
 

 
 
 

 
 
 

 

London, R. E., Benwell, C. S. Y., Cecere, R., Quak, M., Thut, 

G. and Talsma, D. (2022) EEG Alpha power predicts the temporal 

sensitivity of multisensory perception. European Journal of 

Neuroscience, 55(11-12), pp. 3241-3255. 

 

There may be differences between this version and the published 

version. You are advised to consult the publisher’s version if you wish 

to cite from it. 

 

This is the peer reviewed version of the following article: 

London, R. E., Benwell, C. S. Y., Cecere, R., Quak, M., Thut, 

G. and Talsma, D. (2022) EEG Alpha power predicts the temporal 

sensitivity of multisensory perception. European Journal of 

Neuroscience, 55(11-12), pp. 3241-3255, which has been published in 

final form at https://doi.org/10.1111/ejn.15719  

 

This article may be used for non-commercial purposes in accordance 

with Wiley Terms and Conditions for Self-Archiving. 
 
 
 

http://eprints.gla.ac.uk/271677/ 
     

 
 
Deposited on: 25 May 2022 

 
 
 
 
 

 
 

Enlighten – Research publications by members of the University of Glasgow 

http://eprints.gla.ac.uk 

 

https://doi.org/10.1111/ejn.15719
http://olabout.wiley.com/WileyCDA/Section/id-828039.html#terms
http://eprints.gla.ac.uk/271677/
http://eprints.gla.ac.uk/271677/
http://eprints.gla.ac.uk/
http://eprints.gla.ac.uk/


 

This article has been accepted for publication and undergone full peer review but has not 
been through the copyediting, typesetting, pagination and proofreading process which may 
lead to differences between this version and the Version of Record. Please cite this article as 
doi: 10.1111/ejn.15719 

 
This article is protected by copyright. All rights reserved. 

London Raquel (Orcid ID: 0000-0003-1678-2556) 

 

 

Proposed journal section: Special issue “Rhythms in Cognition: Revisiting the 

Evidence”  

 

Title: EEG Alpha power predicts the temporal sensitivity of multisensory 

perception. 

 

 

Raquel E. London1, Christopher S. Y. Benwell2, Roberto Cecere3, Michel 

Quak1, Gregor Thut3 and Durk Talsma1 

 
1 Department of Experimental Psychology, Ghent University, Belgium 
2 Division of Psychology, School of Social Sciences, University of Dundee, Dundee, UK 
3 Institute of Neuroscience and Psychology, University of Glasgow, UK 

 
Corresponding author: Raquel E. London 

Department of Experimental Psychology, Ghent 

University Henri Dunantlaan 2 

9000, Ghent, 

Belgium 

raquel.london

@ugent.be 

 
Running title: Alpha oscillations in multisensory integration  

 

32 pages  

4 figures  

0 tables  

3 equations  

Words: 6923 

Words abstract: 198 
 

 
Keywords: oscillations, psychophysics, temporal order judgement, instantaneous 

frequency, individual differences 

 

 
 

mailto:raquel.london@ugent.be
mailto:raquel.london@ugent.be


 

This article is protected by copyright. All rights reserved. 

Abstract 
 

Pre-stimulus EEG oscillations, especially in the alpha range (8-13 Hz), can affect the 

sensitivity to temporal lags between modalities in multisensory perception. The effects 

of alpha power are often explained in terms of alpha’s inhibitory functions, whereas 

effects of alpha frequency have bolstered theories of discrete perceptual cycles, where 

the length of a cycle, or window of integration, is determined by alpha frequency. 

Such studies typically employ visual detection paradigms with near-threshold or even 

illusory stimuli. It is unclear whether such results generalize to above-threshold 

stimuli. Here, we recorded electroencephalography, while measuring temporal 

discrimination sensitivity in a temporal order judgement task using above-threshold 

auditory and visual stimuli. We tested whether the power and instantaneous frequency 

of pre-stimulus oscillations predict audio-visual temporal discrimination sensitivity 

on a trial-by-trial basis. By applying a jackknife procedure to link single-trial pre-

stimulus oscillatory power and instantaneous frequency to psychometric measures, we 

identified a posterior cluster where lower alpha power was associated with higher 

temporal sensitivity of audiovisual discrimination. No statistically significant 

relationship between instantaneous alpha frequency and temporal sensitivity was 

found. These results suggest that temporal sensitivity for above-threshold 

multisensory stimuli fluctuates from moment to moment and is indexed by 

modulations in alpha power.
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Introduction 
 

A fundamental aspect of perception is the integration of signals originating from the 

same event across the senses, while avoiding the integration of unrelated signals. 

Whether two signals from different sensory modalities are integrated depends, among 

other factors, on their temporal proximity. The shorter the time between them, the 

higher the chance they will be integrated (Lewald & Guski, 2003; Meredith et al., 

1987; Senkowski et al., 2007). 

Exactly how close in time these signals need to be for integration to occur, or 

how far apart they must be for temporal discrimination to occur depends on several 

factors. Accordingly, the temporal sensitivity of multisensory perception is highly 

variable both within and between individuals. For example, in people diagnosed with 

schizophrenia, autism or dyslexia, audio-visual temporal sensitivity appears to be 

reduced compared to healthy controls (De Boer-Schellekens et al., 2013; Foucher et 

al., 2007; Hairston et al., 2005; Martin et al., 2013; Stevenson et al., 2012, 2014, 2017; 

Wallace & Stevenson, 2014). Even in the healthy population, the temporal sensitivity 

of multisensory perception differs markedly across individuals (Stevenson et al., 

2012). Within individuals, temporal sensitivity is modulated by factors such as 

stimulus complexity (Stevenson & Wallace, 2013), stimulus intensity (Fister et al., 

2016) and spatial relation (Lewald & Guski, 2003). Previous experience and training 

(Lee & Noppeney, 2011; Navarra et al., 2005; Powers et al., 2009), attention 

(Donohue et al., 2015; Talsma et al., 2009) and cognitive load (Dean et al., 2017) also 

have an impact. 

