassification 

that occurs at boundaries and edges due to the partial volume effect, and by 

calculating the out-of-bag error. Such misclassification appears at pore boundaries as 

outer rims in regions where SEM analysis shows no calcite had formed. Inspection of 

Supplementary Fig. S6 reveals that training sets 7 and 13 have a relatively smaller 

partial volume effect (i.e., smaller misclassification of contact area between pores and 

matrix as calcite) compared to the rest of the training methods. Additionally, 

Supplementary Fig. S5 portrays that training sets 7 and 13 predict volume fractions 
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that are close to the average and median values (calculated to be 4.7% and 4.8%, 

respectively) of the predicted volume fraction of calcite by the 14 training 

combinations, and both have close out-of-bag error of 0.351% and 0.276%, 

respectively. As training set 13 has a smaller number of features, the 576-image stack 

was trained using the same features of training set 13 (gaussian blur, Sobel, structure).

3.3. Segmentation Results

Results from both segmentation methods for representative cross-sections are 

portrayed in Fig. 5. Some differences can be observed between the two pipelines. For 

example, it is evident from Fig. 5  (part A) that TWS was inferior to WS at boundaries 

since the former misclassified pixels located at boundaries between the matrix and 

precipitate or the matrix and the pore space as calcite. On the other hand, TWS 

performed better in segmenting smaller pores (Fig. 5 part B) due to the lack of pre-

filtering, since smaller pores may be blurred as a result of filtering, causing them to be 

misclassified as observed in similar studies (Garfi et al., 2020; Shah et al., 2016). 

Segmentation results in Fig. 5 reveal the complexity of the studied sample. That is, 

calcite precipitated in sporadic manner, and in the linings of pores and intertwined with 

other precipitates. This complexity is a consequence of slag composition which 

includes several minerals that have X-ray attenuation coefficients with similar values 

to calcite (Hanna and Ketcham, 2017). Additionally, calcite is produced from several 

reactions between CO2, water, and slag minerals that are difficult to identify, even with 

SEM imaging as shown in Fig. 3d. Both processing pipelines showed that the matrix 

layer contained dispersed precipitate regions. These regions may originate due to a 

redistribution of transition elements within alkaline wastes because of weathering and 

precipitation (Hamilton et al., 2018). Slag heterogeneity increases further during 
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weathering due to interaction with water, which results in formation of complex 

aluminosilicate layer (You et al., 2011).

Fig. 5 hereabout. 

3.4. Volume fractions of segmented phases

Fig. 6 displays 3D volume renderings of segmented calcite and other non-

calcite precipitates as calculated from both methods, while Fig. 7 summarizes 

calculated volume fractions of pores, slag matrix, calcite and non-calcite precipitates, 

displaying good agreement between both pipelines. Calcite content is particularly 

important to this study since it can be used to calculate the carbon capture potential 

of slag. According to the implemented segmentation, calcite content was calculated to 

be 3.1% (TWS) and 2.7% (WS). Taking the bulk density of slag sample to be 1.927 

g/cm3 (measured in our laboratory) and the density of calcite to be 2.71 g/cm3 (DeFoe 

and Compton, 1925), we calculated that the carbon capture storage potential of this 

slag is 20 kg/1000 kg slag (calculated per CO2-free slag)  and 17 kg/1000 kg  for TWS 

and WS, respectively. Both values are below the value of 29 kg CO2/ 1000 kg slag that 

was calculated based on TGA analysis (Supplementary Information S5). TGA analysis 

can overestimate the CO2 content since other slag minerals such as hydrated silicates 

decompose at the temperature range in which calcite decomposes (Pan et al., 2016). 

Additionally, calcite can precipitate in smaller pores with diameters of 1 µm, making it 

undetectable with the resolution of both XCT and SEM images of this study, 

(Arandigoyen et al., 2006). When applying the erosion and dilation operation for error 

bar estimation (Fig. 7), the CO2 uptake ranges will be 4.42 to 44.6 kg CO2/ 1000 kg 

slag and 5.6-34 kg CO2/ 1000 kg slag for TWS and WS, respectively, indicating that 

the CO2 uptake value based on TGA falls within the error bars range calculated based 

on erosion and dilation operations. Generally, applying the erosion and dilation 
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operations results in larger error bars range when compared to other methods of error 

estimation such as changing the training pixels and the segmentation parameters for 

the TWS and WS, respectively (Supplementary Information S7).

