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Abstract—Dynamic data-driven applications such as tracking
and surveillance have emerged in Internet of Things (IoT)
environments. Such applications rely heavily on data generated
by connected devices (e.g., sensors). Consequently, leveraging
these data in building data-driven predictive analytics tasks
improves the Quality of Service (QoS) and, as a result, Quality of
Experience (QoE). Such data support various data-driven tasks
such as regression and classification. Analytics tasks require data
and resources to be executed at the edge since transferring them
to the cloud negatively affects response times and QoS. However,
the network edge is characterized by limited resources compared
to the cloud, being the subject of constraints that are violated
upon offloading data-driven tasks to improper edge nodes. We
contribute with an analytics task management mechanism based
on the context of the requested data, the task delay sensitivity
and the VM utilization. We introduce a novel Fuzzy inference
mechanism for determining whether data-driven tasks should be
executed locally, offloaded to peer edge servers, or sent to cloud.
We showcase how our fuzzy reasoning mechanism efficiently
derives such decisions by calculating the offloading probability
per task. The derived optimal actions are compared against
benchmark models in Edge Computing (EC) environments.

Index Terms—Edge computing, data-driven tasks offloading,
data-overlapping, Fuzzy inference system.

I. INTRODUCTION

Autonomous driving, smart cities services, and Augmented
Reality are just a few examples of new computational-intensive
and data-driven applications over the IoT infrastructure [9].
Many of these applications are delay-sensitive and necessitate
predictive, analytics and machine learning processes that are
thought to be beyond the capability of end-user devices [2].
Cloud computing has been considered [16], [3] as the main
solution to reduce the burden of data-driven tasks on edge
devices. However, cloud computing is not the best option
for delay-sensitive and dynamic data provisioning applications
that should be completed under real-time constraints. This is
due to the fact that data centres are typically located in distant
places from data sources. As a result, data processing in the
cloud will eventually require increased communication activi-
ties via wide-area networks (WANs). This increases the traffic
in the network, the probability of tasks failures, and evidently,
results in relatively high response times [5]. EC has already
been playing a significant role in reducing these obstacles
by bringing computing services close to end-users and data
sources [6]. The adoption of the EC brings many benefits for

applications, such as minimized delay, traffic reduction and
increased bandwidth availability due to the minimization of
the amount of data that should be transferred in an upwards
mode to the cloud. Using EC to execute data-driven task has
been overlooked in the most of data-driven tasks studies. In
particular, EC has been adopted to support real-time execution
and data analytics applications. As a consequence, end-users
demand execution and delivery of data-driven tasks from
EC [7],[9]. EC has limited capacity making the holistic task
execution of all requests a challenge, especially, when these
tasks involve ‘intense’ data processing (e.g., clustering and
classification) [6]. As a result, implementing a data-driven
task management mechanism is critical for distributing tasks
among EC nodes and the cloud according to specific criteria
like time constraints for getting a response and task data
accessibility. The efficient management of all these criteria
could dramatically increase the utilization of resources [8],
reduce the response delay, and improve Quality of Service
(QoS). Motivated by this challenge, this research focuses on
the data-overlapping of each task with the available nodes (the
percentage of data accessing). Because most, if not all, analytic
tasks necessitate direct access to distributed datasets stored on
EC nodes. Therefore, task offloading decisions should take into
consideration the required data that need to be accessed by
tasks. The data needed per task drives the decision-making on
whether to execute a task locally, offload a task to neighboring
EC or to the cloud based on their data availability. There are
also other criteria that should be considered in the offloading
decision-making process. The status of computation resources,
e.g., Virtual Machine (VM) utilization, has a substantial impact
on the QoS. To make our mechanism able to swiftly balance
between these criteria and effectively handle the inherent
uncertainty in the decision-making, we propose the adoption
of a Fuzzy Inference process to implement decision-making
rules based on the principles of the Fuzzy Logic (FL) [11].
FL is considered to be one of the most popular methods for
dealing with the rapid change uncertain systems. Additionally,
it has a lower computational complexity compared to other
decision-making methods [15]. In our context, FL has been
employed to determine the probability of offloading for each
data-driven task according to the aforementioned criteria. Our
main contributions are:



• An analytics task management decision-making mecha-
nism based on data overlapping, task delay sensitivity,
and VM utilization;

• A novel FL reasoning system that derives the probability
of offloading per task;

• Comparative assessment and performance evaluation of
our mechanism against alternative and baseline methods.