In the search for the neural correlates of temporal sensitivity in multisensory 

perception, many previous studies, including some of those discussed above, have 
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focused on transient, stimulus-related activity. More recently, however, it has been 

found that spontaneous oscillatory EEG activity reflecting momentary state can affect 

temporal discrimination sensitivity in unisensory auditory, tactile and visual 

perception (Baumgarten et al., 2016; Bernasconi et al., 2011; Samaha & Postle, 2015). 

Samaha & Postle (2015), for instance, assessed visual temporal discrimination 

sensitivity with a two-flash fusion task. They analyzed moment-to-moment 

fluctuations in the speed of alpha oscillations (instantaneous alpha frequency) and 

found that faster alpha oscillations (higher instantaneous frequency) predicted higher 

temporal sensitivity, both within participants and between. 

In the multisensory domain, the relationship between pre-stimulus brain 

activity and temporal sensitivity is increasingly being studied as well (Cecere et al., 

2015; Grabot et al., 2017; Ikumi et al., 2019; Keil & Senkowski, 2017; Leonardelli et 

al., 2015; Ronconi et al., 2018; Venskus & Hughes, 2021; Yuan et al., 2016). For 

example, Cecere et al. (2015) used the sound-induced flash illusion in combination 

with EEG and transcranial alternating current stimulation to show that peak alpha-

frequency around stimulus presentation causally determined the temporal window of 

audiovisual integration. Their findings were corroborated by (Keil & Senkowski, 

2017) based on an analysis of pre-stimulus alpha activity alone. These results are 

informative regarding the temporal characteristics of auditory influences on visual 

perception (sound-induced flash illusion), but the question remains whether they are 

representative of general multisensory perceptual processes. Not all participants report 

the associated illusion and whether they do so might depend on the power of their 

alpha oscillations (Cecere et al., 2015; Keil & Senkowski, 2017a; Lange et al., 2013). 

Furthermore, the effect of alpha oscillations on the temporal sensitivity of perception 

may be so subtle that it only becomes apparent when the stimuli are around threshold 
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or that it even relies on illusory perception (see Benwell et al., 2017, 2021; Iemi & 

Busch, 2018, for links between pre-stimulus alpha activity and subjective rather than 

objective measures of perception). 

To test more broadly whether spontaneous pre-stimulus activity affects 

audiovisual temporal sensitivity, we asked participants to make temporal order 

judgements on supra-threshold audio-visual stimuli. We employed a “jackknife” 

procedure adapted for linking psychophysical data to single-trial EEG parameters 

(Benwell et al., 2018a; Gluth & Meiran, 2019; Richter et al., 2015). This leave-one-

out procedure allowed us to examine cross-trial co-variation of pre-stimulus 

oscillatory parameters in EEG with temporal discrimination sensitivity estimates 

obtained from psychometric curves. By these means, we tested whether the power of 

pre-stimulus oscillations (1 to 45 Hz) was predictive of the temporal sensitivity of 

multisensory perception. Additionally, to test whether Samaha & Postle's (2015) 

results might hold for multisensory stimuli, we tested whether fluctuations in the 

instantaneous frequency of pre-stimulus oscillations in the alpha range predicted 

audio-visual temporal sensitivity from trial to trial. Finally, to extend the results of 

Cecere et al. (2015), Keil & Senkowski, (2017), and Venskus & Hughes (2021), we 

tested whether individual peak-alpha frequency and power was positively correlated 

with individuals’ audio-visual temporal sensitivity. 

 

Method 
 

Participants 
 

Forty-three volunteers participated for monetary compensation. Two participants were 

excluded due to their estimated sensitivity measure exceeding the maximum SOA of 

350 ms. One participant was excluded due to not completing the experiment. Analyses 
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were carried out on the data of the remaining 40 participants (30 female, 2 left-handed, 

median age: 23, age range: 18 – 32). Participants reported having normal audition and 

normal or corrected-to-normal vision and no history of neurological disorder or recent 

use of psychoactive substances. The experiment was approved by the Ethics 

Committee of Ghent University. Participants gave informed consent prior to the start 

of the experiment. 

 
 

Apparatus and Stimuli 
 

Participants were seated in a dimly lit, sound-proof and electrically shielded chamber, 

with their head stabilized by a chinrest at 50 cm from a 24-inch LCD monitor (BenQ 

XL2411; 120 Hz refresh rate). The task was an audiovisual temporal order judgement 

task (TOJ) in which participants were presented with a visual flash and an auditory 

beep, and then asked to judge which of the two had been presented first (see figure 1). 

The experiment had one within- participants factor which was the stimulus onset 

asynchrony (SOA) between the flash and the beep. The SOA had 12 levels (-350, -

216, -133, -88, -50, -16, +16, +50, +88, +133, +216 and 

+350 ms) where negative SOAs indicate that the auditory stimulus was presented first 

(AV) and positive SOAs that the visual stimulus (VA) was presented first. Each SOA 

was presented 70 times giving a total of 840 trials, divided over 35 blocks of 24 trials 

each. SOA was randomized per block with each condition presented twice within each 

block. The task was implemented using the E-prime 1.2 software package (Schneider 

et al., 2002) on an HP Compaq desktop computer running Microsoft Windows XP. 

This setup allowed for the timing of stimulus presentation to be at a resolution of <= 

1 ms which was confirmed with an oscilloscope. The visual stimulus was a solid white 

circle (luminance of 270 cd/m²) subtending a visual angle of 1.95°. It was presented 
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at 5° below a central fixation cross subtending 0.46° on a black background and for a 

duration of 16.6 ms. The auditory stimulus was a 1850 Hz tone presented at 72 dB(A) 

with a duration of 16 ms (plus 3 ms fade-in and 3 ms fade-out) delivered by two 

loudspeakers (Logic3 Screenbeat ES20). The loudspeakers were placed to the left and 

right of the monitor. 

