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A Hybrid Approach of Wavelet-based Total Variation 

and Wiener Filter to Denoise Adventitious Lung 

Sound Signal for an Accurate Assessment 

Abstract—Adventitious sounds and their characteristics are 

the critical indicators of lung dysfunctions. Unfortunately, the 

captured lung sound often contains noise interferences, which may 

hinder the accuracy assessment of lung health. This paper 

proposes a hybrid approach of wavelet-based empirical Wiener 

filter and wavelet-based total variation (WATV) to denoise 

adventitious lung sound signals. As an optimal filter, the wavelet-

based empirical Wiener filter requires appropriate selections of 

two wavelet transform bases, whereas WATV indirectly 

eliminates the need to select the wavelet transform bases by 

modifying a single objective function to achieve a minimax optimal 

filter in the sense of mean-squared error. We combined the two 

approaches by using the improved signal estimation from WATV 

to design an empirical Wiener filter for suppressing noise and 

smoothing the denoised signal.  The performance of our proposed 

technique is evaluated via root-mean-squared error (RMSE) and 

signal-to-noise ratio (SNR) on simulated lung sound containing 

crackle and wheeze transmitted out of the chest wall and being 

corrupted with white Gaussian noise at various power levels. In 

simulation studies, our proposed technique achieved optimal 

RMSE similarly to the WATV filter accomplishes as an optimal 

filter ― not only preserving signal characteristics but also further 

improving SNR by 6–9 dB compared to the wavelet soft and hard 

threshold functions, total variation denoising filter and the WATV 

filter. Additionally, our proposed technique is less sensitive to the 

variation of SNR values of the input signal. 

Keywords—Denoising, lung sound signal, signal estimation, 

Wavelets, Wiener filter 

I. INTRODUCTION 

Auscultation is frequently used by doctors and clinicians to 
‘listen’ to weird lung sounds. Despite the wide adoption of 
auscultation, it is filled with various problems such as variability 
and uncertainty of inter-listeners. The computer-based lung 
sound technique eliminates the subjective nature and provides a 
more reliable approach to assess lung functions [1], [2]. 
However, in a lung sound recording, interference is an inevitable 
noise source. The accuracy of the computer-based lung sound 
technique is lowered with interference; thus, noise reduction or 
denoising is crucial in lung sound signal processing. In 
literature, the presence of adventitious lung sounds (crackle and 
wheeze) are indicators of lung dysfunctions and can be related 
to airway obstruction and various pulmonary diseases such as 
chronic obstructive pulmonary disease and sputum production 
[3]–[5]. Differentiating the adventitious sounds from healthy 
lung sound is a critical step for assessing lung functions. 

Classical wavelet-based thresholding methods are a practical 
signal denoising approach when the actual noise-free signal is 
practically unknown [6], [7]. The limitation with classical 
wavelet transform is introducing artifacts such as spurious-
Gibbs oscillations and noise spikes around discontinuities [8]. 
Additional improvement is to perform empirical Wiener 
filtering in the wavelet transform domain [9]. However, the 
limitation with wavelet-domain empirical Wiener filtering is 
that the approach requires two wavelet transform bases. The 
effect on denoising the signals differs with different 
combinations of wavelet bases [9]–[12]. It was proposed in [8] 
a unified wavelet-based total variation (WATV) approach to 
overcome the artifacts produced during denoising by modifying 
a single objective function and indirectly eliminates the need for 
selecting the appropriate wavelet transform bases required in the 
wavelet-based empirical Wiener filter. However, WATV still 
presents small artifacts after denoising the signal, particularly in 
the lung sound signal containing crackle [13]. 

