

Skotti, X., Kolomvatsos, K. and Anagnostopoulos, C. (2022) On the
Reusability of Machine Learning Models in Edge Computing: A Statistical
Learning Approach. In: Arai, K. (ed.) Proceedings of the Future
Technologies Conference (FTC) 2022, Volume 3. Series: Lecture Notes in
Networks and Systems. Springer: Cham, pp. 69-89. ISBN
9783031183430 (doi: 10.1007/978-3-031-18344-7_5)

This is the author version of the work. There may be differences between
this version and the published version. You are advised to consult the
published version if you wish to cite from it: https://doi.org/10.1007/978-3-
031-18344-7_5

https://eprints.gla.ac.uk/271623/

Deposited on 24 May 2022

Enlighten – Research publications by members of the University of Glasgow
http://eprints.gla.ac.uk

https://doi.org/10.1007/978-3-031-18344-7_5
https://doi.org/10.1007/978-3-031-18344-7_5
https://doi.org/10.1007/978-3-031-18344-7_5
https://eprints.gla.ac.uk/271623/
http://eprints.gla.ac.uk/

On the Reusability of Machine Learning Models
in Edge Computing: A Statistical Learning

Approach

Xenia Skotti1, Kostas Kolomvatsos2, and Christos Anagnostopoulos1

1 School of Computing Science, University of Glasgow, UK
2 Dept. Computer Science & Telecommunications, University of Thessaly, GR,

xeniaskotti@gmail.com, kostasks@uth.gr,

christos.anagnostopoulos@glasgow.ac.uk

Abstract. The adoption of Edge Computing continues to grow with
edge nodes recording increasingly more data, which inevitably requires
that they should be processed through Machine Learning (ML) models
to speed up the production of knowledge. However, training these models
requires an increased amount of resources, which are limited, thus, the
reuse of ML models becomes of paramount importance. Given that we do
not have a pool of models to choose from, is it possible to determine which
nodes in the network require distinct models and which of them could be
reused? In this paper, we propose a solution to this question, an online
model reuse framework which is evaluated for its precision and speedup.
The framework considers all possible combinations of pairs in the network
to determine which are good reusability pairs, by adopting statistical
learning methods. Then for each pair, the node model is chosen that has
the highest data space overlap. Our comprehensive experimental analysis
in the context of both regression and classification shows the feasibility
our solution in model reusability in Edge Computing environments.

Keywords: Edge Computing, Model Reusability, Machine Learning.

1 Introduction

Lee et. al [6] define compute reuse as ‘the partial or full utilization of already
executed computational task results by multiple users to complete a new task
while avoiding computation redundancy’. Systems that adopt compute reuse
benefit from significant performance gains motivating model reuse in Machine
Learning (ML). Model reuse [14] attempts to construct a model from other pre-
existing and pre-trained models for other tasks, in order to avoid building a
model from scratch. Exploitation of pre-existing models can set a good basis
for the training of a new model which translates into a reduced time cost, data
amount and expertise required to train a new model. Moreover, model reuse has
been used to tackle concept drift [13] and building ad-hoc analytic models [5].

Model reusability is compelling and, therefore, both theoretical [14] and em-
pirical [5,12] frameworks have been proposed to take advantage of it. Many of the

2 Skotti et al.

proposed approaches involve a two-phased framework of a preprocessing and run-
time phases, i.e., the model and its data are shared in a pool from which, in the
runtime phase, the relevant ML models are identified. Consider the case of edge
computing, where given a number of nodes and their corresponding datasets, we
want to decide for which nodes to train a distinct model and for which to reuse
one. In this context, the reuse comes from the fact that we do not train a model
for all nodes but instead reuse one of the existing ones. A framework for model
reuse in edge computing requires its online presence, thus, the aforementioned
steps are merged. To the best of our knowledge no such framework has been
proposed so far in the respective literature.

One of the fundamental requirements of any model reuse framework is to
be able to choose the model that best fits the (test) data of the target domain.
One of the ways this can be achieved is by finding the model whose source
domain (training data) is drawn from the same distribution as the target domain.
Therefore, the difference between domains needs to be quantified and minimised
to find the best model. This is essentially what the Maximum Mean Discrepancy
(MMD) [3] statistic does.

In addition to measuring the similarity between two datasets, we need to
determine the direction of reusability. In other frameworks [5,12], the reused
model originated from a pool, hence there was no such requirement because there
was only one direction of reusability, the pool. In this setting though there are two
directions per pair, and we need to define a method to do so. The method needs
to measure the data space overlap between two datasets to determine potentially
which would be better suited to be used to train a replacement model for the
other.

The data space overlap can also be defined as the overlap of the inlier data
space. A predictor for inlier space overlap is the probability of correctly pre-
dicting the non-native inliers of a model. In other words, what is the overlap
between the inlier points of two datasets, the native and non-native one with
regards to the inlier detection model. The reason behind using inliers to de-
termine the overlap is that any dataset is expected to have a few outliers and
hence some filtering needs to be applied anyway. Simultaneously, this can also
be leveraged to determine the direction of reusability. We used the One-class
Support Vector Machines (OCSVM) [10] to determine which points are inliers.
Therefore, given two nodes and their corresponding OCSVM models, we can
use each OCSVM model to predict the other node’s inliers and then find the
probability of detecting them, hence their overlap.