 
 

Procedure 
 

The experiment started with the recording of 5 minutes of eyes-open resting state EEG 

and a seven-minute passive observation task with the sequential presentation of 50 

instances of the visual stimulus and 50 instances of the auditory stimulus. Since the 

EEG data collected during this session are beyond the scope of the current project, 

they will not be reported here. The TOJ task then started after two practice blocks of 

12 trials (one for each SOA, order randomized) during which the experimenter was 

present to ensure participants understood the instructions. Each trial started with the 

presentation of a central fixation cross. Participants were instructed to fixate this cross 

throughout the task. After a random interval of 1000-1500 ms, the first stimulus (a 

flash or a beep, depending on the condition) was presented. After a random delay, 

chosen amongst the 12 possible SOAs, the second stimulus was presented. 

Participants were instructed to judge which stimulus (auditory or visual) had been 

presented first. The task was not speeded, and there was no time limit, but participants 

were instructed not to think about the answer for too long. Participants pressed the “z” 

key when they had perceived the auditory stimulus first, and the “m” key when they 

had perceived the visual stimulus first with the middle finger of their left and right 

hand, respectively. After the response, a black screen was presented for 500 ms after 

which the next trial started. In the practice session, participants received feedback after 
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each trial. During the experimental session no single-trial feedback was given, but 

after each block the mean accuracy for that block was presented. Between blocks, 

there was a self-paced break during which participants were encouraged to rest for a 

short moment. The total duration of the experiment was approximately 50 minutes. 

 
 

Electrophysiological recording and pre-processing 
 

The electroencephalogram (EEG) was recorded at 1024 Hz with a Biosemi ActiveTwo 

system (Biosemi, Amsterdam, Netherlands) with 64 Ag–AgCl scalp electrodes 

positioned according to the standard international 10–20 system. Additional 

electrodes were positioned at the outer canthi of both eyes and directly above and 

below the right eye to acquire horizontal and vertical electro-oculograms (EOG), 

respectively. Preprocessing was done with custom scripts incorporating functions 

from the EEGLAB toolbox (Delorme & Makeig, 2004). Data was high- pass filtered 

using a Hamming windowed sinc FIR filter with the lower edge of the pass band at 

0.5 Hz and a cutoff-frequency of 0.25 Hz. Data was low-pass filtered using a 

Hamming windowed sinc FIR filter with the upper edge of the pass band at 45 Hz and 

a cutoff- frequency of 50.6 Hz. In preparation for independent component analysis 

(ICA), data was then cut into 2-second epochs starting 1500 ms before and ending 500 

ms after the first stimulus. The epoch mean was subtracted and trials containing unique 

or very large artefacts were manually discarded. Electrodes exhibiting excessive noise 

were removed and interpolated using the spline interpolation method. In six 

participants, this was the case for one electrode and in two participants for two 

electrodes. Data was then re-referenced to the average of all electrodes (excluding 

external electrodes) and ICA was run with the EEGLAB “runica” function. To protect 

against rank deficiency the number of components extracted by the ICA were reduced 
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by 1 for each interpolated channel as well as 1 to account for re-referencing to the 

average of all electrodes. Subsequently, the filtered continuous data was re-epoched 

in preparation for time-frequency analysis to 4-second-long epochs starting 2500 ms 

before until 1500 ms after the first stimulus onset (exceeding the -1500 to 

+500ms window of interest to avoid filter artifacts at the edges). As before, the 

epoch mean was subtracted, bad electrodes were rejected and the data was re-

referenced to the average of all electrodes except the electro-oculogram and mastoid 

electrodes. Then, the previously obtained ICA weights were applied to this dataset and 

components reflecting eye movements, blinks or muscle artefacts were projected out 

of the data. The number of components that was removed per participant ranged from 

1 to 10 with a median of 3. Next, rejected electrodes were interpolated using the spline 

interpolation method and trials containing artefacts were manually discarded. The 

percentage of trials that was discarded per participant ranged from 2% to 39%, with a 

median of 9%. Finally, to improve topographic localization, a Laplacian transform 

was applied using the Matlab script accompanying Cohen,  (2014). 

 
 

Behavioural analysis 
 

We were interested in the minimum amount of time between the auditory and visual 

stimuli that was needed for each participant to be able to correctly judge the order in 

which the stimuli had been presented in 75% of the trials. This psychophysical 

measure of temporal sensitivity is referred to as the “just noticeable difference” (JND) 

and was derived using the Psignifit 4 toolbox for Matlab (Schütt et al., 2016). Instead 

of a binomial model, as is usually applied in psychometric function fitting, this method 

uses a beta-binomial model. This model does not only estimate overdispersion (similar 

to goodness-of-fit), but also uses this additional parameter (eta) to obtain better model 
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fits. This allowed us to include all participants and draw valid conclusions, despite the 

presence of participants with overdispersed data. The default options of the toolbox 

were used for our fitting procedure, except when specified below. The chosen 

experiment type was 'YesNo' since this sets both asymptotes free to vary with priors 

favouring small values, e.g. asymptotes near 0 and 1 respectively. First, we tested 

which type of sigmoid function best fit our data by fitting normal, logistic, Gumbel 

and reversed Gumbel functions to the proportion of “flash-first” responses as a 

function of SOA. The best fit (the fit with the lowest summed deviance over blocks 

and participants) was provided by the reversed Gumbel function; 404.3414 vs. 