This paper, inspired by [8], [9], [13], proposes a hybrid 
approach of WATV and the wavelet-based empirical Wiener 
filter. WATV is used to achieve an adequate denoised signal, 
and the wavelet-based empirical Wiener filter smooths the 
artifacts produced from the WATV denoised signal to obtain a 
significantly improved signal-to-noise ratio (SNR) and root-
mean-squared error (RMSE) of the denoised signal for an 
accurate assessment. SNR reflects the denoised signal strength 
in relation to noise without compromising the frequency of 
interest; clinicians can better assess lung functions [2], [7], [14]. 
RMSE results show the filter capability in denoising and 
retaining significant characteristics from the noise-free lung 
sound. To the best of our knowledge and the literature survey, 
the hybrid technique of both WATV and the wavelet-based 
empirical Wiener filter has not been reported, particularly in the 
acoustic lung signal domain. The reason could be that both 
filters are termed as optimal denoising filters in the RMSE/MSE 
sense and achieve good results in their capability. To evaluate 
our proposed technique’s performance, the wavelet soft and hard 
thresholding, total variation (TV) denoising, and the state-of-
the-art WATV denoising approach are also applied to our 
simulated noisy lung sound signal containing crackle and 
wheeze. We achieved better RMSE results by 0.2–0.4 V and 
higher SNR by 6–9 dB than the wavelet soft and hard 
thresholding and the TV denoising methods. Our technique 
achieved similar optimal RMSE performance compared to the 
optimal WATV filter ― showing the capability in preserving 
signal characteristics and further improving SNR by another 
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We organized the paper in the following: First, our data 
model and the assumption, followed by the problem 
formulation, are presented in Section II. Next, we presented our 
proposed technique in Section III. Section IV presented the 
denoised synthesized adventitious lung sound signal results and 
discussions. Finally, we presented the conclusion and future 
work in Section V. 

II. DATA MODEL AND PROBLEM FORMULATION 

Our lung sound model is based on the airflow transmission 
to the chest wall by the techniques in the communication system 
and signal processing [15], [16]. The lung sound model contains 
crackle and wheeze. 

The lung sound is modeled as the flow source (airflow) 
hitting the airway [15], [16]. When the airflow hits the airway, 
the lung sound is modulated by amplitude and frequency, 

 𝑥𝑎(𝑡) = 𝑥𝑠(𝑡)𝑚𝑎(𝑡)𝑚𝑓(𝑡), (1) 

where 𝑥𝑎(𝑡) is the airflow hitting on the airway, 𝑥𝑠(𝑡) is the 
airflow; the amplitude and frequency modulation functions are 
denoted as 𝑚𝑎(𝑡) and 𝑚𝑓(𝑡), respectively. 

The modulated airflow is accompanied by noises when it 
penetrates the airway wall, 

 𝑥𝑓(𝑡) = 𝑥𝑎(𝑡) + 𝑣𝑎(𝑡), (2) 

where 𝑥𝑓(𝑡) is the airflow with accompanying noises after the 

airflow hits on the airway, and 𝑣𝑎(𝑡) is the accompanying noise 
when 𝑥𝑎(𝑡) hits the airway.  

The noise from the sensor was also transferred, as is 
customary when noise from electronic devices is fed into the 
recording system [15], [16], 

 𝑥(𝑡) = 𝑥𝑓(𝑡) + 𝑣𝑓(𝑡), (3) 

where 𝑥(𝑡) is the airflow that is transmitted out of the chest wall 
or the modulated signal with noises, and 𝑣𝑓(𝑡)  is the noise 

transferred from the sensor, such as electronic stethoscope. 

Noise is also produced by the ambient and other factors such 
as speech and cough during the lung sound recording, 

 𝑦(𝑡) = 𝑥(𝑡) + 𝑣𝑒(𝑡), (4) 

where 𝑦(𝑡) is the airflow that is captured by the sensor with 
noise, and 𝑣𝑒(𝑡) is the noise caused by ambient. Substituting 
(1)–(3) into (4), we will have our received lung sound containing 
noise, 

 𝑦(𝑡) = 𝑥𝑠(𝑡)𝑚𝑎(𝑡)𝑚𝑓(𝑡) + 𝑣𝑎(𝑡) + 𝑣𝑓(𝑡) + 𝑣𝑒(𝑡)   ()  

A reasonable assumption is that the noises are zero-mean 
process having a probability density distribution that can be 
defined with mean and variance, uncorrelated with the 
transmitted lung sound 𝑥(𝑡), with varying SNR levels, similar 
to those classical signal denoising studies [6], [8], [10], [11]. 
Hence, we modeled the noises as white Gaussian noise (WGN) 
[13], [14] and combined 𝑣𝑎(𝑡), 𝑣𝑓(𝑡), and 𝑣𝑒(𝑡). Therefore, (5) 

can be simplified to (6) similar to a linear system, where 𝑦(𝑡) is 

the received lung sound signal (output) containing WGN (error) 
𝑣(𝑡) and the desired lung sound signal (input) 𝑥𝑎(𝑡) as in (1), 

 𝑦(𝑡) = 𝑥𝑎(𝑡) + 𝑣(𝑡). (6) 

From (6), the desired signal 𝑥𝑎(𝑡) is contaminated by noise 
𝑣(𝑡)  from the collisions of the airflow onto the airway, 
electronic devices, and ambient noise, thus, we have to remove 
the noise from the captured lung sound signal 𝑦(𝑡)  through 
denoising. However, artifacts are introduced during lung sound 
signal denoising. The artifacts can lead to misinterpretation or 
affect the assessment [17]–[19]. 