The paper is organized as follows: Section II highlights the relevant research
with regards to model reuse and elaborates on our contribution. Section III
provides preliminaries of the theory behind MMD and OCSVM. In Section IV,
we introduce the reusability framework and provide the corresponding algo-
rithms. Experimental evaluation is summarized in Section V highlighting the
real datasets and classifiers used, the parameter configuration and the defini-
tions of metrics in the context of model reusability. Section VI concludes the

Model Reuse Framework 3

paper with discussion on the important findings along with limitations and di-
rections for future work.

2 Related Work

Compute reuse has been investigated in the context of edge computing by [6]
to quantify its gain. Experiments on edge-based applications showed that sys-
tems that adopt compute reuse can finish the same task up to five times faster.
Motivated by similar concerns a theoretical paradigm named ‘learnware’ was
proposed by Zhou [14]. More specifically, a learnware is a ML model that is pre-
trained and achieves good performance paired with a detailed specification. The
vision behind the paradigm was that learnware models can be shared in a pool
without their raw data, allowing the identification of pretrained models that sat-
isfy their requirements without concerns over privacy violations. Therefore, the
author identified three characteristics: reusable, evolvable and comprehensible
as fundamental for a model to be considered a learnware.

Based on this paradigm, the Reduced Kernel Mean Embedding (RKME)
[12] was presented, i.e., a two phased framework consisting of the upload and
deployment phase. During the upload phase, each model is paired with its Kernel
Mean Embedding (KME) of the dataset and added to the pool of models. Then,
in the deployment phase either a single or a combination of models is chosen
based on the RKHS distance between the testing (target) mean embedding and
reduced (source) embedding of pool models. In essence, the RKME’s deployment
phase, is similar to the MMD statistic [3], since by quantifying the distance of
the mean embedding of two populations (source and target), it ensures that the
target distribution is the same as the source.

In [14], the authors recognise transfer learning as a preliminary attempt to
reusability. A two-stage framework dubbed as Learning to Transfer (L2T) was
presented [11], which exploits previous transfer learning experiences to optimize
what and how to transfer between domains. In the first stage each transfer
learning experience is encoded into three parts and, then, are utilised to learn
a reflection function, which approximates the performance improvement ratio
and thus encrypts transfer learning skills of deciding what and how to transfer.
The improvement ratio in this framework is the difference between domains
calculated by MMD. In addition to the MMD between domains, the variance is
also calculated since a small MMD paired with an extremely high variance still
indicates little overlap. During the second stage, whenever a new pair of domains
arrives, L2T optimizes the knowledge to be transferred by maximising the value
of the learned reflection function.

Model reuse has also been used to handle concept drift. The assumption
that previous data contain some useful information, indicates that the models
corresponding to the data can be leveraged. Condor was proposed [13] as an
approach to handle concept drift through model reuse. Condor consists of two
modules, ModelUpdate and WeightUpdate which leverage previous knowledge

4 Skotti et al.

to build a new model, hence updating the model pool and adapting the weights
of previous models to reflect current reusability performance respectively.

Hasani et al. [5] proposed a two-phased approach, to build faster models
for a popular class of analytic queries. Similar to the other approaches [11] -
[13], there is a preprocessing and a runtime phase. During the first phase the
models, their statistics and some meta-data are stored, while in the second phase
relevant models are identified from which an approximate model is constructed.
Their approach can achieve speed-ups of several orders on magnitude on very
large datasets, however, it is only geared towards exploratory analysis purposes
and the approach is potentially less robust under concept drift.

Concerns over intellectual property (IP) infringement and vulnerability prop-
agation of deep learning models (DNN) motivated the proposal of ModelDiff [8],
a testing-based approach to DNN model similarity comparison. They compare
the decision logic of models on the test inputs represented by a decision distance
vector (DDV), a newly defined data structure in which each value is the dis-
tance between the outputs of the model produced by two inputs. These inputs
are pairs of normal and corresponding adversarial samples and thus when used
to calculate the DDV, the decision boundary is captured.

Lee et al. [6] also discuss alternative approaches and corresponding challenges
of compute reuse including in networks. They identify that reuse can be achieved
either in a distributed or centralized manner. The distributed approach involves
forwarding tasks to the compute reuse node that is responsible for the opera-
tion. This adds additional complexity to the forwarding operations of routers
resulting in a potential downgrade in performance. Reuse of results in a network
setting, undoubtedly improves performance, however speeding up the estima-
tion of parameters can also be beneficial in that regard. Nodes in a network can
collaborate to estimate parameters as discussed in [7]. More specifically, their
method takes advantage of the joint sparsity of vectors used for computations
enhancing estimation performance. Joint sparsity simply means that the indexes
of nonzero entries for all nodes are the same, but their values differ. The authors
also adopt an intertask cooperation strategy to consider intertask similarities.
Their method assumes that both the vectors of interest and their associated
noise follow a zero-mean Gaussian distribution which is a strong assumption for
the data to hold.

The contributions of this paper that, in parallel, depict its differences with
other relevant efforts in the domain are as follows:

– An online model reuse framework for edge computing consisting of two steps,
a pair similarity detector (based on MMD) followed by a direction of model
reusability (based on the inlier data space overlap).