The paper is organized as follows: Section II elaborates on
related work while Section III represents our system model.
Section IV formulates our problem and Section V introduces
our tasks management mechanism. Section VII reports on ex-
perimental evaluation while SectionVIII concludes the paper.

II. RELATED WORK

Due to resource, energy, and storage limitations in EC
nodes, selecting a proper task management mechanism is
crucial. Several mechanisms have been proposed to manage
data-driven task offloading in EC. Wan et al. [16] have adopted
Fog Computing architecture to develop a task-driven data
offloading algorithm for urban IoT services. The suggested ar-
chitecture relies on mobile gateways in the fog layer to collect
data that are needed to complete a task. Then, only the required
data will be uploaded to the cloud rather than uploading the
whole data. This method helps in reducing sensors’ energy
consumption, decreasing data transmission cost, and resource
and network consumption. However, in this study, the fog
layer was viewed as a relay layer between the application
layer and the cloud layer, despite the fact that this layer
can perform some tasks, particularly data-driven tasks, which
require data to be passed through this layer before reaching
the cloud. Mukherjee et al. [10] have investigated horizontal
collaboration between many nodes and vertical collaboration
with the cloud for parallel task data offloading in order to
reduces the overall latency for data-driven tasks. However, this
mechanism has considered offloading data as one piece either
to another node or to cloud, while the required data availability
in each node has been ignored. Nguyen et al. [12] have
suggested an offloading mechanism for computation-intensive
applications either in Vehicle Edge Computing (VEC) or in
Roadside Units (RSUs). While this work considers making
offloading decision for extensive computational applications
(e.g., autonomous driving and vehicular video stream), data
access in each node has not been considered. Ning et al.
[13] have focused on computation-intensive tasks generated by
vehicles. Offloading decisions are based on priority, urgency,
channel gain, and distance. Then, to arrive at an intelligent
decision, deep reinforcement learning (DRL) is applied. The
amount of data availability in each node has been overlooked
in this study. Moreover, Li et al. [9] developed a theoretical
contract-based offloading paradigm from communication and
computing perspectives. The paradigm focuses on compute-
intensive and delay-sensitive tasks. The results have shown that
the paradigm reduces system delay and energy consumption.
However, the amount of data required by each task was not
taken into account during offloading decisions. Our work

focuses on local data overlapping, resource utilization and task
sensitivity in order to fills the gaps left by the above efforts.

III. SYSTEM MODEL

A. Data-driven Tasks

The concept of data-driven tasks has drawn increased at-
tention during the last few years. Data-driven tasks refers to
tasks that rely heavily on data generated by smart devices
(e.g., sensors, smartphones) to build knowledge and make
decisions. As mentioned in [14], the core of data-driven
applications is data analysis. Various real-world applications
in different domains become data-driven to make precise
decisions. Consequently, domains dealing with air pollution,
climate change, oil spill management, moving target tracking,
healthcare monitoring, hazard analysis, real-time monitoring
of stochastic damage in aerospace structures, forest fire prop-
agation prediction, volcanic ash propagation, and traffic jams
prediction could be precisely predicted according to data
that has been collected by edge devises. However, there are
challenges related to data-driven tasks. The data-driven tasks
are considered to be compute-intensive and very complicated
for edge devices. Hence, offloading a task to unsuitable EC
node would negatively affect the QoS [3]. Additionally, in such
types of tasks, the value of a subset of sensors and data may
vary quickly due to the dynamic nature of the environment.
To overcome this issue, sampling rates methods should be
considered. On the other side, sampling rates result in load
imbalance and bottleneck problems. To address this challenge,
we investigate data overlapping between tasks and EC nodes
according to a query formulation, as we will elaborate later.

B. Service Architecture

Our system under consideration consists of a three-layers
service architecture for data-driven tasks as shown in Fig. 1:
the application layer, EC layer and cloud computing layer. In
the Application layer, data are generated by unlimited devices
(e.g., sensors, smart devices). For example, sensors that are
spreading around specific area to collect data (e.g., humidity
and temperature) and transmit it to the EC layer via getaways
adopting low-power wireless communication technology [16].

The EC layer is a fixed computing environment that sits
between the application layer and the cloud layer, with some
resources to execute relatively some data-driven tasks are gen-
erated by applications, since it considers close to data and tasks
sources. This layer includes a set of collaborative EC nodes,
which are used to provide real-time computing services e.g.,
traffic congestion services in smart cities, and computationally
intensive, real-time, and delay sensitive applications. EC nodes
receive the data generated by application layer and store them
locally until data accessing pattern are required [16]. The
decision of either to execute these tasks locally, offload it to
another node or in the cloud can be made based on different
factors such as task size, time, popularity, upload/download
data, and resources availability in nodes [12], [15]. The cloud
layer has unlimited computation resources and thus tasks can
be offloaded through e.g., Base Stations (BSs) from the EC



layers due to limited resources or failure in completing tasks.
Determining the best layer for each task execution depends on
the adopted task management mechanism and certain analytics
application criteria.
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Fig. 1: A three-layers architecture of EC ecosystem.