Fig. 6 hereabout.

Fig. 7 hereabout.

While the estimated uptake of CO2 in this study is only a fraction of ex-situ 

carbonation which ranges from 107 to 283 kg CO2 /1000 kg slag (Chang et al., 2011), 

it reflects CO2 uptake from the atmosphere achievable at no cost, compared to that of 

ex-situ carbonation that requires energy-intensive operations, such as crushing of slag 

to the microscale and performing the reaction at elevated temperature and pressure 

that can reach 160 °C and 4.8 MPa, respectively (Chang et al., 2011). Crouzet et al. 

(2017) reported a passive CO2 uptake equal to 63 kg CO2/1000 kg slag (based on 

TGA analysis) in a slag heap at a French production site. Our calculated value of CO2 

uptake has the same order of magnitude of the value reported by Crouzet et al. (2017) 

despite being lower. In addition to the differences in the measuring methods, several 

factors justify the observed difference. For example, slag properties, such as chemical 

composition and size distribution, vary based on the processing routes and the 

properties of the starting material (Proctor et al., 2000; Sanna et al., 2012). 

Additionally, carbonate precipitation in environments associated with alkaline wastes 

varies across sites according to different factors such as rain received and region 

topography (Mayes et al., 2018; Wilson et al., 2009). Carbon capture in passively 

managed environments is hindered by CO2 supply and slag size distribution (Pullin et 

al., 2019). It should be noted that carbonation can also be inhibited as a result of calcite 

precipitation, which results in clogging of pores and prevention of further carbonation 

(see Section 3.5). Additionally, exposure to water can result in silica gel polymerization 
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which in turn results in the formation of a barrier that inhibits further carbonation 

(Assima et al., 2012; Khudhur et al., 2022). Despite this, we show that passive 

carbonation indeed occurred at the Ravenscraig site, and that non-destructive image-

based analysis can be used to estimate carbon capture potential.

3.5. Pore space analysis

Table 2 summarizes the total porosity, surface area and mean equivalent 

diameter of the studied sample, as calculated from both pipelines. While TWS and WS 

calculated similar total porosity, other complex transport properties such as pore 

surface area and equivalent diameters were more sensitive to the processing pipeline 

as shown in Table 2 and Fig. 8. Garfi et al. (2020) noted that the sensitivity of a property 

estimate to the processing pipeline increases with the increased complexity of the 

definition of that property, and they showed that the percentage error between TWS 

and WS estimation of porosity for Berea sandstone was 26%, while it was 83% for the 

estimation of single-phase permeability. Porosity estimations through XCT is usually 

underestimated (Boone et al., 2014). This underestimation increases as the resolution 

is decreased, causing pores to blur or completely disappear (Shah et al., 2016). This 

can be observed when comparing the XCT slice with the higher resolution BSE image 

shown in Supplementary Fig. S1.  

Table 2 hereabout.

Fig. 8 hereabout.

Pore connectivity is an important feature that affects materials reactivity since 

the surface of the pore represents the area at which dissolution, leaching, and 

precipitation occur. In the study of reactions in porous media, it is known that reaction 

behavior in such media is different from the bulk phase reaction and that precipitation 

is affected by the pores size (Turner et al., 2002; Zachara et al., 2016). While Putnis 
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and Mauthe (2001) demonstrated that precipitation of salts within sandstone is 

preferential at pores with diameters of 10-40 µm, Arandigoyen et al. (2006) 

demonstrated that calcite precipitation proceeds preferentially in smaller pores with 

diameters less than 1 µm, although this could not be observed in the current study due 

to the limited resolution of both imaging techniques. In Fig. 9 we present the pore 

space as segmented by TWS and WS. Fig. 9c, d shows the largest five connected 

pore clusters. If we account for the pores and precipitates together, (i.e., before any 

precipitation occurred), Fig.9e and Fig.9f show that the connected component profile 

changes significantly, demonstrating that the area that is rich in calcite had been part 

of a larger connected pore space prior to precipitation. As precipitation occurred, the 

connected space changed and consequently resulted in a reduction of fluid 

accessibility to the reactive site within the slag. The study of (Crouzet et al., 2017) 

showed that passive carbonation occurred at an early stage after slag production (i.e., 

slag aged in weeks had CO2 content of 5.9 wt% while slag aged in years had CO2 

content of 6.3 wt%), possibly indicating reduced access of reactive components after 

precipitation which slowed the carbonation process. 