– A decision making algorithm which given the results of the framework it can
maximise the number of nodes which do not require distinct models along
with a list of replacement models.

– Extensive experimental evaluation of the framework with both classification
and regression models over real datasets.

Model Reuse Framework 5

3 Background

3.1 Maximum Mean Discrepancy

MMD is a statistic that can quantify the mean discrepancy of two data distri-
butions in a kernel space in order to determine if two samples are drawn from
different distributions [3]. Let p and q be two independent probability distribu-
tions, and Ex [f (x)] (shorthand notation for Ex p [f (x)]) denotes the mathemat-
ical expectation of f (x) with x under the probability density p. The statistic
definition between p and q is:

MMD (F , p, q) = sup
f ∈ F

(Ex [f (x)]− Ey [f (y)])

= sup
f ∈ F

⟨f, µp − µq⟩H
(1)

where the function classF is a unit ball in the reproducing Hilbert space (RKHS)
and µp, µq is the mean embedding of p and q respectively i.e., the mean of the
feature mapping in the kernel space. The function class F is universal meaning
that MMD (F , p, q) = 0 if and only if p = q. Therefore, MMD is the largest
difference in expectations over functions in F and can only be zero if the two
samples were drawn from the same distribution.

In practise, we use the square MMD in order to be able to use kernel func-
tions. Let X = {x1, ..., xm} and Y = {y1, ..., yn} denote the independent and
identically distributed (i.i.d.) samples from distribution p and q respectively.
An unbiased estimation of MMD2

(
∥ µp − µq ∥2H

)
can be obtained using a U-

statistic:

MMD2 (F, p, q) =
1

m(m− 1)

m∑
i=1

m∑
j ̸=i

k (xi, xj)+

1

n(n− 1)

n∑
i=1

n∑
j ̸=i

k (yi, yj)−

2

mn

m∑
i=1

n∑
j=1

k (xi, yj)

(2)

where k(.) denotes the kernel function. In our model, we adopt the linear and
Gaussian RBF kernels as defined as: k(x, y) = xT y and k(x, y) = exp(− 1

2σ2

∥ x − y ∥2), where σ ∈ R is a kernel parameter and ∥ x − y ∥ is a dissimilarity
measure (e.g., Euclidean distance).

3.2 One-class Support Vector Machines

OCSVM is a one-class classification technique, which aims to classify instances
into one of two classes, the inlier and outlier classes. It was first presented by
Schölkopf et. al [10] and utilizes a training dataset with normal data to learn the
boundaries of the normal data points. Therefore, data points which lie outside

6 Skotti et al.

the normal data region are going to be classified as outliers. OCSVMs utilize
an implicit transformation function ϕ (.) defined by the kernel to project data
to a higher dimensional space. The algorithm learns the decision boundary (a
hyperplane) which achieves the maximum separation of the majority of data
points. Only a small fraction of data are allowed to lie on the other side of the
decision boundary and those data are considered outliers.

The OCSVM returns a function f that takes the value +1 for the normal
region and -1 elsewhere. This function f is called a decision function being defined
as: f(x) = sign(g(x)) = sign(wTϕ(x)−ρ) where w is the vector perpendicular to
the decision boundary (g(x) = 0) and ρ is the bias. Given that the distance of any

arbitrary data point to the decision boundary can be calculated by d(x) = |g(x)|
∥w∥

and that the origin’s value when plugged to g(x) is ρ, the distance of the origin
to the decision boundary is ρ

∥w∥ . The OCSVM essentially attempts to maximise

the distance by solving the minimisation problem of ∥w∥
2 − ρ, i.e.,

min
w,ξ∈RN ,ρ∈R

∥ w ∥2

2
− ρ+

1

vn

n∑
i=1

ξi (3)

subject to (wT · Φ(xi)) ≥ ρ− ξi, ξ ≥ 0

where ξi is the slack variable for a point i which allows it to lie on the other side
of the decision boundary, n is the size of the training dataset and v ∈ (0, 1) is a
regularization parameter. As shown in (3) the objective is not only to minimise
the distance of the origin to the decision boundary but also minimise the slack
variables ξi for all points. v represents the upper bound limit of the fraction of
outliers and a lower bound on the number of support vectors. In other words, v
specifies the number of training points which are guaranteed to be misclassified
and the number of training examples being support vectors. As mentioned above
v ∈ (0, 1) and therefore a percentage, where a high value may lead to over-fitting
and a low value to under-fitting. v controls the trade off between ξ and ρ.

For reducing the number of variables to a single vector and utilise the kernel
trick, the primary objective is transformed into a dual objective:

min
a

aTQa

2
(4)

subject to: 0 ≤ ai ≤ 1
vn ,

∑n
i=1 ai = 1

where Q is the kernel matrix and a the Lagrange multipliers. Now, the decision
function becomes:

f(x) = sign(

n∑
i=1

aik(x, xi)) (5)

Model Reuse Framework 7

Algorithm 1: Calculates the average similarity MMD (ASMMD) be-
tween the given nodes.

Data: kernel, bandwidth: the kernel type and scalar value to be used for
the MMD calculation, samples: dictionary associating each node with
a sample, similar nodes: nodes identified as similar to each other,
other nodes: the rest of the nodes.