IV. RATIONALE

We consider the EC system with a set of N EC nodes, de-
noted by N = {n1, n2, . . . , nN}. Each EC ni collects Ni real-
valued contextual data points x = [x1, x2, . . . , xd]

⊤ ∈ Rd,
with d-dimensional points, where each dimension refers to
a specific feature (e.g., temperature, humidity). The ni node
stores them locally in the dataset Di = {xk}Ni

k=1. Each node
ni has a neighborhood Ni ⊂ N of directly communicating
nodes nj ∈ Ni. Moreover, node ni communicates with the
end-users/applications and the cloud. EC nodes can execute
locally certain data-driven tasks because they are equipped
with specific computing resources. However, such resources
might be limited for some tasks, and thus any decision of
executing locally or offloading the tasks should be made
carefully. Each node ni needs to obtain certain information
regarding the data-driven tasks based on the following essential
factors. First, data overlapping, as previously stated, each node
ni collects real-valued data and stores it locally in Di. It’s
worth noting that the type and amount of data in each node ni

significantly impacts whether a task should be locally executed
or offloaded. Since we primarily focus on analytical tasks
(e.g., ML model training and inference), such tasks require a
specified amount of data from Di to be executed. Furthermore,
we consider a series of tasks T1, T2, ..., Tn arrive in node ni,
which are treated in a queue until their execution or offloading
decision is made. Such tasks have specific demands including
the amount of data being accessed in order to be executed.
Imagine for instance an analytic task as a series of value-
range queries, which define a specific data subspace over the
node ni’s available data in Di. In this cases, the analytic task

Tk might need a huge amount of the available data (e.g.,
>90% of the data) found in node ni, while only a small
amount of data (e.g., >10%) is available in another node
nj . Consequently, offloading such data-driven task to node nj

could evidently consume more time and resources transferring
the required amount of data from ni to nj for such an
execution. Therefore, our mechanism considers the amount of
accessible data required for a given task to make the offloading
decision as the main parameter. Also, two other parameters
have been considered in this decision-making mechanism,
which are resources availability and delay sensitivity. These
two parameters are considered to be an essential aspect of
any task management mechanism, regardless of whether the
tasks are data-driven or not. All of these parameters will be
explored in more detail in the following section. Hence, given
an incoming task Tk at node ni, node locally estimates the
percentage of available data required, required resources, and
task sensitivity. Node ni uses this information to determine
the execution mode, which is one of three decisions/actions.
They are a0 =‘local tasks execution’, a1 =‘task offloading’,
or a12= offload to the cloud.

V. TASK MANAGEMENT MECHANISM FACTORS

We introduce the basic factors for inferring the right execu-
tion decision for each task Tk on each node nk corresponding
to data availability, given resources availability and task’s
delay sensitivity.

A. Task Data Overlapping

Given a data-driven task Tk on a node ni, we introduce the
concept of the data overlapping, which indicates an estimation
of the percentage of data (out of the whole dataset Di)
required for executing the analytic task Tk. We specifically
focus on analytics tasks, such as training ML models for e.g.,
a federated learning mechanism, which is rather popular and
useful in the recent years. In this context, for instance, data
points x in a node represent real-values/sensed data that have
been collected from IoT devises. These data are the basis
for determining how much is appropriate for a task Tk to
be executed locally in node ni. Meanwhile, the availability
of data that each task requires varies from node to node.
Therefore, if a task Tk is offloaded to ni and has only 20%
of data it requires for execution, it means we need to bring
80% of data in order to execute this task locally. As a result,
resource utilization and response time may increase. Given the
representation of an analytic task Tk via a (range) selection
query qk = [qmin

1 , qmax
1 , . . . , qmin

d , qmax
d ] over a data sub-space

defined be the dataset Di, we define data overlapping as the
ratio of the data points satisfying the task query qk out of
the data points stored in node’s dataset. That is, a data point
x ∈ Di satisfies the range query qk if the following statement
S(qk,x) holds true:

S(qk,x) ≡ (qmin
1 ≤ x1 < qmax

1 ) ∧ . . . ∧ (qmin
d ≤ x1 < qmax

d )
(1)