III. PROPOSED TECHNIQUE 

In this paper, WATV is employed on noisy signal 𝑦(𝑛) with 
wavelet transform W and a single objective function 𝜔̂ to obtain 
𝑥𝑡(𝑛) . Next, the denoised signal 𝑥𝑡(𝑛)  from WATV is 
employed to design an empirical Wiener filter 𝐻 to smooth the 
denoised signal to reduce artifacts and obtain the desired signal 
𝑥𝑎(𝑛) [8], [9], [11]–[13]. n is denoted as the sample index, and 
the total number of samples 𝑁 over a known time 𝑇 is defined 
as 𝑁 =  𝐹𝑠𝑇, where 𝐹𝑠 is the sampling frequency, and set to 𝐹𝑠 = 
4000 Hz in this work. 

In WATV [8], [13], a 5-scale undecimated discrete wavelet 
transform W with two vanishing moments fulfilling the Parseval 
frame condition with Daubechies filter (due to its translation-
invariant property in denoising) is used for denoising signal with 
a low- and high-pass analysis filter [8], 

 W𝑦(𝑛) = W𝑥𝑎(𝑛) + W𝑣(𝑛),   𝑛 = 1, 2, …  𝑁. (7) 

W is denoted as wavelet transform for denoising signal in 
(7). The ‘nonstationary’ region of the lung sound signal 
produces significant wavelet transform coefficients (amplitude) 
over many wavelet scales. Most of the significant coefficients at 
each wavelet scale correspond to the desired lung sound signals, 
whereas the insignificant wavelet coefficients with small values, 

typically noise, are shrunk during denoising.  is denoted as the 
wavelet coefficients containing our signal 𝑥𝑡  required for the 
designing of the empirical wiener filter, 

 𝜔 = W𝑥𝑡. (8) 

Thus, the estimation of signal 𝑥𝑡  denoted as 𝑥̂𝑡  can be 

obtained by inverse wavelet transform WT of wavelet 
coefficients ω  shown in (9) once the estimated wavelet 
coefficients 𝜔̂ is available [11], 

 𝑥̂𝑡 = WTω̂. (9) 

The wavelet coefficients 𝜔̂ can be identified in the following 
way. We index the terms 𝑗 and 𝑘 to represent the scale and time 

information of the signal in the wavelet coefficients j,k, 

respectively. The ‖DWTω‖
1
 can be defined as the total variation 

of signal estimation, where D is the first-order difference matrix. 
The single indexed normalized wavelet coefficient is 
represented as, e.g., ‖𝑥‖1 = ∑ |𝑥𝑛|𝑛 ,  ‖𝑥‖2 = ∑ |𝑥𝑛|2

𝑛 . Doubly 
indexed normalized wavelet coefficient is denoted as, e.g., 

‖𝜔‖2
2 = ∑ |𝜔𝑗,𝑘|

2
𝑗,𝑘 . To optimize the recovered signal, the 

choice of regularization parameters j the threshold shape 

controller j, minimax concave penalty function  and TV parts 



 are critical. We have chosen the parameters as suggested in 
[8]. 

The split augmented Lagrangian shrinkage algorithm 
(SALSA) was applied to solve the WATV denoising problem 
[8], [13] in (10), 

𝜔̂(𝑛) = arg min
𝜔

{𝐹(𝜔) =
1

2
‖W𝑦 − 𝜔‖2

2 +

                                     ∑ 𝜆𝑗𝜙(𝜔𝑗,𝑘; 𝛼𝑗) + 𝛽‖𝐷WT𝜔‖1𝑗,𝑘 }. (10) 

The following parameters have been optimized for denoising 
and reported in the literature to resist spurious noise spikes, 
resulting in lower and optimal RMSE [8], [13]. To achieve a 
balance between wavelet-based and TV denoising, they are 

controlled by a parameter , and it was chosen as a value of 0.9 
[8], [13]. Thus, the regularization parameter is given as 

λj=2.5ησ/2j 2⁄
 and TV parts β=(1-η)(√N/4)σ  where  = 3, is 

related to the noise variance 𝜎2   in each wavelet scale j [8]. 