Result: ASMMD
1 begin

// Calculating the baseline ASMMD

2 similar mmds←− []
3 for x, y in get pair combos(similar nodes) do
4 sx←− samples[x], sy ←− samples[y]
5 mmd←−MMD(sx, sy, kernel, bandwidth)
6 similar mmds.append(mmd)

7 end
// Compare which of the the other nodes are similar to the

similar nodes using the current ASMMD in each iteration

8 for x in other nodes do
9 sx←− samples[x]

10 for y in similar nodes do
11 sy ←− samples[y]
12 mmd←−MMD(sx, sy, kernel, bandwidth)
13 asmmd←−mean(similar mmds)
14 if mmd < asmmd ∗ 1.05 then
15 similar mmds.append(mmd)
16 end

17 end

18 end
// Which the other nodes are similar to each other

19 if len(other nodes > 1) then
20 for x, y in get pair combos(other nodes) do
21 sx←− samples[x], sy ←− samples[y]
22 mmd←−MMD(sx, sy, kernel, bandwidth)
23 asmmd←−mean(similar mmds)
24 if mmd < asmmd ∗ 1.05 then
25 similar mmds.append(mmd)
26 end

27 end

28 end
29 asmmd = mean(similar mmds)

30 end

8 Skotti et al.

4 ML Models Reusability Framework

Our online model reuse framework needs to be able to determine two things
given a pair of nodes. First and foremost, the pairs of nodes which have similar
datasets and then the direction of reusability.

The first objective is achieved using MMD, which measures the difference
domains and hence theoretically when the MMD value is zero this means the two
datasets are drawn from the same distribution. However, as discussed in section
3.1 in practise we utilise an estimation of MMD squared. As a consequence, the
value is not actually zero and we need to define a threshold below which a pair
would be considered similar. we have dubbed the threshold to be the average
similarity MMD (ASMMD), a value calculated using Algorithm 1. Algorithm 1
requires that we categorise nodes into two sets, one where all nodes are similar
to each other and the rest of them. Categorising nodes in these categories differs
when using a regression and classification dataset. We discuss this further in
section 5.1.

Algorithm 2: Finds the similar pairs of the dataset using MMD

Data: samples: dictionary associating each node with a sample, asmmd:
average similarity (ASMMD) calculated using Algorithm 1,
kernel, bandwidth: the kernel type and scalar value to be used for
the MMD calculation.

Result: similar pairs, pair mmds
1 begin
2 similar pairs←− []
3 pair mmds←− []
4 nodes←− samples.keys()
5 for x, y in get pair combos(nodes) do
6 sx←− samples[x], sy ←− samples[y]
7 mmd←−MMD(sx, sy, kernel, bandwidth)
8 if mmd < asmmd ∗ 1.05 then
9 similar pairs.append((x, y))

10 pair mmds.append(mmd)

11 end

12 end

13 end

Once we have identified these two sets, we calculate a baseline ASMMD by
calculating the MMD of all pair combinations of the similar nodes. Then, we use
ASMMD (allowing for a 5% variation) to judge whether the rest of the nodes
are similar to each other or to the similar nodes. If they are we calculate the new
ASMMD and we use this to judge the next pair. Using the result of this process
we can then judge which pairs are similar for a given experiment as demonstrated
in Algorithm 2. It is worth highlighting that for the MMD implementation to

Model Reuse Framework 9

work and by extension all of the algorithms that utilize it (Algorithms 1 & 2),
the samples of each node need to be of equal size.

Algorithm 3: Calculates the OCSVM score of each node per pair

Data: samples: dictionary associating each node with a sample, models:
dictionary associating each node with its OCSVM node model,
similar pairs: the MMD identified similar pairs

Result: pair prob
1 begin
2 pair prob←− []
3 for x, y in similar pairs do
4 sx←− samples[x], sy ←− samples[y]
5 pred y inliers←− get inliers(models[x], sy),

pred x inliers←− get inliers(models[y], sx)
6 x y overlap←− size(pred y inliers)/size(sy)

y x overlap←− size(pred x inliers)/size(sx)
7 pair prob.append((x y overlap, y x overlap))

8 end

9 end

Once we identify the similar pairs in the network we can then calculate the
OCSVM scores of each node in each pair and hence determine the direction of
reusability per pair. The OCSVM score is essentially the probability of detecting
the inliers of the node by using the other node’s model. Therefore, given two
nodes x and y, and their corresponding OCSVM models, we use each OCSVM
model to predict the other node’s inliers and then we calculate the number of
points that were identified as inliers and divide by the number points in the
dataset, hence the probability. The reason we divide by the number of points in
the dataset is because we expect to do some form of filtering prior and remove the
outliers if they exist, hence all the points in the dataset are inliers. We calculate
the OCSVM score for both directions and whichever is higher is the node for
which we should train the model for. Algorithm 3 calculates of the OCSVM
scores of each node per pair.

The framework presented by this point operates on the node level, however
in order unify the information to the network level we prose a naive decision
making algorithm (Algorithm 4). The algorithm provides the user with infor-
mation about which nodes do not require distinct models and the respective
potential replacement models. The algorithm is naive and thus simple whose
aim is to find the maximum number of nodes for which we do not train a model
for. Nevertheless, the algorithm would not take into account any performance
optimising considerations.