Hence, the degree of data overlapping uk of task Tk

represented via the query qk is defined as:



uk =
|x ∈ Di : S(qk,x) ≡ TRUE|

|Di|
(2)

B. EC Resources Utilization

EC resources utilization represents the current level of
utilisation of the VM hosted by the local edge server [1].
In this context, ni is expected to perform multiple tasks at
the same time, such as data collection, task execution, and
acting as a release node between the application layer and
cloud server layer, all of which affect EC resource availability
[15]. Therefore, EC resources utilization is an essential aspect
in task offloading decision. Accordingly, three decisions can
be made according to the current resource utilization status:
heavy resource utilization, indicating that a node does not
have the ability to execute data-driven tasks locally; normal
resource utilization, indicating that a node can execute locally
a task depending on the percentage of data overlapping and
task length. Finally, light resource utilization, where a data-
driven task has a high probability to be executed locally.
These decisions are defined according to specific threshold
values. The EC resources utilization is represented as Z =
{z1, z2, z3, . . . , zn}, while ϑ1 and ϑ2 denote threshold values.
ϑ1 points to heavy resources utilization, while ϑ2 refers to
medium resource utilization. A task Tk could be executed on
nk ∈ Ni only if nk has enough resource for this execution.
To reduce the percentage of failed tasks caused by resource
utilization, the leader node ni will request resource utilization
from each node nj ∈ Ni. When ni gets utilization information
from neighboring nj ∈ Ni, it classifies it as:

IF (zi ≥ ϑ1) → Heavy Utilization (3)
IF (ϑ1 < zi ≤ ϑ2) → Normal Utilization

IF (zi < ϑ2) → Light Utilization

This rule states that if the state of zk is low, that means the
node nk has a high resource availability, it can execute a data-
driven task Tk even if the data overlapping percentage uk is
not high. Secondly, if the state of zk is classified as normal,
the node nk can execute a data-driven task Tk under certain
constraints, such as the percentage of data overlapping should
be high and task sensitivity not very high. Finally, if the state
of zk is heavy utilization, it means the node nk cannot execute
a data-driven task Tk locally.

C. Delay Sensitivity

Delay sensitivity reflects data-driven task failure tolerance.
The task sensitivity varies across tasks, e.g., there are urgent
tasks related to healthcare and people safety requiring ultra-
low latency [1], while some others are not urgent tolerating
a delay for a few seconds or even minutes. To avoid WAN
communication delays, important tasks should be given higher
priority and executed on EC nodes. We introduce three levels
of delay sensitivity to distinguish between urgent and non-
urgent tasks: high, medium, and low sensitivity. Each incoming
task is assigned to a specific level according to its urgency

(e.g., forest fire propagation prediction tasks are highly sen-
sitive, while online game tasks are of low sensitivity). Such
classification helps our mechanism to assign the data-driven
tasks to the appropriate EC nodes. We notate tasks’ sensi-
tivities in S = {s1, s2, s3, . . . , sn}, with sk ∈ [0, 1] based
on [1] and [15]. If sk value for task Tk is close to 1, it
indicates high sensitivity, while a value around 0.5 or close
to 0 indicates medium and low sensitivity, respectively. When
leader ni receives a set of data-driven tasks, it classifies their
sensitivities to specific levels w.r.t thresholds Ψ1 and Ψ2:

IF si ≥ Ψ1 → High Sensitivity (4)
IF Ψ1 ≥ si ≥ Ψ2 → Medium Sensitivity

IF si < Ψ2 → Low Sensitivity

The rule states that, if task Tk has a sensitivity value greater
than the first threshold, that means this task is particularly
sensitive to the delay. As a result, ni will point to this task
as highly sensitive for delay (urgent) in order to take this into
account when it makes the offloading decisions. On the other
side, if the sensitivity value of a task Tk falls between the
first and second thresholds, ni will treat this task as a normal
sensitivity. Finally, if task Tk has a sensitivity value outside
the range of the first and the second thresholds, ni will deal
with this task as low sensitive for delay (un-urgent).

VI. TASK MANAGEMENT REASONING

In this section, we go over the proposed reasoning mecha-
nism in greater details. The proposed mechanism takes into
consideration the above mentioned parameters to proceed
with task offloading decisions by balancing between nodes’
capability and nodes’ data availability to determine the ap-
propriate location of the offloading data-driven tasks [1]. In
such reasoning, two steps are introduced: acquiring tasks
information and adopting FL inference.