404.9625 (normal), 404.3670 (logistic) and 519.7202 (Gumbel). The reversed Gumbel 

function is given as: 

 

𝑆(𝑥;𝑚,𝑤) = exp⁡(log(. 5) 𝑒𝐶
𝑥−𝑚
𝑤 ) 

𝐶 = log(− log(. 75)) − log⁡(− log(. 25)) 

 

with 𝑥 denoting the SOA, m the value of 𝑥 at which the function evaluates to 0.5, w 

the width of the function and C a scaling constant. We set the “width” parameter to be 

calculated at 25%, which allowed us to calculate the JND in the conventional manner, 

namely, by dividing the difference along the x-axis in milliseconds between 25% and 

75% “flash first” responses on the y-axis in two to obtain the JND in milliseconds: 

 

𝐽𝑁𝐷 =
𝑆−1(. 75) −⁡𝑆−1(.25)⁡

2
 

 

Lower JND values indicate higher temporal sensitivity, whereas higher JND values 
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denote lower sensitivity. Since observations from multiple trials are required to fit a 

function and derive the JND, this metric is not definable on a single-trial basis. 

However, it was precisely our aim to investigate how moment-to-moment fluctuations 

in EEG parameters and temporal sensitivity co-varied across trials. We addressed this 

challenge by applying a method developed by Benwell, et al., (2018; see also Gluth 

& Meiran, 2019) which adapts a “jackknife” procedure (Quenouille, 1949; Richter et 

al., 2015; Stahl & Gibbons, 2004; Tukey, 1958) to link single‐trial variability in 

oscillatory activity to psychometric measures such as the JND (see an extended 

explanation of the jackknife analysis below). Another measure that can be derived 

from the psychometric function is the point of subjective simultaneity (PSS). 

Although this measure is not pertinent to our research question and was not further 

analyzed in relation to the EEG, we derived it for each participant to offer a more 

complete description of the behavioural data. The PSS corresponds to the value of 

the SOA for which the function evaluates to 0.5 and is interpreted as the SOA at 

which the stimuli appear to the observer as arriving simultaneously. It therefore 

estimates the observer’s bias towards the perception of either an audio- or visual-

leading stimulus order. The PSS is given as: 

 
𝑃𝑆𝑆 =⁡ 𝑆−1(.5) 

 

 
Electrophysiological analyses: Trial-by-trial variations within participants 

 
EEG Power 

 
A time-frequency representation of the single-trial data was obtained by convolving 

the pre- processed data with a complex wavelet using the “mtmconvol” option of the 

“ft_freqanalysis” 
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function from the Fieldtrip toolbox (Oostenveld et al., 2011). A sliding window with 

a length of 500 ms was employed to segment the data. The window was shifted 

forward in steps of 20 ms. Each segment was multiplied with a Hanning taper to avoid 

edge artefacts. The value of oscillatory power at each data point therefore included 

activity from 250 ms before and 250 ms after that time point. Since we were expressly 

interested in ongoing, stimulus-unrelated activity, we restricted our power analysis to 

the time points ranging from 750 ms to 250 ms before the onset of the first stimulus 

to ensure that no stimulus related activity was included. Single-trial oscillatory power 

was thus obtained at 25 time points in 20 ms steps and 23 frequencies ranging from 1 

to 45 Hz in 2 Hz steps for all 64 electrodes.  

 

 
Instantaneous alpha-frequency 

 
Instantaneous frequency defines frequency as the speed at which an oscillation within 

a certain frequency-band is cycling at any given moment in time (or in practice, 

between any two samples). This results in a time-resolved measure of the frequency 

of an oscillation. The instantaneous alpha-frequency was extracted for each data point 

during a one-second period preceding the onset of the first stimulus using the method 

described by (Cohen, 2014b). First, one-second epochs were created immediately 

preceding the onset of the first stimulus. To avoid edge artefacts, each epoch was 

reflected on both sides; it was flipped horizontally and concatenated to the beginning 

and end of the original epoch. The data was filtered in the time domain using a plateau-

shaped 8-to-13 Hz band-pass filter with 15 % transition zones and a filter order of 896 

points. The analytic signal was computed using the Hilbert transform. The phase-angle 

time series was then unwrapped and its first temporal derivative multiplied by the 

sampling rate and divided by 2 pi in order to obtain instantaneous frequency in Hz. 
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Noise in the data can cause small jumps in the phase-angle time series (“phase slips”) 

which in turn produce large artefactual peaks and troughs in instantaneous frequency. 

To attenuate these, the instantaneous-frequency time-series was median-filtered ten 

times using ten filter orders ranging from 10 to 400 ms in length, before averaging the 

ten filtered time series. Finally, the one-second time series was divided into 32 time 

points consisting of 32 samples each (a total of 1024 samples per second). For each 

trial the average instantaneous frequency over these samples was calculated for each 

time point. Hence, single-trial instantaneous alpha frequency at 32 time segments and 

64 electrodes was entered into the subsequent analysis. 

 
Jackknife analysis of the relationships between temporal sensitivity and pre-

stimulus EEG power and instantaneous alpha frequency 

In order to test whether moment-to-moment fluctuations in pre-stimulus EEG 

characteristics co-varied with moment-to-moment fluctuations in temporal sensitivity, 

we implemented a two-level analysis. At the participant level, a single-trial analysis 

was performed, in which we computed a jackknife Spearman correlation across trials 

between (i) the JND and EEG power at all time points, frequencies and electrodes and 

between (ii) the JND and instantaneous alpha frequency at all time points and 

electrodes. At the group level, these results were subjected to cluster-based 

permutation tests, to test whether any clusters of data points showed a systematic 

relationship (i.e. positive or negative correlation) across participants. 

 
 

Single-trial jackknife correlations at the participant level 

 

Since our measure of temporal sensitivity, the JND, is an ensemble metric which 

cannot be obtained at the single-trial level, the application of jackknife correlations 

was required. In jackknife correlations, the metrics of interest (EEG parameters and 
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the JND in our case) are computed iteratively over all trials while one trial is left out 

on each iteration (and reinserted at the next). This results in variables which contain 

as many values for the statistic as there are trials. Since the resulting statistic at each 

trial reflects the effect of that trial being left out, the direction of variance is inverted. 