A visual representation of the framework being applied to a network is shown
in Figure 1.

10 Skotti et al.

Algorithm 4: Finds nodes that can use a reused model, along with a
list of replacements, based on the results of the framework

Data: pair results: dictionary associating each pair with the node whose
model to be reused i.e. the direction of reusability, nodes: the list of
nodes from the MMD identified pairs

Result: mns: modelless nodes i.e. nodes that do not require that a model is
trained for them, model mns: associates each modelless node (mn)
with a list of potential replacement node models

1 begin
2 similar pairs←− pair results.keys()
3 mns←− nodes.copy(), model mns←− {}
4 for node in nodes do
5 model mns[node]←− []
6 end
7 for node in nodes do
8 node similar pairs←− get node similar pairs(node, similar pairs)
9 for x, y in node similar pairs do

10 model node←− pair results[(x, y)]
11 mn←− difference(model node, (x, y))
12 if model node in mns then
13 mns.remove(model node)
14 end
15 model mns[mn].append(model node)

// ensures we do not encounter the pair again

16 similar pairs.pop((x, y))

17 end

18 end
// Remove replacement options for an mn that can be replaced

themselves

19 for node in nodes do
20 if model mns[node].count() > 1 then
21 for model node in model mns[node] do
22 if model mns[node] not empty then
23 model mns[node].remove(model node)
24 mns.append(model node)

25 end

26 end

27 end

28 end

29 end

Model Reuse Framework 11

Fig. 1. Example of a network where the framework is applied. The letters N, D and M
followed by a number stands for node, dataset and model respectively.

5 Experimental Evaluation

5.1 Experimental Setup

Fig. 2. The Result of clustering on
the BM Dataset

Datasets We have evaluated our frame-
work for both regression and classification
models. For regression, we have used the
GNFUV Unmanned Surface Vehicles
Sensor Data Set [4] which includes data
from three experiments. In each experiment
there are four sets of mobile sensor readings
data (humidity and temperature) recorded
by the Raspberry Pi’s corresponding to four
Unmanned Surface Vehicles (USVs) (see
Figure 3).

For classification, we have used theUCI
Bank Marketing Dataset (BM) [9]. The
data was collected by a banking institution
through phone calls as part of a direct mar-
keting campaign. The dataset is a binary
classification dataset of classes ‘yes’ or ‘no’,
to subscribe to the product (bank term de-
posit). More specifically there are 4640 ‘yes’
instances and 36548 ‘no’ instances.

We have applied Principal Component
Analysis (PCA) to reduce the number of
dimensions of the dataset from 20 to 3 and
then subsequently used these data to execute the hypothesis testing.

12 Skotti et al.

Fig. 3. The relationship between hu-
midity and temperature per exper-
iment alongside their distribution
plots for the original GNFUV data

In comparison to the GNFUV dataset
the BM dataset has no inherent network-
node like structure and hence it was con-
structed. We trained a K-means classifier
with an equal number of yes and no in-
stances to split data into four clusters. This
was done to avoid class imbalance from in-
fluencing the clustering algorithm. However,
we wanted to have more available samples to
split into more nodes so instead of cluster-
ing equal amounts of instances per class, we
used three times the number of yes instances
for no instances. We merged three of these
clusters into one (clusters 1,2 & 4 in Figure
2) and then created 5 nodes from the two
clusters.

It is worth mentioning we have used two
data configurations per dataset. For the GN-
FUV dataset, the two configurations were
the original data and a standardised version
of them. For the BM Dataset, we used the
node data created from the aforementioned
process as well as a balanced version of them,
by under sampling the majority class (no) to
have an equal number of instances as the mi-
nority class (yes).

Lastly, we have drawn 100 unique sam-
ples per network, in each of which the
node data have an equal number of ex-
amples in order to comply with the MMD
implementation constraint discussed in sec-
tion 4. The sample size of each node
dataset is determined by the Minimum Sam-
ple Size (MSS), i.e., defined by the node
with the minimum number of entries. The
source code is available for re-producability
at https://github.com/XeniaSkotti/online
model reuse framework edge computing.

ASMMD Algorithm Parameters As
discussed in Section 4, the ASMMD Algo-
rithm takes four arguments, the sample of
each node, the kernel, bandwidth, the simi-
lar and other nodes. In this section we dis-
cuss how we set and what the kernel, band-

https://github.com/XeniaSkotti/online_model_reuse_framework_edge_computing
https://github.com/XeniaSkotti/online_model_reuse_framework_edge_computing

Model Reuse Framework 13

width, similar and other nodes are per dataset (and experiment in the case of
the GNFUV dataset).

The approach to identifying the similar and other nodes for each dataset
differed due to the nature of each dataset. Since the GNFUV is a regression
dataset of only two dimensions, we plotted the points of each experiment and
visually identified the pairs which we deemed as similar per experiment. Then
we used Algorithms 1 & 2 to confirm our inferences, otherwise we adjusted the
similar and other nodes sets. For the BM dataset the similar nodes are either the
nodes of the newly merged cluster or cluster 3. Similarly, we tested both possible
similar nodes sets for each data configuration (balanced and unbalanced) to
determine which one was best.