From the regularization parameter j above, we can identify the 

threshold shape controller as j = 1/j. 

The estimated denoised signal 𝑥̂𝑡  is applied into empirical 
Wiener filter design in (11)–(12) for smoothing and eliminates 
the artifacts by minimizing the RMSE to design an improved 
weighting profile in (12), where 𝜎2 is the noise variance from 
the wavelet transform [9], 

 𝑥̂𝑎 = WT𝐻W𝑥̂𝑡, (11) 

 𝐻 =
𝜔̂2

𝜔̂2+𝜎2 .  (12) 

Inspired by [8], [9], the proposed technique is summarized 
in Fig. 1. In [8], [13], a good denoised signal is achieved (low 
RMSE); however, small defects still exist, and performance on 
recovering SNR has not been discussed. Hence, we propose a 
hybrid WATV and wavelet-based empirical Wiener filtering to 
smoothen the denoised signal further to achieve a better-
denoised signal in terms of SNR and RMSE. 

 

Fig. 1. A hybrid technique of WATV and wavelet-based empirical Wiener 

filtering. 

From Fig. 1 and (7)–(12), we applied the estimated denoised 
signal 𝑥𝑡(𝑛) from WATV to obtain an adequate signal estimate 
instead of deciding on two wavelet transform bases to obtain an 
optimal empirical Wiener filter [8], [9], [11]–[13]. The 
pseudocode of the algorithm is shown below. 

Input: Noisy data (𝑦); Number of vanishing moment (𝑘); 

Regularization parameter (𝜆𝑗); TV parts (𝛽); Step size (𝜇); 

Number of wavelet scale (𝑗); Number of iteration (𝐼). 

Initialization: 𝜔 = W𝑦; 𝑎𝑗 = 1 𝜆𝑗⁄ ;  

//Identifying wavelet coefficient in (1) by iteratively 

minimizing with respect to 𝜔 and 𝑢 with variable splitting 

and augmented Lagrangian approach. 

𝑢 = 𝜔; 𝑑 = 𝜔; 𝑣 = 0; 

//Iteration till convergence between 𝜔 and 𝑢. 

For 𝑖 = 1:𝐼 

𝑝𝑗,𝑘 = [W𝑦 + 𝜇(𝑢 − 𝑑)] (1 + 𝜇)⁄   

//Finding the output threshold of 𝜔  for all 𝑗, 𝑘  with the 

information from 𝜙, 𝑝, 𝜆𝑗, 𝜇, 𝑎𝑗 = 1/𝜆𝑗  

𝜔𝑗,𝑘 = 𝜙(𝑝𝑗,𝑘;  𝜆𝑗 (1 + 𝜇⁄ ); 𝑎𝑗)   

𝑣 = 𝑑 + 𝜔  

//Total variation denoising (𝑡𝑣𝑑) requires data input from 

𝑣, length of the data input (𝑁) and TV parts 

𝑑 = W[WT𝑣 − 𝑡𝑣𝑑(WT𝑣; 𝑁; 𝛽 𝜇⁄ )]  
𝑢 = 𝑣 − 𝑑  

𝑑 = 𝑑 − (𝑢 − 𝜔)  

End For 

Preliminary Output: Denoised wavelet coefficient (𝜔̂), 

where signal 𝑥̂𝑡 = WT𝜔 

//Empirical Wiener filter design for smoothing: 𝐻 

𝐻 = 𝜔̂2 (𝜔̂2 + 𝜎2)⁄   

//Denoised output: 

𝑥̂𝑎 = WT𝐻𝑊𝑥̂𝑡 

IV. SIMULATION STUDIES 

This paper performed 500 adventitious lung sounds 
denoising simulation runs at each noise level generated and 
analyses on MATLAB R2019b. The simulated adventitious 
lung sound signal shown in Fig. 2 is fed into the proposed 
technique and established denoising filters such as the wavelet 
soft and hard threshold functions [13], [20], the TV denoising 
filter [13], and the WATV filter [8], [13], [20] for comparing of 
signal denoising performance. The wavelet soft and hard 
threshold functions are widely used filters in the medical-signal 
process for achieving better-denoised signal in terms of SNR 
[1], [7], while the TV denoising filter and WATV have achieved 
good and excellent RMSE results, respectively, in denoising 
noisy lung sound signal [13]. The mean RMSE and SNR results 
are presented and discussed in sub-section D. 