The proposed mechanism runs on a specific node ni which
plays the role of the ‘leader’ in the neighborhood Ni. This role
is periodically assigned to nodes from the neighborhood when
certain criteria are met, e.g., remaining energy, computational
capacity and communication availability. This assignment is
achieved via widely adopted leader election mechanisms. We
do not elaborate on these mechanisms, since it is beyond the
scope of this paper. In the remainder, for simplicity of notation,
we assume that node ni is assigned with this leadership role
to execute the FL inference engine, where all neighboring
nodes nj ∈ Ni directly communicate with their leader ni.
The main goal for the first step is matching between tasks and
corresponding nodes. That means assigning task Tk to node
nk that gives the highest data overlapping, lowest resource
utilization and a high possibility to execute high sensitive data-
overlapping tasks. However, this step determines nk as the
better choice for Tk compared to the rest of nodes nj ∈ Ni.
Hence, we need accurately to measure the probability of
offloading for each task, In order to decide whether task tk
should execute locally on ni, offload to node nk (action a11)
or offload to the cloud (action a12). FL inference is adopted
to determine such probability per task.



A. Task Information Updating

The leader node ni collaborates with its neighbors to update
tasks information. For each task, a neighboring available
and suitable node can be assigned based on the following
reasoning. Firstly, leader ni asks for the task context (uk, zk,
sk) for each task Tk from its neighbours nj ∈ Ni. The goal is
to determine how much data accessing it requires in node nj ,
percentage of resources utilization in node nj and expected
delay in node nj . Once nj receives the request from leader
ni, it sends over (uk, zk, sk) for each task Tk according to
its local data Dj . When the leader ni receives information
from nj , it then has two pieces of context: the main context
according to its data Di and a new one received from nj .
The leader ni in turn, makes a comparison between its tasks
information and neighbours tasks information. It then updates
Tk tasks information from nj based on the following rule:

IF (uk.j > uk.i) OR (zk.j > zk.i) OR (sk.j > sk.i) THEN (5)
(uk.i, zk.i, sk.i) → (uk.j , zk.j , sk.j)

The rule states that the task Tk’s context (uk.i, zk.j , sk.j) in
leader node will be updated if the corresponding values from
neighbouring nj are greater; otherwise, the task’s context will
not be updated. The rationale behind updating tasks context
is based on achieving lower rk. Therefore, if (uk, zk.j , sk.j)
are not greater than the ones in leader node, that means
rk increases and this leads to increase the probability of
offloading task to unsuitable node or to the cloud. In order
to avoid such a situation, context will not be updated. This
process will be repeated for all the tasks getting context form
each neighboring node nj ∈ Ni sequentially. Hence, with each
received task information from the next node nj+1 ∈ Ni, if the
rule is fired, the leader’s task context keeps updating. By the
end of this process, leader ni will have updated all the required
information; according to the suitable nodes nj ∈ Ni.

B. Fuzzy Linguistic Modeling

FL inference has been adapted to handle the inherent uncer-
tainty and approximation of these contextual factors in EC en-
vironments. FL is the most prevalent strategy for dealing with
rapid change in uncertain systems [15]. Fuzzy inference relies
on rules over linguistic variables that can model such type of
uncertainty. The main advantage for FL inference performed
locally on a node is its lightweight computational complexity
while providing an explainable decision-making methodology
[11][15]. This explainability is based on linguistic variables
reflecting the uncertainty derived from the values of uk, zk,
and sk. The data (fuzzy variable) is associated with three
linguistic fuzzy values {High,Medium,Low} reflecting a high,
medium, and low value of data overlapping derived from the
task’s query data subspace over node’s data space. Similarly,
the resources utilization (fuzzy variable) is associated with
the linguistic values {Heavy,Normal,Light} reflecting a high,
medium, and low value resources utilization. Finally, the
delay sensitivity indicator ok (as a fuzzy variable) takes three
linguistic values: {High,Medium,Low} reflecting the level of

urgent for a data-driven task Tk. Given a linguistic value linked
to a fuzzy variable, a membership function µ : R → [0, 1]
is defined in order to indicate the possibility that a value
of the variable belongs, at certain degree, to the linguistic
value. Specifically, given a data overlapping value uk = x,
we associate this value with the linguistic value High via the
membership function µH

u (x) ∈ [0, 1]. For instance, if the data
overlapping uk = 0.7 for task Tk, then this can possibly
be considered as a High data overlapping with possibility
µH
u (0.7) = 0.88. Then, membership functions have been

defined for all the parameters to be used in fuzzification
and defuzzification steps. In this context, we have three
membership function sets, and each set has different function
according to the related linguistic variables [15]. There are
different membership functions forms that can be adopted
for fuzzy based reasoning such as trapezoidal, piecewise
linear, singleton, triangular, and Gaussian [4]. We chose the
triangular form to represent the membership functions, which
is considered as the most common form according to [11][15].
Our membership functions are shown in Fig 2.
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Fig. 2: Membership functions of our fuzzy variables.