Table 1. ASMMD Algorithm Parameters per Dataset

Dataset Experiment Data Configuration ASMMD Algorithm Parameters

similar nodes other nodes kernel bandwidth

GNFUV

1
standardised pi2, pi3, pi4 pi5 rbf 0.5

original pi2, pi4 pi3, pi5 rbf 10

2
standardised pi2, pi3, pi5 pi4 rbf 1

original pi3, pi5 pi2, pi4 rbf 100

3
standardised pi2, pi4 pi3, pi5 rbf 1

original pi2, pi4 pi3, pi5 rbf 5

BM
balanced pi1, pi2, pi3 pi4, pi5 linear 0.001

unbalanced pi4, pi5 pi1, pi2, pi3 linear 0.001

Once we had an initial idea of the similar and other nodes sets, we could then
use them to determine the kernel and bandwidth. The two kernels we considered
were the Radial Basis Function (rbf) and Linear kernels. We aimed to choose
the parameters which would most effectively separate the similar from dissimilar
pairs. The full parameter configuration of each dataset (experiment) and data
configuration is found in Table 1.

ML Models For each problem type we chose distinct classifiers, namely Sup-
port Vector Regression (SVR) and Logistic Regression (LR) for regression and
classification respectively.

Starting off with regression, we have trained SVRs to capture the relationship
between the humidity and temperature attributes of the dataset. SVRs are a
version of SVM for regression proposed by Vapnik et al. [2]. SVRs have a few
variables that should be optimised for each node model. First, we experiment
with both the linear and rbf kernels in order to evaluate how different kernels
interact with our framework. Moreover, we optimise the regularization parameter
and the epsilon in the epsilon-SVR model using grid search given a node’s dataset
to ensure we find the best ϵ-insensitive region for the data. It is worth noting that
the SVR implementation in scikit-learn reports the performance of the classifier
in terms of the coefficient of determination (R2).

14 Skotti et al.

Table 2. Classifier parameter values that are fixed and optimised per dataset

Dataset Classifier Classifier Parameters
Fixed Gird Search Optimised

GNFUV SVR
kernel C epsilon
linear 0.01, 0.1, 1, 10 0.1, 0.5, 1, 2, 5

non-linear 0.01, 0.1, 1, 10 0.1, 0.5, 1, 2, 5

BM LR
class weight C solver

balanced 0.01, 0.1, 1, 10 ”lbfgs”,”liblinear”, ”saga”, ”sag”
None 0.01, 0.1, 1, 10 ”lbfgs”,”liblinear”, ”saga”, ”sag”

Our classification dataset, has two classes yes and no and we have used LR [1]
specifically because it is usually a good baseline for binary classification. Hence,
the scikit-learn implementation of LR reports performance in terms of the mean
accuracy on the test dataset. As mentioned in section 5.1, for the BM Dataset
we experiment with two data configurations, one which data are balanced and
another in which they are not. For the case in which the data are not balanced,
we configured the class weight parameter of LR to be balanced to deal with the
imbalance. The other parameter which we control for both data configurations
is the regularization parameter. Lastly, the scikit learn implementation offers a
variety of solver options hence we optimise it as well.

Model Reusability Metrics Investigating the effectiveness of the framework,
requires that we examine two aspects, the speedup we benefit from when we
avoid training models for some nodes in the network, and the precision of the
framework in terms of the recommendations it makes. We have defined both
speedup and precision in the context of model reusability.

Starting off with precision, precision needs to be assessed across three differ-
ent levels. The precision of MMD at identifying good pairs for reusability, the
precision of OCSVM at identifying the correct node to reuse it’s model and lastly
the combined precision of the framework. In order for the MMD precision to
be a meaningful measure to use, it is expressed in terms of the ratio between the
performance of using a proxy model and the true model. We then consider this
ratio with regards with a threshold and if it is above that threshold it is correct.
The thresholds we considered were 0.8, 0.85 and 0.9 and are extremely high.

The OCSVM precision is either calculated strictly or with a 0.05 error
margin, that is if the node pointed by the direction of reusability does not yield
the optimal performance, but it’s performance is equal or less than 0.05 from
the optimal, we consider that the framework has made the right decision. Then
like the MMD precision, we consider the framework made the right decision if
the ratio is above a threshold.

For the combined precision we utilized lower values for the threshold,
namely values 0.6 and 0.8 since when the components are combined this will
likely result in higher errors. Nevertheless, 0.8 is still not only a high threshold
but also it is common threshold across the MMD and combined precision allowing

Model Reuse Framework 15

us to track their difference. The reason that we assess precision across three
levels is to be able to gauge how effective each component of the framework is
in isolation but also combined. Consequently, we can provide a more holistic
evaluation of the framework.

In terms of the speedup, we need to be able to quantify how much time did
we save by not training some models with respect to what time we would need
if we trained all of them. This requires that we first identify the nodes for which
we won’t train a model for. As discussed in section 4, as part of our framework
we proposed a reusability maximising decision making algorithm (Algorithm 4).
The algorithm can provide us with the nodes which we do not need to train a
model for, the model-less nodes along with a list of potential replacement models.
We utilise the list of of model-less nodes to calculate the speedup. It is worth
noting that the speedup potential varies across datasets and samples hence we
simply report it as a number.