Fig. 9 hereabout.

4. Conclusion

While conventional tools such as TGA and TIC are successfully used to study 

CO2 uptake within slag, image-based analysis gives new insights regarding pore 

networks and the spatial distribution of minerals within the studied sample. In this work, 

we used two advanced image processing pipelines to segment XCT images of a slag 

sample into four classes: matrix, pores, calcite and non-calcite precipitates. Namely, 

we used the machine learning-based trainable WEKA segmentation in the first 

pipeline, while we used nonlocal means denoising filter followed by watershed 
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segmentation in the second pipeline. Both methods come with advantages and 

drawbacks. The advantage of the TWS plugin of Fiji is that it is freely available and 

provides users with strong machine learning capabilities to segment images based on 

many features in addition to their grey level values. However, selecting the right 

combination of features and training pixels may be challenging and performing the 

segmentation may require a long time (up to 10 hours) and computing power that is 

not always available. The WS segmentation requires much less time to be performed 

but requires filtering that may blur smaller pores and consequently introducing 

additional errors. Both methods provided similar volume fractions. This was not the 

case with the pores equivalent diameters as TWS showed a larger number of smaller 

pores. This was attributed to the higher success of TWS in segmenting pores with 

volumes. 

Considering that TWS quantified similar volume fractions to WS, but it has a 

higher success in segmenting smaller pore and pore throats, and that it is a freely 

available tool, this study recommends using it in image-based analysis of slag 

samples. The proposed workflow demonstrates that the low slag carbonation is 

attributed to the low exposure of reactive surface area to CO2, in addition to low 

atmospheric CO2 and low ambient temperature. 
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Table 1. Parameters of analysis techniques used in this study

XCT settings

Source to object distance (mm) 35.0

Voltage (kV) 90

Current (µA) 111

Exposure time (s) 1.415

Number of projections taken 3141

Voxel size (x=y=z, µm) 10.368

SEM settings

Accelerating voltage (kV) 20

Aperture (µm) 60

Working Distance (mm) 8.5

Pixel size (µm) 2.407
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Fig. 1. A schematic flowchart summarizing the steps of the different image processing pipelines used in this 
study. 
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Fig. 3. SEM imaging results. (a) BSE image of the studied sample, also defining magnified regions shown in 
(b), (d) and (f). (c) and (e) are spectra that show the compositions noted in figures (b) and (d), 

respectively. (f) portrays the texture and microporosity of the studied sample. 
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Fig. 2. Results obtained from XCT analysis. (a) X-ray projection; (b) reconstructed cross-sectional image; 
(c) image shown in (b) after cropping and adjustment of brightness/contrast; (d) histogram of the collected 

XCT images; (e) magnification of boxed area in (c). 

160x225mm (300 x 300 DPI) 
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Fig. 4. False colour SEM-EDS elemental maps for different elements present in the studied slag sample. 
Boxed areas in (a) define magnified areas in (b), (c), and (d). 
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Fig. 5. Segmentation results. Bottom row is a zoomed in image of the area defined by the box in the top 
right. Boxed areas in images a, b and c are zoomed in the images in the bottom row. This figure is 

continued on the next page. 
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Fig. 5 continued 
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Fig. 6. Segmentation results of precipitate and calcite. (a) and (b) are non-calcite precipitate and calcite 
distribution, respectively, as obtained from TWS. (c) and (d) are non-calcite precipitate and calcite, 

respectively, as obtained from WS. 
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Fig. 7. Volume fraction of different phases as calculated from TWS and WS. Error bars are produced by a 
plying dilation and erosion operations to segmentation results. 
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Table 2. Some transport properties of slag obtained from two different segmentation 

techniques

Property TWS Watershed 

Total porosity (%) 25.4 25.1

Surface area (µm2) 3.38×109 2.91×109

Mean equivalent diameter (µm) 120 162
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Fig. 8. Pore equivalent diameters distribution in the slag sample as calculated from TWS and WS, 
respectively.   
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Fig. 9. Analysis of pore space as segmented by TWS (left column) and WS (right column). Images (a) and 
(b) depict the total porosity of the sample. Images (b) and (c) reveal the largest five connected pore spaces, 

each with a distinct color. Images (e) and (f) reveal the largest five connected pore spaces prior to 
precipitation.   
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S1. Alignment steps of the BSE 2D image with a slice within the XCT 3D volume

The following steps describe the procedure followed to align the high-resolution 

backscattered image (BSE) that has a resolution of 2.407 µm with the corresponding XCT slice 

within the studied volume that has a resolution of 11.72 µm. This procedure is summarized in 

Fig. S1. 