Therefore, any correlation of a variable with its jackknife counterpart is -1. 

Additionally, since the effect is scaled by the number of trials, the variance is 

compressed. Please note that because both the behavioural data (the JND) and the 

electrophysiological data (power and instantaneous alpha frequency) were subjected 

to the jackknife procedure, the correct sign of the resulting correlations was restored. 

This method enabled us to test the relationship between fluctuations in EEG 

parameters and temporal sensitivity on a short, trial-to-trial time scale. For the 

mathematical proof of the equivalence of the conventional and jackknife correlations 

we refer to Richter et al. (2015). For a detailed explanation of how to apply this 

procedure to link psychophysical data with EEG data, see (Benwell, et al., 2018). We 

used Spearman’s rho (ρS) to correlate both EEG power and instantaneous alpha 

frequency with the JND across trials. For EEG power, this procedure was repeated at 

all electrodes, frequencies and time points resulting in a 64 x 23 x 25 matrix of ρS’s 

per participant. For instantaneous alpha frequency, we repeated the procedure for all 

time points and electrodes resulting in a matrix of 64 x 32 ρS’s per participant. 

Importantly, we controlled for possible non-stationarities in power and frequency over 

the course of the experiment by partializing out trial order (Pearson, 1915). This 

precluded the possibility that a spurious correlation would arise due to co-occurring 

but unrelated EEG and behavioural non-stationarities over the course of the 

experiment (Benwell et al., 2019). Additionally, to avoid fluctuations in the slope of 

the power spectrum to be conflated with fluctuations in power at a specific frequency, 
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we also partialized out the slope of the power spectrum. The slope was estimated using 

the FOOOF toolbox for Python (Donoghue et al., 2020), which models the power 

spectrum with a combination of periodic parameters such as the power, center 

frequency and bandwidth of oscillatory peaks, and aperiodic parameters such as the 

slope and offset of the typical 1/f power-law shape. We constrained the FOOOF 

algorithm to find a maximum of 4 oscillatory peaks (‘max_n_peaks’), the minimum 

of the peak height to be 0.1 (‘peak_threshold’) and the bandwidth to be between 1 and 

8 Hz (‘peak_width_limits’). These constraints were imposed to avoid the algorithm 

being too liberal in finding peaks which could lead to overfitting. The FOOOF 

algorithm was applied to the jackknifed power spectra, giving us an estimate of the 

slope for each channel, timepoint and trial. The algorithm was applied to the power 

spectrum from 3 to 35 Hz, as opposed to the full power spectrum from 1 to 45 Hz. 

Having a lower bound below the frequency resolution increases the chance of 

overfitting. Additionally, power spectra with broad frequency ranges tend to have a 

‘knee’ or a bend in them (Donoghue et al., 2020; Muthukumaraswamy & Liley, 2018). 

This means that the slope of the aperiodic component might change from the lower 

frequency range to the higher frequency range. To avoid such a bend leading to bad 

fits, we restricted the frequency range to below 35 Hz and fit the algorithm without a 

‘knee’ parameter. Additional to the slope, we also used FOOOF to estimate the peak 

frequency of alpha oscillations as further described below. 

 

Group-level analysis 

 

Subsequently, we tested whether any of the correlations obtained at the participant 

level showed a systematic deviation from zero across participants. Dependent sample 

t-tests against 0 were performed on the Spearman ρ’s at each data point across 

participants. To control for multiple comparisons, a cluster-based permutation-testing 
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routine developed by (Maris & Oostenveld, 2007) was implemented. This was done 

separately for correlations of behaviour with EEG power and instantaneous alpha 

frequency. All data points were selected for which the t-value had a probability lower 

than 5% of having occurred by chance. These were then clustered based on adjacency 

(at least one channel adjacent to a significant data point had to be significant for cluster 

inclusion) in the temporal, spectral or spatial domain for EEG power and in the 

temporal and spatial domain for instantaneous alpha frequency. For the EEG power 

analysis, this procedure was done separately for positive and for negative t-values 

(two-tailed test). Based on previous work (Cecere et al., 2015; Drewes et al., 2022; 

Keil & Senkowski, 2017; Samaha & Postle, 2015; Wutz et al., 2018), we hypothesized 

that higher instantaneous alpha frequency would be associated with a smaller JND. 

Therefore, for the instantaneous alpha frequency analysis, a one-tailed test was 

employed and only negative t-values were clustered. For each cluster, the sum of t-

values was calculated and the maximum of these cluster-level statistics was taken. To 

create a reference distribution against which to test the value of this cluster-level 

statistic, 1000 permutations of the data were conducted using the 

“ft_statistics_montecarlo” function from the fieldtrip toolbox (Oostenveld et al., 

2011). Each iteration yielded a maximum cluster level statistic and over iterations a 

null distribution of maximum cluster level values was constructed. The p-value of the 

effect was then estimated as the proportion of elements in the null distribution 

exceeding the observed maximum cluster-level test statistic. 

 

Electrophysiological analyses of individual differences: Co-

variations of JND and pre-stimulus EEG across participants 

To test whether individual-peak alpha-frequency and individual peak-alpha power 
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could predict temporal sensitivity across individuals, we used the FOOOF algorithm 

as described above to estimate individual peak-alpha frequency and power. As 

described above, the FOOOF algorithm was applied to the jackknifed power spectra. 

Peak frequency and power were therefore estimated at each channel, time-point and 

trial during the pre-stimulus period. If no peak was detected by the algorithm between 

8 and 13 Hz, neither frequency nor power were estimated. If more than one peak was 

detected between 8 and 13 Hz, the frequency and power of the highest peak were used. 