5.2 Performance Evaluation

As discussed in the previous section (5.1), we assess the framework across two
metrics, precision and speedup. In this section we evaluate these metric results
one by one for each dataset and provide a discussion around the effectiveness of
the framework.

In the following sections we discuss the precision results across the three lev-
els, followed by speedup. We will analyse each dataset’s precision individually
and then discuss the speedup across both datasets simultaneously. More specifi-
cally, in the case of the GNFUV dataset precision, we will provide observations
for each experiment before drawing general conclusions using the metric results.
Finally, we will draw some general conclusions on the applicability of the frame-
work in regression, the effect of the kernel and standardisation of data. Similarly,
for the BM dataset precision we will draw conclusions for the dataset, the appli-
cability of the framework in classification and the effect of using balanced and
unbalanced data.

Regression Precision Original Data: Starting off with the GNFUV original
data, the combined precision is almost 1 for Experiment 1 and Experiment 3 if we
allow a 0.05 margin of tolerance in terms of the OCSVM predictions (non-strict
- as discussed in Section 5.1). The combined precision falls to 0.69 when we are
strict about the predictions because of Experiment 3. The combined precision for
Experiment 2 is low but that’s expected considering what we discussed above.
Therefore, the framework, when the threshold is set to 0.8, has a combined
precision of 0.59 with no tolerance and increases to 0.77 when there is. These
results are illustrated in Table 3. If we analyse combined precision per kernel,
the linear kernel is better suited for original data across all three experiments.
Similar trends to those discussed either when we do or do not distinguish per
kernel, can be found in the MMD precision and OCSVM precision (Table 4),
with MMD precision at 0.78 when the threshold is 0.8 and OCSVM precision at

16 Skotti et al.

0.79 when we are strict and 0.97 when we are not. It is wroth noting that the
OCSVM precision for Experiment 2 when the kernel is linear is as high (almost
1) as for the other two experiments which illustrates the importance of the kernel
choice. Upon further analysis linear results yield the best results on average for
the original GNFUV data and hence the framework’s high precision overall.

Table 3. GNFUV Data combined precision Results.

Data Configuration combined precision

Experiment Threshold Strict
True False

1
0.6 1.00 1.00
0.8 1.00 1.00

2
0.6 0.89 0.90

original 0.8 0.46 0.47

3
0.6 0.38 0.98
0.8 0.38 0.98

Weighted Average 0.6 0.77 0.95
0.8 0.59 0.77

Experiment

1
0.6 0.39 0.80
0.8 0.39 0.80

2
0.6 0.27 0.29

standardised 0.8 0.25 0.25

3
0.6 1.00 1.00
0.8 1.00 1.00

Weighted Average 0.6 0.46 0.63
0.8 0.45 0.61

Standardised Data: The comments made previously for the combined preci-
sion of Experiment 3 when we are strict cease to be true and are instead true for
Experiment 1 and the combined precision is low. Nevertheless, similarly to the
original data the combined precision is extremely high for Experiment 1 & 3 we
are not strict with OCSVM. The Experiment 2 combined precision is almost half
what it is for the original data at the 0.8 threshold. Consequently, the overall
combined precision of the framework drops at the threshold level 0.8, to 0.45
and 0.61 when we are strict and non-strict respectively (Table 3). Contrary to
the original data where the combined precision per kernel showed that the linear
kernel is better suited, for the standardised data the opposite is true, while this
difference is not significant. This is also true for the OCSVM precision when
analysed per kernel. Overall, the OCSVM precision for Experiment 2 drops (Ta-
ble 4), hence the OCSVM weighted average precision across experiments drops
by 30%. On the other hand, MMD precision increases slightly by %4 due to an
increase in the precision of Experiment 2. Upon further analysis per kernel, the
MMD precision increased 15% per kernel with the linear kernel providing much
better results.

Model Reuse Framework 17

Table 4. GNFUV Data OCSVM precision Results.

Data Configuration OCSVM precision

original

Experiment Strict
True False

1 1.00 1.00
2 0.94 0.95
3 0.38 0.98

Weighted Average 0.79 0.97

standardised

Experiment
1 0.39 0.80
2 0.29 0.33
3 1.00 1.00

Weighted Average 0.47 0.65

GNFUV Precision Performance Overall: Overall, the MMD precision of the
framework is high, however it is low for Experiment 2 across both original and
standardised data. The difference between the MMD precision of original and
standardised is not high when the threshold is set at 0.8 (only at 4%). However
as the threshold increases this difference as well, to 10% and 13% for thresholds
0.85 and 0.9 respectively. This is because the performance on Experiment 2 is
better on standardised data and as the threshold increases it does not deteriorate
in the same way as for the original data. Considering how high of a threshold
0.9 is, having a 0.63 and 0.76 MMD precision is really good performance. The
kernel choice is not important for Experiment 1, when it comes to the MMD
precision since the performance is perfect regardless of the kernel and data con-
figuration. This is also true for Experiment 3 for the standardised data, while for
the original data the linear kernel is better suited for this experiment. For both
data configurations the linear kernel performs better for Experiment 2. Lastly,
in terms of the OVSVM Precision when the original data are used, the kernel
choice is unimportant for Experiment 1, while for Experiments 2 & 3 the linear
kernel is better, even though for Experiment 3 the difference is not significant.
When the standardised data are used, the statements made for Experiments 1
& 3 are now reversed, with the slight difference that it is the rbf kernel that is
better for Experiment 1 instead of the linear one. Similarly, to Experiment 1 the
rbf kernel is slightly better for Experiment 2 but the difference is only 0.07.