1. First, a sub-volume that surrounds the area in which the dissection of the sample 

occurred was identified, as depicted in Fig. S1 (a). 

2. A slice module was used to search for the slice that matches the BSE image. This slice 

was extracted for numerical comparison with the BSE image (see point 4). 

3. The BSE image was aligned with the XCT slice by rotating the former until it matches 

the latter. The align module in Avizo ® 9.3.0 was used for this purpose (after 

resampling of the BSE image). 

4. The coefficient of correlation metric was calculated using the corr2 syntax in Matlab 

(Mathworks, 2022). 

The slice that was obtained using this method is well-aligned with the BSE image, with 

a correlation coefficient value of 0.7. Values between 0.6-0.8 are common when registering 

BSE and XCT images (Latham et al., 2008). 
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Fig. S1. Registration of high-resolution BSE image with the corresponding slice in the 3D volume. 
(a) The studied volume, showing the slice of interest in red; (b) high resolution BSE image; (c) the 
corresponding slice in the studied volume; (d) and (e) are the boxed areas in (b) and (c), 
respectively. 
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S2. Remarks about the TWS 
The TWS plugin in Fiji provides a graphical user interphase (GUI) that enables 

users to perform machine learning-based segmentation. For each class, several pixels 

are identified and annotated by the user, and they are used to generate several 

decision trees through the bootstrap aggregation (Bulgarevich et al., 2018). In 

bootstrap aggregation, the data that form the decision trees are randomly selected 

from the training set, with replacement, and decision trees can be generated based on 

different measures such as the Gini index, information gain and variance. Decision 

trees are generated based on several features that the user defines. In image 

processing, these features can be noise reduction features, such as the gaussian blur 

filter, edge detectors such as the Sobel filter and texture information such as the 

structure tensor. In this study, we used the default TWS classifier which is the fast 

random forest that uses 200 trees, constructed while considering 2 random features. 

This classifier uses feature randomness to make a forest of uncorrelated trees, and 

based on probability aggregation, the class of a particular pixel is identified as one of 

the prespecified classes (Bulgarevich et al., 2018; Purswani et al., 2020). The data 

that were not used in establishing the trees were used to evaluate the prediction of the 

classifier, by producing a metric known as the out-of-bag error. It reflects the 

percentage of pre-specified pixels that are wrongly segmented by the random forest 

classifier (Bulgarevich et al., 2018). The training algorithm with the lowest out-of-bag 

error is the one more suited for the classification. Fig S2 describes the workflow of the 

TWS in Fiji.   
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Fig. S2. Demonstration of TWS GUI.
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Table S1. WEKA features selected for different training files.

File Features Number of 

features

1 GB* DoG** Membrane Sobel Hessian 76

2 GB Membrane Sobel Hessian 66

3 GB Sobel Hessian 60

4 GB Sobel 12

5 GB Sobel Laplacian 17

6 GB Sobel Laplacian Entropy 37

7 GB Sobel Laplacian Structure 37

8 GB Sobel Laplacian  Derivative 37

9 GB Sobel Laplacian  Neighbourhood 57

10 GB DoG Membrane Sobel Laplacian Hessian Derivative

Neighbourhood

141

11 GB DoG Membrane Sobel Hessian 49

12 GB Sobel Derivative 32

13 GB Sobel Structure 32

14 GB Sobel Neighbourhood 52

GB: Gaussian blur. DoG: difference of gaussians. Default values for σmin and σmax (i.e., minimum 
and maximum isotropic filter radii used in feature creation, respectively) were used except for set 
11 where σmax was reduced to 4.0
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Fig. S3. Results of TWS using different training features. (a) a raw slice obtained from the 
XCT imaging; (b) magnification of the boxed area in (a); (c) TWS segmentation results as 
calculated by different training files.
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Fig. S4. Effect of the number of training features on the segmentation time. Straight lines 
represent the best fit lines for the different time categories
.