To obtain adventitious lung sound shown in (1), The airflow 
source 𝑥𝑠(𝑛) is first modulated by the frequency modulation 𝑚𝑓 

cosine wave with an amplitude of 1 V and frequency of 400 Hz, 
followed by the amplitude modulation 𝑚𝑎 sawtooth wave with 
amplitude of 1 V amplitude and frequency of 400 Hz. 

A. Synthesis of Lung Sound with Crackle 

Employing the equations proposed in [21], we simulated 
adventitious airflow (crackle) transmitted to the airway using 
(13)–(14). We represent the crackling signal 𝑥𝑠(n)  as two 
periods, and the crackle modulation function m𝑐(𝑛) is employed 
to shift the energy of 𝑥𝑠(n) to the initial part of the shape. Fig. 
2(a) presented the simulated crackle, with initial deflection 
width (IDW) = 1.2 ms and two cycle duration (2CD) = 9.8 ms 
[21], 

 𝑥𝑠(𝑛) = [sin(4𝜋𝑛𝛼)]m𝑐(𝑛), 𝛼 =
log(0.25)

log(0.12)
, (13) 

 m𝑐(𝑛) = 0.5{1 + cos[2𝜋(𝑛0.5 − 0.5)]}. (14) 

B. Synthesis of Lung Sound with Wheeze 

Synthesis of wheeze as airflow source 𝑥𝑠(n) [16] and then 
transmitted to the airway 𝑥𝑎(𝑛) is presented in (15). The airflow 



source 𝑥𝑠(n) for wheeze was simulated as a pure sine wave with 
WGN 𝑣𝑤(𝑛) power at 50 µW, 1 V amplitude, and 𝐹 = 100 Hz 
for the duration of 100 ms [16]. The simulated wheeze is 
presented in Fig. 2(c), 

 𝑥𝑠(𝑛) = sin(2𝜋(𝐹 𝐹𝑠⁄ )𝑛) + 𝑣𝑤(𝑛). (15) 

C. Synthesis of Noises 

The modulation’s accompanying noises 𝑣𝑎(𝑛) were inserted 
into the acoustic signals (13) and (15) that penetrate to the 
airwall shown in (2), with WGN power level and SNR at 0.6 
dBm and 0.01 dB [16], respectively. The parameters chosen 
demonstrated that the proposed communication model 
corresponds with the physiological characteristics of the actual 
lung sounds [16]. Finally, the microphone received sound 
combined with the WGN 𝑣𝑓(𝑛) , power at 10−6  dBm, as is 

usually the case in electronic communication [15], [16]. 

 

 

Fig. 2. Simulated adventitious lung sound containing crackle and wheeze 
transmitted onto the chest wall, corrupted with additive WGN as the noise 

component 𝑣(𝑡): (a) Simulated airflow source crackle; (b) Crackle transmitted 

onto chest wall with additive WGN; (c) Simulated airflow source wheeze; and 

(d) Wheeze transmitted onto chest wall with additive WGN. 

D. Simulation Results and Discussion 

WGN having various SNR values were generated and 
employed as the noise component 𝑣𝑒(𝑡) in (4)–(5), similar to the 
literature [13], [22]. We varied the noise SNR values between 0 
dB and 20 dB with a 2 dB increment rate resulting in 11 noise 
levels. From Fig. 2, we can observe the similarity between our 
simulated noisy lung sound signals and the actual noisy lung 
sound signals captured in an uncontrolled environment with 
microphones in the literature [6], [7]. 

Equations (16) and (17) showed RMSE, and SNR 
calculation comparison between our proposed technique, the 
wavelet soft and hard threshold functions, the TV denoising 
filter, and the WATV filter in denoising simulated noisy 
respiratory signals, 

 RMSE = √mean[(‖𝑑‖ − ‖𝑥‖)2], (16) 

where d is the denoised lung sound amplitude and x is the noise-
free lung sound signal amplitude. 

We defined SNR by finding the ratio of the peak amplitude 
of the denoised signal to peak amplitude of noise signal and 
expressed the ratio using the logarithmic decibel scale in (17), 

 SNR = 20 [log (
𝑑

𝑦−𝑥
)], (17) 

where x  is the noise-free simulated signal, y  is the simulated 
noisy signal, and d is the denoised signal. 