For this analysis, the peak and power estimates were averaged over trials, giving us 

one value for the peak frequency and one for peak power, at each channel and 

timepoint, for each participant. Then, from the channels and timepoints that were 

present in the cluster that we found in the within-participant power analysis (see fig. 

3) we chose that channel and time-point where individual peak-alpha power was 

highest. We took that power value and its corresponding individual peak-alpha 

frequency and correlated them with the JND across participants using a Spearman 

correlation.  

 
 

 

 
 

 

 
 

Results 

Behavioural results 
 

Participants completed an audio-visual TOJ task. They were presented with a beep 

and a flash at varying SOAs and were asked to indicate which stimulus had been 

presented first (fig. 1). A psychometric function was then fitted to the proportion of 

“flash-first” responses. Figure 2A shows the fitted functions for each participant as 

well as a function fit to the average data of all participants (in black). As an index of 
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temporal audio-visual discrimination sensitivity, - our primary measure of interest, - 

we derived the JND from this function. Across all participants the mean JND was 92 

ms (st. dev. of 54 ms), which is typical of the large individual differences previously 

observed in such paradigms (e.g. Stevenson et al., 2012; see fig. 2B). Additionally, 

we derived the point of subjective simultaneity (PSS). On average the PSS was 

negative 35 ms (audio-leading; st. dev. of 80 ms) and was significantly different from 

0, t(39) = -2.66, p = 0.011, 95% CI [-62, -8]). This indicates a bias towards perceiving 

stimuli as visual-leading. See Figures 2B and C for the point estimates for each 

participant of the JND and PSS, respectively. 

 
 

EEG results 
 

Pre-stimulus alpha power predicts temporal sensitivity 
 

We tested if the power of spontaneous fluctuations during the pre-stimulus interval 

predicted the temporal sensitivity of audio-visual perception on a trial-by-trial basis. 

Figure 3A shows the strength and direction of the relationship between EEG power 

and the JND in time- frequency space. One significant positive cluster (cluster statistic 

= 405.83, p = .016) was present in the alpha frequency range from 600 to 250 ms 

preceding stimulus onset. The significant cluster was restricted to posterior electrodes 

(see fig. 3B). The results indicate that higher pre-stimulus power was associated with 

higher JND values and hence lower sensitivity. Figure 3C shows the correlation 

between power and the JND averaged over the points in the cluster, for each 

participant. For 34 out of 40 participants (85%), higher power was accompanied by 

worse temporal sensitivity. This was not a spurious finding caused by coexisting, but 

independent, changes in alpha power (due to fatigue, boredom and/or decreased 

motivation; see Benwell et al., 2019) or fluctuations in PSD slope and JND over the 
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course of the experiment, as the analysis controlled for both trial order and shifts in 

the PSD slope. Therefore, these data suggest a functional role of alpha power in the 

temporal sensitivity of audio-visual perception on a short, trial-to-trial time scale, with 

supra-threshold stimulation. 

 
 

Pre-stimulus instantaneous alpha frequency does not predict temporal 

sensitivity   

We also tested whether instantaneous frequency of alpha oscillations in the pre-

stimulus peri- od (1000 ms window) co-varied with temporal sensitivity of audio-

visual perception on a tri- al-by-trial basis. Based on previous findings (Cecere et al., 

2015; Drewes et al., 2022; Keil & Senkowski, 2017; Samaha & Postle, 2015; Wutz et 

al., 2018), we expected higher instantaneous alpha-frequency to predict higher 

temporal sensitivity, and hence a negative relationship with JND (higher frequency – 

smaller JND). While one widespread negative cluster was found, it did not survive 

cluster correction for multiple comparisons (cluster statistic = -66.34, p = 0.098, left-

tailed). Therefore, our data do not provide evidence for the existence of a functional 

role of alpha oscillatory frequency in the temporal sensitivity of audio-visual 

perception on a short, trial-by-trial time-scale, with supra-threshold stimulation. 

 

Neither individual peak-alpha frequency nor individual peak-alpha power 

predict individual differences in temporal sensitivity 

So far, we found that trial-by-trial variations in alpha power predict the temporal 

sensitivity of multisensory perception at the group level. Next, we tested whether 

alpha power could also predict performance across individuals, and thereby help 

explain the large inter-individual variability in JND’s typically found in such 
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paradigms (e.g. Stevenson et al., 2012). Despite a lack of evidence for a trial-by-trial 

effect within participants, we also tested whether individual alpha-peak frequency 

could predict individual differences in the JND, since this has already been shown in 

other paradigms (Cecere et al., 2015; Keil & Senkowski, 2017; Venskus & Hughes, 

2021). Figure 4 shows that individual peak-alpha power did not predict an individual’s 

JND (fig. 4B; ρS 39 = 0.04, p = 0.795, two-tailed). While individual peak-alpha 

frequency showed a weak negative correlation with the JND, this relationship was not 

statistically significant (fig. 4C; ρS 39 = -0.24, p = 0.068, left-tailed). 

 

 

Discussion 
 

We used an audiovisual temporal order judgement (TOJ) task to examine the role of 

spontaneous, ongoing EEG oscillations in the temporal sensitivity of audiovisual 

perception. Pre-stimulus power at a wide range of frequencies was tested, and we 

found that alpha power predicted performance at the single-trial level. Lower power 

in this frequency band (8-13 Hz) predicted better temporal sensitivity. Single-trial 

instantaneous alpha frequency was also measured but instantaneous alpha frequency 

was not found to predict temporal sensitivity, nor did individual alpha-peak frequency 

or power. 

These results provide novel insights into the neural basis of the temporal sensitivity 

of multi- sensory perception. We show that not only task conditions (Stevenson & 

Wallace, 2013; van Eijk et al., 2008) and individual differences (Stevenson et al., 

2012; Wallace & Stevenson, 2014) affect the temporal sensitivity of audiovisual 

perception, but that spontaneous alpha oscillations do so as well. These rhythms are 

believed to originate from both cortical and sub-cortical sources that together give rise 

to the rhythm measured at the scalp (Benwell et al., 2019; Clayton et al., 2017; 
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Klimesch et al., 1996). With this study, we add to existing evidence for the role of 

alpha power in the temporal sensitivity of multisensory perception (Bastiaansen et al., 

2020; Baumgarten et al., 2016; Leonardelli et al., 2015).  