Fig. S5. The volume fractions of calcite predicted from the different training set.
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Fig. S6. Calcite distribution as predicted by TWS with different training files.
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The results in Fig. S3 through Fig. S6 were used to identify the best training set 

according to the following criteria:

 Visual inspection of the 14 images of figures S3 and S6. 

 Measuring the prediction quality of the machine learning classifier through 

comparison of out-of-bag error that TWS calculates for each segmentation file. 

The classifiers with the lowest out-of-bag error are the most suited for the 

classification.

 The complexity of the segmentation, which is reflected by the number of 

features. Ideally, a lower number of features makes the classification faster and 

easier. 

 The time of segmentation. 

We plotted these factors on a net diagram as shown in Fig. S7. Based on Fig. 

S7, we found that the training set 13 provides the best compromise between the 

number of features (13), out-of-bag error (0.276%) and processing time (6 mins). We 

therefore used it in segmenting the entire data set. Note that training sets 7 and 13 

have less misclassification around the boundaries. Both sets contain the structure 

filter. This filter calculates the largest and smallest eigenvalues of the structure tensor 

for each element in the picture (Arganda-Carreras et al., 2017). This filter has been 

found to be more powerful in describing local patterns based on using local 

neighborhoods for data integration, and it has been used in enhancing image features 

and in textural analysis (Arseneau, 2006; Weickert, 1999). The segmentation of the 

entire dataset took around 2 hours. 30 minutes were required to annotate training 

pixels, while 90 minutes were needed for the segmentation process to be finished. If 

results were not satisfactory, additional pixels were added iteratively until satisfactory 

results were obtained. In the current study, this operation is executed for 5. This 
amount of repetitions was sufficient to observe that adding further training 
pixels does not result in further improvement.
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Fig. S7. Representation of the number of features, processing time and out-of-bag error of the different 
training files that are presented in Table S1. The values on the circumference of the circle (from 1 to 
14) represent the training files that are shown in Table S1. The logarithmic axes that are on the radii of 
the circle are used to find the values of the number of features, processing time and out-of-bag error, 
in the units shown in the legend of the figure.

S3. Filtering and Watershed Segmentation

The watershed segmentation wizard in Avizo ® 9.3.0 was used to segment the 

dataset into pores, precipitates, calcite and matrix. Watershed segmentation strongly 

depends on noise, making filtering essential (Preim and Botha, 2014). Prior to the 

segmentation, non-local means denoising (NLMD) was used, with a search window of 

20 pixels, a local neighborhood of 5 pixels, and a similarity value of 0.4. The effect of 

NLMD on noise reduction is illustrated in Fig. S8. For the watershed segmentation 

wizard, the following parameters were used:

 Gradient threshold = 1250

 Threshold for pores = 0 - 5620

 Threshold for precipitates = 5700 - 6850

 Threshold for calcite = 7550 - 8020

 Threshold for matrix= 8050 – 50384

These ranges are depicted on Fig S8 (c). The watershed segmentation did not take 

any considerable time (~10 min), though some time was needed to find the best 

parameters (~ 1 hour).
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Fig. S8. Effect of NLMD on image segmentation. (a) a raw image and a close-up image as highlighted 
by the yellow dashed line (b) the corresponding filtered image and a close-up image. (c) the histogram 
of raw and filtered images, with the dashed line representing the raw dataset and the solid line 
representing the filtered dataset. The boxes on the histogram, from left to right, represent the threshold 
range that was specified in the watershed segmentation for the pores (blue), the precipitate (pink), 
calcite (light blue) and matrix (light green) respectively.
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S4. Further comparison between TWS and WS 

The high-resolution BSE image was also segmented using TWS and WS, and 

the area fractions of the different classes were compared with the corresponding slice 

that was obtained using XCT and segmented using both pipelines. The results are 

depicted in Fig. S9. Segmentation of the high-resolution BSE image reveals a higher 

fraction of precipitate when compared to the corresponding value obtained from the 

segmentation of the lower resolution XCT image. This is attributed to precipitation in 

smaller pores that were not detected in the XCT imaging due to the resolution 

limitation. 
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Fig. S9. Comparison of area fraction based on segmentation of XCT slice with TWS (XCT-TWS), BSE 
slice with TWS (BSE-TWS), XCT slice with WS (XCT-WS) and BSE slice with WS (BSE-WS)
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S5. Conventional analysis results