From Fig. 3 and Fig. 4, our proposed technique performed 
better than the wavelet soft and hard thresholding and the TV 
denoising approach by about 0.3 V in terms of RMSE. Referring 
to Fig. 3, the WATV filter and our proposed technique achieved 
an RMSE of 0.44 V and 0.45 V, respectively. From Fig. 4, our 
proposed technique achieved an RMSE of 0.45 V, and the 
WATV filter achieved 0.47 V. From the simulation results, our 
proposed technique RMSE results are estimated to be within 
±0.01 V of the WATV filter. 

Referring to Fig. 5 and Fig. 6, our proposed technique 
performed better than the wavelet soft and hard threshold 
functions, the TV denoising filter, and the WATV filter in terms 
of SNR. From Fig. 5, our proposed technique improves SNR by 
about 6.5 dB compared to the other widely used filters in the 
literature [8], [13], [20]. Similarly, in Fig. 6, our proposed 
technique improves SNR by about 8.5 dB compared to the other 
filters. The WATV filter is known as an optimal filter in the 
RMSE sense, and simulations showed that our technique can 
achieve the best (optimal) RMSE performance as well, while 
further achieving higher noise removal in terms of SNR by 
another 5.5–7.5 dB comparing to the WATV filter [8], [13], 
[20]. From the RMSE and SNR results, our proposed technique 
showed its robustness to severe noise in denoising noisy lung 
sound signals while achieving optimal RMSE. 

The performance benefits could be achieved due to the 
wavelet-based empirical wiener filter smoothing [9]–[12] of the 
already minimized artifacts [8], [13] and denoised signal with 
the complementing design of diagonal weighting matrix H from 
WATV. Both techniques use the diagonal matrix to design the 
filter, e.g., translation-invariant denoising matrix in WATV and 
diagonal weighting matrix in wavelet-based empirical wiener 
filter. 

WATV estimates the wavelet coefficients ω̂ by considering 
both insignificant (noise) and significant (signal) coefficients, 
we used the estimated signal estimates from WATV to design 
an empirical Wiener filter H to smooth and reduce the artifacts 
on the denoised signal. The empirical Wiener filter scales the 
coefficients by minimizing the MSE to design an improved 
weighting profile H ≈ 1 , with a WATV coefficient more 

significant than the noise variance, 𝜔̂2≫ σ2. With the improved 
weighting profile, our proposed hybrid technique can decrease 
the denoised signal’s bias and achieve a minimax optimal filter 

in RMSE. If the noise variance σ2 is greater than the estimated 
wavelet coefficient 𝜔̂2, the weighting profile will contribute to 
the gain in RMSE. 

 



 

Fig. 3. Average RMSE of denoised lung sound signals with crackle to various 

SNR values of the input signal. 

 

Fig. 4. Average RMSE of denoised lung sound signals with wheeze to various 

SNR values of the input signal. 

 

Fig. 5. Average SNR of denoised lung sound signals with crackle to various 

SNR values of the input signal. 

 

Fig. 6. Average SNR of denoised lung sound signals with wheeze to various 

SNR values of the input signal. 

V. CONCLUSION AND FUTURE WORK 

Lung sound signal contains unwanted noise, which hinders 
the assessment of lung function; hence, denoising is critical in 
lung sound signal processing. Typically artifacts are introduced 
during lung sound signal denoising; therefore, we propose a 
hybrid of WATV and wavelet-based empirical Wiener filtering 
on suppressing noise and further smoothing the signal to achieve 
high SNR denoised lung sound signal for an accurate lung health 
assessment. WATV is recognized as an optimal filter in the 
RMSE sense in the literature. Our proposed technique obtained 
similar optimal RMSE performance compared to the WATV 
filter while outperforming other commonly used wavelet-based 
denoising functions such as the wavelet soft and hard 
thresholding filters and the TV denoising filter in our simulation 
studies. In addition, our proposed technique also enhances the 
SNR of denoised lung sound signals containing crackle and 
wheeze by about 5.5–7.5 dB compared to the WATV filter. 
Furthermore, denoising lung sounds in [6]–[9] are directly based 
on collecting actual respiratory data in a noisy environment. 
Following the same way, further validation on actual respiratory 
sound signals containing crackle or wheeze is preferred to show 
the consistent denoising performance between our simulation 
studies and the real diagnostic cases. 
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