 
 

 

Decreased alpha power predicts increased temporal sensitivity 
 

We found that lower alpha power over occipito-parietal electrodes predicted better 

temporal sensitivity in an audiovisual TOJ. These results fit well with evidence that 

pre-stimulus alpha oscillations index excitability of the cortex, with higher alpha 

power indicating lower excitability (Romei et al., 2008; Sauseng et al., 2009). In 

studies where participants are asked to detect a weak stimulus, lower pre-stimulus 

alpha power commonly leads to higher detection rates (as reviewed in Iemi et al., 

2017). Notably, this is the case whether the stimulus is real or illusory. Thus, lower 

pre-stimulus alpha power does not necessarily lead to more accurate perception (e.g. 

Benwell et al., 2017, 2021; Lange et al., 2013). Iemi et al. (2017) addressed this issue 

with signal detection theory. They hypothesized that if decreased alpha power 

indicates increased baseline excitability, not only the signal but also the noise would 

elicit a larger response. This would lead to more hits, but also to more false alarms, 

thereby shifting the criterion towards the more liberal side, but leaving sensitivity 

unchanged. Indeed, they found that in a near-threshold visual stimulus detection task, 

decreased alpha power made observers more likely to report the presence of a 

stimulus, whether the stimulus was present or not. In a discrimination task, they found 

that alpha power did not affect performance, in accordance with the idea that 

perceptual bias, but not sensitivity is affected by alpha oscillations. Other studies on 

visual perceptual discrimination sensitivity have also shown this measure to be 

unaffected by alpha power shifts . Our data do not mirror these results. We found that 
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pre-stimulus alpha power did predict discrimination sensitivity. Similar results have 

been reported by Leonardelli et al. (2015) who presented participants with an audio-

tactile pair of above-threshold stimuli with variable SOA’s while recording the 

magneto-encephalogram. When comparing brain activity between identically timed 

pairs with different perceptual outcomes they found that on trials where participants 

perceived one integrated audio-tactile stimulus, pre-stimulus alpha power had been 

higher compared to trials where participants perceived the stimuli as separate. On a 

comparable note, Baumgarten et al. (2016) presented participants with one or two 

short, above-threshold tactile stimuli. When the time between the stimuli was such 

that the percept varied from 1 to 2 on a trial-by-trial basis, decreased pre-stimulus 

alpha power predicted veridical perception of 2 stimuli. In other words, in a tactile 

temporal discrimination task (Baumgarten et al., 2016), in an audio-tactile temporal 

discrimination task (Leonardelli et al., 2015), and in our audiovisual temporal 

discrimination task, lower alpha power predicted higher temporal sensitivity, while 

higher alpha power predicted lower temporal sensitivity. These studies differ in at 

least three characteristics from the visual discrimination tasks where alpha power did 

not affect temporal discrimination sensitivity (Bays et al., 2015; Benwell et al., 2017, 

2018, 2021; Hanslmayr et al., 2007; Wutz et al., 2014). First, they are not unisensory 

visual tasks, but either multisensory (our study and Leonardelli et al., 2015) or do not 

involve the visual modality at all (Baumgarten et al., 2016). Second, above-threshold 

stimuli were presented instead of near-threshold stimuli. And third, they involve 

temporal discrimination, whereas the mentioned studies involve visual discrimination 

tasks based on features such as orientation (Bays et al., 2015), identity (Benwell et al., 

2021; Hanslmayr et al., 2007), numerosity (Wutz et al., 2014), relative length 

(Benwell et al., 2018), and luminance (Benwell et al., 2017). Temporal discrimination 
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differs in a fundamental manner from these visual feature criteria in that it requires 

perception to be updated on a short time-scale. There is evidence that alpha power 

promotes stability as opposed to the flexibility required for this fast updating. For 

example, when viewing a Necker cube, perception spontaneously alternates between 

two rivalling perceptual interpretations (Necker, 1832). In this paradigm, higher alpha 

power correlates with a longer duration of each of the rivalling percepts and thus 

higher perceptual stability (Piantoni et al., 2017) and reductions in alpha power predict 

an impending switch from one percept to the other (Strüber & Herrmann, 2002). Based 

on these studies, Piantoni et al.  (2017) proposed that alpha oscillations do not purely 

inhibit cortical activity but stabilize the current configuration of neuronal activity and 

its corresponding perceptual interpretation. Despite the lack of spatial specificity of 

the EEG, it is interesting to note that the relation between alpha power and temporal 

sensitivity in our experiment is most pronounced over occipito-parietal areas, which 

mirrors the topographies of the relationship between alpha power and perceptual 

stability in Piantoni et al.'s (2017) study. In temporal discrimination tasks such as ours, 

higher excitability may lead to an improvement of sensitivity due to a greater 

perceptual flexibility to adapt to new information on short time-scales. 

Studies using other temporal discrimination paradigms have also produced 

results that are in line with ours. For example, van Viegen et al. (2017) presented 

participants with a tone and then after 1 or 1.5 seconds a flash. They found that the 

tone always elicited alpha and beta suppression over parietal and occipital electrodes, 

but that the long intervals were more likely to be incorrectly perceived as short 

intervals when alpha and beta power were less suppressed. They concluded that higher 

alpha and beta power led to a subjective compression of time, which might also be 

interpreted as stronger integration over time. And in a multisensory time- estimation 
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task, van Driel et al. (2014) tested how phase coupling between auditory and visual 

sensory regions was related to interference effects from one modality to the other. 