The TGA analysis has been widely used to estimate the amount of calcium 

carbonate in carbonated slag (Crouzet et al., 2017). The TGA result is reported as 

weight loss as a function of temperature. As the temperature range for calcite 

decomposition overlaps with the temperature decomposition ranges of other minerals, 

TGA analysis overestimates the calcite content. Consequently, modified graphical 

methods can be used to reduce this overestimation (Pan et al., 2016). This method is 

based on the extrapolation of the TGA curve to find the initial and final calcite 

decomposition temperature and recording the associated weight loss. This weight loss 

represents the fraction of CO2 in the studied sample. For the studied slag, the weight 

loss as a function of temperature is depicted in Fig. S10, indicating a weight loss of 

2.84% due to CaCO3 decomposition. This is equivalent to 29 kg CO2 / 1000 kg slag. 

Fig. S10. Result of the thermogravimetric analysis. The weight loss due to calcite decomposition was 
found to be 2.84%, calculated based on the modified method reported in Pan et al. (2016) to reduce 
overestimation T1 and T2 represent the initial and final temperatures for CaCO3 decomposition, 
respectively.

To have a better understanding of minerals presence in the studied slag, XRD 

analysis was utilized, and the diffraction patterns are shown in Fig. S11.
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Fig. S11. Results of the XRD analysis, demonstrating the presence of calcite and the diffraction 
patterns of several common slag-forming minerals. The bottom line represents the diffraction pattern 

of the analyzed sample.

S6. EDS Spectra collected from different points within the studied sample

To understand the distribution of elements d within the studied sample, several 

spectra were collected from various points, as depicted in Fig. S12. Spectra A and B 

were collected near the area where most of the observed calcite precipitated, while 

spectra C, D and E were collected from locations where no significant calcite was 

observed. As the elements distribution and spectra are similar, it is difficult to identify 

the mineral distribution of slag, particularly as several slag minerals contain identical 

elements, such as åkermanite (Ca2MgSi2O7) and merwinite (Ca3Mg(SiO4)2), or 

different polymorphs such β-Ca2SiO4 and γ-Ca2SiO4 (Chukwuma et al., 2021; Kriskova 

et al., 2013).
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Fig. S12. Comparison of elements presence in different areas within the studied sample. (a) 
BSE image of the studied sample, also showing several boxed areas for which the elements 
atomic concentration and EDS spectra are portrayed in (b) and (c), respectively. The elements 
distribution is powered by the Tru-Q® feature of AZtec® flex.  
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S7. Variation of properties due to changes in segmentation parameters

The results of each processing pipeline represent the base case for that 

particular pipeline, and they are affected by the parameters that were used in the 

segmentation process. To get an insight into how the calculated volume fractions and 

properties might be affected by the training pixels and seed points that were chosen 

by the user, the segmentation process was repeated using different inputs. For the 

TWS, we compared how changing the training pixels affects the calculated 

concentrations and properties, while for WS we studied how changing the parameters 

of the watershed wizard, by 2%, affects the calculated properties. After that, the 

volume fractions and properties were recalculated and were then compared to the 

corresponding values obtained after performing the dilation and erosion operations. 

Generally, applying the erosion and dilation operations results in a larger change when 

compared to changing the training pixels and the segmentation parameters for the 

TWS and WS, respectively. In Fig. S13, it is evident that applying the erosion/dilation 

operation results in a large change, particularly in the calculated calcite volume 

fraction. This is because the volume occupied by calcite is low, and any small variation 

caused by morphological operations will result in a large percentage change. 

Additionally, the presence of calcite as thin films and the complex nature of slag 

resulted in a large variation of volume distribution and properties after applying 

morphological operations.  
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Fig. S13. Quantification of how changing the segmentation parameters affects the properties 
calculated based on (a) TWS and (b) WS. Red and green lines represent the deviation from the 
base case after applying the erosion and dilation operation to the segmentation results, while 
the textured grey and black lines represent the changes in the properties after changing the 
watershed wizard parameters by parameters by 2%.
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