The values employed in the membership functions, on the
other hand, have a substantial impact on FL performance.
Therefore, defining these values is considered to be a critical
task. Therefore, similar to several previous studies about
fuzzy decision mechanisms in the literature, the degree of
membership values for fuzzy variables are defined empirically
[15].

C. Fuzzy Logic-based Reasoning

The inputs and the outputs of the FL are variable from the
natural language as we have mentioned above (e.g., High,
Medium, Low). Given the set of membership functions, we
introduce a novel FL reasoning engine that makes the decision
of task execution locally (actions a0), offloading to another
node nj ∈ Ni (action a11) or offloading to the cloud (action
a12). The offloading probability for a task Tk is determined
by the output of the FL inference system given the input
uk, zk, and sk, as will be elaborated later in this section.
The FL reasoning process on ni for each task Tk goes
through the following steps: The first step is fuzzification
of the inputs (uk, zk, sk) into their fuzzy linguistic terms via
the membership functions. Since it takes all these factors as



numerical values (crisp values), then assign fuzzy class for
each fuzzy variable as follows [1][11].

Fuk
(x) = {µL

uk
(x), µM

uk
(x), µH

uk
(x)} (6)

Fzk(x) = {µL
zk
(x), µN

zk
(x), µH

zk
(x)}

Fsk(x) = {µL
sk
(x), µM

sk
(x), µH

sk
(x)}

The second step is the activation of the Fuzzy Inference
Rules (FIRs), which interpret the logic behind the decision-
making for the offloading probability. The obtained fuzzy
values are then used to activate a set of FIRs, a.k.a., fuzzy
knowledge base. Each FIR is represented via an IF-THEN
statement [15]. The antecedent part (‘IF’ part) is a set of
logical conjunctions over the fuzzy linguistic variables. The
consequent part (‘THEN’ part) of the FIR is a fuzzy term
from the set of linguistic terms {Low, Medium, High} that
expresses the offloading probability rk. The generic format of
the FIR statements used in our engine is as follows:

IF uk IS X1 AND zk IS X2 AND sk IS X3 (7)
THEN rk IS X4

where the linguistic terms X1, X3, X4 ∈ {Low, Medium,
High} and X2 ∈ {Heavy, Normal, Light}. For instance, the
following FIR:

IF uk IS HIGH AND zk IS LIGHT AND sk IS HIGH
THEN rk IS LOW.

This rule indicates that the probability of offloading Tk is
low, which means action a0 is preferred more than action a1,
due to the fact that the data required by this tasks can be
fully available to node ni (high degree of overlapping). Also,
ni has a low resource utilization and low expected execution
delay. Hence, in this case, Tk can be locally executed on node
ni and not being offloaded (i.e., low offloading probability).
Our engine requires 27 FIRs in the fuzzy knowledge base in
order to cover the whole decision space; there are 33 = 27
membership functions involved in the three fuzzy variables:
data overlapping, resource utilization, and task delay sensitiv-
ity. Some FIRs of the engine are provided in Table I, which
reflect the reasoning behind the decision on the actions a0,
a11 or a12 represented via the offloading probability.

TABLE I: FIRs: inputs and expected output (sample).

FIR uk zk sk rk
1 Low Light Low Medium
2 Low Light Medium Medium
3 Low Light High High
4 Low Normal Low Medium
5 Low Normal Medium Medium
6 Low Normal High Medium

The last step is the defuzzification of all the offloading
probability values of the activated FIRs [11], [15], which
results in a scalar probability rk = P (a1) for the task Tk.
There are certain defuzzification operators for deriving scalar
output over FIRs. We adopt the centroid defuzzifier, which is

considered as the most common operator while the defuzzified
value represents probability aligned with the notion of rk:

rk =

∫
x∈[0,1]

xµν
rk
(x)∫

x∈[0,1]
µν
rk
(x)