They found that when participants had to judge the duration of a visual target, the 

duration of an auditory distractor interfered more in those participants with stronger 

alpha phase coupling between auditory and visually responsive electrodes. As in our 

study, stronger alpha synchronization was indicative of lower cross-modal temporal 

sensitivity. Taken together, the evidence suggests that when excitability is low, and 

alpha synchronization is high, the cortex leans towards a lower temporal sensitivity of 

perception, and that when excitability is high, and alpha synchronization is low, the 

cortex leans towards a higher temporal sensitivity of perception. 

 
 

 

 
 

Higher instantaneous alpha frequency does not predict higher 

temporal sensitivity 

Previous studies suggest that the length of the cycle of alpha oscillations determines 

the length of time over which multiple stimuli can be temporally resolved (Cecere et 

al., 2015; Keil & Senkowski, 2017; Ronconi et al., 2018; Samaha & Postle, 2015; 

Venskus & Hughes, 2021). Others have found that moment-to-moment modulations 

in instantaneous alpha frequency (also referred to as frequency sliding) affect the 

temporal resolution of visual perception as well (Drewes et al., 2022; Samaha & 

Postle, 2015; Wutz et al., 2018). In this study, we attempted to replicate such results 

using multisensory, supra-threshold stimuli. We did not find convincing evidence that 

moment-to-moment fluctuations in the instantaneous frequency of alpha oscillations 

predicted the temporal sensitivity of multisensory perception of suprathreshold 

stimuli. One reason could be that whereas the perception of unisensory veridical and 
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illusory stimuli occurs mostly in the sensory cortices themselves, activity relevant to 

our TOJ task is distributed across two senses and exists at least partially in higher 

association areas (Binder, 2015; Love et al., 2018; Watkins et al., 2006). This might 

decrease the relative influence of the characteristics of relevant brain activity in any 

single part of this widespread area.  

 

 

Neither individual peak alpha frequency nor power predicts 

individual differences in temporal sensitivity 

Even though alpha power predicted performance on a trial-by-trial basis, we did not 

find any relationship between individual peak-alpha power and temporal sensitivity 

across participants. Nor did we find a statistically significant relationship between 

individual peak-alpha frequency and temporal sensitivity across participants. This is 

in contrast to findings from Cecere et al. (2015), Samaha & Postle (2015), Keil & 

Senkowski (2017) and Venskus & Hughes (2021) who did find a positive correlation 

between individual peak-alpha frequency and temporal sensitivity across participants. 

There are at least two main differences between these and our tasks which may have 

contributed to this discrepancy. First, the tasks described above were either purely 

visual (Samaha & Postle, 2015; two-flash fusion task), or required visual detection in 

a multisensory paradigm (Cecere et al., 2015; Keil & Senkowski, 2017; Venskus & 

Hughes, 2021; sound-induced flash illusion), while our task was explicitly 

multisensory. Second, our task required active temporal discrimination, while both the 

sound induced-flash illusion and the two-flash fusion paradigm require visual 

detection and have an implicit temporal factor. Interestingly, in a purely tactile task 

that also required explicit temporal discrimination, alpha power predicted temporal 
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sensitivity on a trial-by-trial basis (Baumgarten et al., 2016), while in this same task, 

individual alpha-peak frequency and power did not predict temporal sensitivity across 

participants (Baumgarten et al., 2017). One reason this relationship was not apparent 

in this study and ours could be that the TOJ task is a much harder and cognitively 

demanding task than the sound-induced flash illusion or the two-flash fusion task, and 

performance is therefore subject to multiple additional influences. Null results, 

however, have also been reported by Buergers & Noppeney (2022), who found strong 

evidence that individual peak-alpha frequency do not influence observers’ perceptual 

sensitivity or bias for two-flash discrimination. The evidence that individual peak-

alpha frequency is an important determining factor in the temporal sensitivity of 

perception is therefore still inconclusive, even in the realm of purely visual paradigms, 

and surely when it comes to the temporal sensitivity of multisensory perception. At 

the individual level, many more factors affect the JND than just the speed and power 

of oscillations, and might do so more strongly. This is readily apparent when looking 

at the sizes of the JND exhibited by our participants which ranged from 27 to 270 ms 

(see fig. 2B). It is unlikely that the main factor underlying such a broad range of JND’s 

could be found in the relatively much smaller differences in peak frequency or power 

between participants. It might be the case that peak frequency and/or power do matter, 

but that factors such as task engagement, vigilance and/or decision-related processes 

play a much bigger role, drowning out smaller effects. When conducting analyses 

within participants, these factors are neutralized, enabling the subtler influence of 

oscillatory characteristics to come to light. 

 

Conclusion 
 

In this study we tested whether spontaneous, pre-stimulus EEG activity predicts 

behavioural performance on an audio-visual temporal order judgement task. We found 
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that lower pre-stimulus alpha power predicted higher temporal sensitivity on a trial-

by-trial basis. Higher pre-stimulus alpha frequency did not reliably predict higher 

temporal sensitivity. We did not find any systematic relationship between individual 

peak-alpha power and temporal sensitivity across participants. While individual peak-

alpha frequency did seem to have some predictive value for the temporal sensitivity 

of integration across participants, this relationship was weak and not statistically 

significant.  Taken together with previous work, our findings suggest that modulations 

in alpha power index the brain´s tendency for temporal sensitivity on a trial-by-trial 

basis. 
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Graphical abstract 
In an audiovisual temporal order judgement task we employed a novel jackknife procedure to quantify 

temporal sensitivity derived from a psychometric function at the single-trial level. We found that 

higher pre-stimulus alpha power predicted a lower temporal sensitivity, while instantaneous alpha 

frequency was not predictive of temporal sensitivity. Individual peak-alpha frequency did not 
correlate significantly with temporal sensitivity across participants, nor did individual peak-alpha 

power.  
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