, (8)

where ν is a {Low, Medium, High} linguistic terms of the
offloading probability. The defuzzified offloading probability
rk ranges between 0% and 100%. To transform this probability
to a decision, we define three decision thresholds: the first
threshold is 30%, if rk for task Tk in nj is less than or equal
30%, the decision is to locally execute this task (action a0) or
offload it directly to the suitable node nj (action a11). Since
having rk less than or equal 30% with a task Tk in node nj

means this task has a high data overlapping with this node, and
this node has enough resources to execute this task according
to the time consecrates. Second threshold is 70%, if rk for
a task Tk is less than or equal 70%, the decision is offload
to nj if it is available or to the cloud actions, i.e., a11 or
a12. That means, if a task Tk has almost high or medium
data overlapping, normal resource utilization and has medium
sensitivity to delay with nj . Thus, it could offload for this node
if it is available. Otherwise, to the cloud. The third threshold
is higher than 70%, if rk for a task Tk in ni is greater than
70%, the decision is to offload to the cloud. Since this task
does not has a high data overlapping with any node nj ∈ Ni,
as shown in Fig.3.
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Fig. 3: The probability of offloading.

That means offloading more data, this could affect nega-
tively resource utilization and increase other tasks’ delays. In
this case, in order to avoid these issues, these types of tasks
offloaded to the cloud.

VII. EXPERIMENTAL EVALUATION

We deal with data overlapping over analytics queries on real
datasets. EdgeCloudSim simulator has been used to measure
the impact of our mechanism on upload/download tasks,
resource utilization, and task delay sensitivity.

A. Data Overlapping Experiment

We experiment with data overlapping over real datasets
that have been collected by four Unmanned Surface Vehicles
(USVs) acting as nodes ni to collect data from sensors in
a coastal area1. Each USV node ni has a neighborhood

1https://archive.ics.uci.edu/ml/datasets/GNFUV+Unmanned+Surface+
Vehicles+Sensor+Data+Set+2.

https://archive.ics.uci.edu/ml/datasets/GNFUV+Unmanned+Surface+Vehicles+Sensor+Data+Set+2
https://archive.ics.uci.edu/ml/datasets/GNFUV+Unmanned+Surface+Vehicles+Sensor+Data+Set+2


Ni ⊂ N of directly communicating nodes nj ∈ Ni.
Moreover, node ni communicates with end-users/applications
to collect data and store them locally in Di for predictive
analytics tasks. Each USV’s dataset contains 2-dimensional
points with features: sea surface temperature and humidity,
i.e., x = [x1, x2]

⊤ ∈ Rd. There is one node ni ∈ N acting
as leader that receives analytic tasks Tk and decides either
to locally execute Tk (action a0) or offload (action a1). The
leader ni receives requests for ten predictive analytic tasks
including regression, classification, outliers detection, missing
values substitution, novelty identification, and clustering, and
it needs to obtain the uk, zk, and sk for each Tk. Regarding
the task’s data overlapping uk, we have defined for each
local dataset Di, the feature boundaries max & min values:
Di = [xmin

1 , xmax
1 , xmin

2 , xmax
2 ]. Then, we generated uniformly

at random 1,000 tasks queries (100 queries per task) qk such
that qk = [qmin

1 , qmax
1 , . . . , qmin

d , qmax
d ] for each Tk to obtain

the data subspace needed. Evidently, there are some tasks Tk

with high data overlapping (e.g., T5); uk reaches 98%, while
there are tasks with low uk, such as T3 and T7. Therefore,
by executing tasks with high uk such as T5 locally, it is
expected to reduce the percentages of data offloading to 2%.
In contrast, by executing tasks with low uk locally such as
T7, it is expected to increase data offloading percentages to
almost 95%, which is obviously inefficient. The FL engine has
been developed in MATLAB considering the popularity pk of
tasks Tk between [1, 40], outlier ok either 0 or 1, while the
percentages of data overlapping uk are between [0%, 100%].
All of these are inputs to the FL system, while the probability
of offloading rk is the output in [0%, 100%].

TABLE II: Query generation & Data overlapping (sample).

qmin
1 qmax

1 qmin
d qmax

d Points including Percentage
19 32 49 57 130/899 14.46%
19 29 44 46 164/899 18.24%
26 28 43 58 75/899 8.3%

B. Experimental Setup & Context
To build the considered scenarios, we used CloudSim Plus

to evaluate our mechanism’s performance. We compared our
results to the model proposed in [16]. The comparison was
made in terms of bandwidth, resource utilization, and task
execution time. Two types of parameters have been used: data-
driven task characteristics and edge/cloud parameters. Data-
driven tasks characteristics vary according to the nature of
tasks. Some tasks are affected by delays, while others are
not; some tasks could execute on EC nodes, while others
are beyond EC node’s capabilities and should be offloaded
to the cloud. To simulate real-world scenarios, ten different
data-driven tasks (applications) have been used. To decide the
application types, we looked at the most common data-driven
tasks (weather prediction, air pollution prediction, traffic jam
prediction, compute-intensive tasks, and health apps, etc.).
Table III contains tasks information chosen based on [15].
The upload/download data size represents the type of data
sent/received from EC/cloud since it could increase or de-
crease according to data overlapping percent, and this is what

distinguishes our mechanism against other task offloading
mechanisms. For instance, (50000MB, 100MB) respectively
denote the size of uploaded data (humidity, temperature, wind,
etc.) that will be used to build a ML model, and download
the model that the application will receive as a result of
data collecting and training in EC/cloud computing. Task
length (number of Million Instructions (MI)) on the other
hand, determines the required CPU resource to complete a
data-driven task. Other simulation parameters are listed in
Table IV. We have considered ten tasks arriving at ni, with
specific features, which are task length, upload/download data.
According to data overlapping, we made the range of this
parameter fluctuate from low values with some tasks to high
values with others, while resource consumption and task delay
sensitivity have been set up according to the applications
indicated in [15].

TABLE III: Application Types used in the simulation.

Task Application Task Length Upload/Download data
T1 Deep learning 10000 50000/100
T2 Traffic jam prediction 20000 200000/300
T3 Air pollution prediction 15000 200000/400
T4 Healthcare diagnosis 30000 80000/100
T5 Weather prediction 8500 50000/50
T6 Compute-intensive task 20000 300000/500
T7 Fraud detection 18000 300000/250
T8 Virtual assistants 25000 20000/50
T9 Alerting And Monitoring 14000 100000/300

T10 Social Media Analysis 21000 60000/80

TABLE IV: Simulation Parameters.

Parameters EC Cloud
Bandwidth WAN 500MB/sec LAN 10GB/sec

Number of VM 2 8
Number of cores 2 8
VM CPU speed 10 MB 100 MB

HOST MIPS 1000 10000

C. Comparative Assessment & Results

We compare the effectiveness of our mechanism against
two alternative mechanisms over the same tasks simulation
conditions. The first one, cloud-based mechanism [16], where
the EC nodes have been used to collect sensors data and send
it to the cloud, to reduce sensors’ energy consumption that
would happen if data has been sent directly to the cloud. The
second mechanism, EC-based mechanism, has been suggested
in many studies, such as [1], [15] where the tasks are sent to
the EC that has the highest availability, bandwidth, and task
delay sensitivity. Simulating our mechanism resulted in a high
data uploading speed between one to ten minutes, whereas the
uploading speed in the cloud-based model is between 28 to
60 minutes. While the uploading speed in EC mechanisms,
which has not considered data overlapping, is almost double
the speed we obtained with our mechanism (see Fig. 4).

In terms of execution time, we have considered data of-
floading time beside the main execution time, because, in the
data-driven tasks, data are considered to be an integral part
of the task execution. Fig. 5 shows that the execution time
is extremely minimized compered to the cloud-based model.



Fig. 4: Data uploading speed.

Also, we can observe that the bandwidth has been reduced as
well.

Fig. 5: Data-Driven tasks execution Time.

The results of cloud (WAN) and EC (MAN) bandwidth
measurements are shown in Fig. 6. The blue bar represents
the bandwidth usage percent according to our mechanism,
which is considered to be very low compared to the other
mechanisms. The red bar depicts bandwidth utilization ac-
cording to the EC-based mechanism, which is nearly double
that of our mechanism. Meanwhile, the black bar shows the
bandwidth usage in order to execute these ten tasks on the
cloud, which is very high usage compared to ours and EC-
based (see Fig. 6). In terms of resource use, the cloud-based

Fig. 6: Data-Driven Bandwidth Usage.

mechanism outperforms both our and EC-based mechanisms
because it has unlimited resources. (Fig. 7).

Fig. 7: Data-Driven Tasks RAM Usage.

VIII. CONCLUSIONS

In this work, we introduced a mechanism for data-driven
analytics task execution in EC environment with the objective
of exploiting their resources efficiently. In particular, the
core of this mechanism focuses on three factors to make
the execution decision for each task: data overlapping, EC
resource utilization and task sensitivity. Such factors are inputs
to a FL system to derive the probability of task offloading.
Our mechanism significantly outperforms other benchmarks
in terms of reducing uploading data size, execution time
and bandwidth and RAM usage. We plan to improve our
mechanism by taking into account EC mobility.
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