The framework performs better on the original data across all three levels of
precision with 0.77 (non-strict) combined precision at threshold 0.8 and a drop
of 15% for standardised ones. When analysing the combined precision results per
kernel, the linear kernel is better suited for the original data, while the opposite
is true for standardised data even though this difference is not large. The rbf
kernel models have higher performance on their native datasets compared to
linear ones, but nevertheless have higher discrepancy. Hence, on average linear
models provide better results.

18 Skotti et al.

Table 5. BM Data combined precision Results.

Data Configuration combined precision

Threshold Strict
True False

combined
0.6 0.55 0.98
0.8 0.55 0.98

balanced
0.6 0.58 0.99
0.8 0.58 0.99

unbalanced
0.6 0.56 1.00
0.8 0.56 1.00

Table 6. BM Dataset OCSVM precision Results.

Data Configuration OCSVM precision

Strict
True False

combined 0.55 0.98
balanced 0.58 0.99

unbalanced 0.56 1.00

Classification Precision In terms of the classification performance of the
dataset, the BM Dataset results are very good. All the nodes in the BM Dataset,
have good performance on their native dataset, with balanced models having
slightly better performance. All pairs identified are good pairs for reusability on
both sides and the performance across configurations is almost identical. This is
confirmed by the combined precision depicted in Table 5 which is extremely high
regardless of whether we distinguish between the configurations or not if we are
not strict. If we are strict this performance drops at 0.55 on average and this is
a direct reflection of the OCSVM precision (Table 6). However, considering how
good the performance is overall, the real combined precision of the framework is
the one given by the non-strict measure.

Table 7. Framework Speedup Results.

Dataset Speedup

Experiment Data Configuration
standardised original

1 0.23 0.26
GNFUV 2 0.3 0.28

3 0.24 0.23
Weighted Average 0.26 0.26

BM
unbalanced balanced

0.29 0.41

Model Reuse Framework 19

Speedup Overall, the speedup of the framework for the particular datasets used
for regression and classification are 26%, and 29% to 41% respectively (Table 7).
These results are expected if you consider that for the GNFUV dataset regardless
of the data configuration on average there is one good pair for reusability hence
one node’s model is not trained. The two data clusters created from the BM
dataset mean that ideally we would only train two models. Nevertheless the
results are lower than this average case due to the fact we use samples of the
dataset hence the true reusability differs from sample to sample. Hence, for both
the classification and regression case we can argue that the framework if effective
in identifying the true number similar pairs.

6 Discussion & Conclusions

In this paper, we presented a novel online model reuse framework in edge com-
puting. The framework considers all possible pairs of nodes in the network and
infers which are good reusability pairs as well as which of the two nodes’ model
can be used as a replacement model for the other per pair. We utilise MMD as
our dataset similarity measure and we present a newly defined algorithm which
calculates a threshold that distinguishes similar from non-similar pairs. The node
model that is chosen to be reused in each pair is the one with the highest inlier
data space overlap. Experiments in the context of both regression and classifi-
cation have shown the framework achieves good precision. Lastly, we present an
algorithm that, given the results of the framework, can maximise the number of
nodes which use reused models along with a list of potential replacement models.

The framework presented is novel and therefore the results presented in this
paper while encouraging they are still preliminary. We experimented with only
one model per data domain and a limited range of data configurations. Con-
sequently, the evaluation of the framework needs to be extended to check the
compatibility with more domain models and data configurations. Even though
this framework in its current does not preserve user privacy it could be amended
to meet this requirement. In this paper, we hypothesise that the inlier space
overlap is an indicator for the direction of reusability. However, we only consider
one outlier detection model and there many more that could be used. Further-
more, the naive decision making algorithm proposed as part of the framework is
maximising the speedup, which does not guarantee that the solution is optimal
performance wise. Defining an algorithm which can produce either the perfor-
mance optimal or partially optimal solution is a different and challenging task
altogether.

Acknowledgement: This research has received funding from the European
Union’s Horizon 2020 research and innovation programme under Grant Agree-
ment no. 101037247.

20 Skotti et al.

References

1. Cramer, J. The origins of logistic regression. Tinbergen Institute, Tinbergen
Institute Discussion Papers (01 2002).

2. Drucker, H., Burges, C. J. C., Kaufman, L., Smola, A., and Vapnik, V.
Support vector regression machines. In Proceedings of the 9th International Con-
ference on Neural Information Processing Systems (Cambridge, MA, USA, 1996),
NIPS’96, MIT Press, p. 155–161.

3. Gretton, A., Borgwardt, K. M., Rasch, M. J., Schölkopf, B., and Smola,
A. A kernel two-sample test. J. Mach. Learn. Res. 13 (Mar. 2012), 723–773.

4. Harth, N., and Anagnostopoulos, C. Edge-centric efficient regression analyt-
ics. In 2018 IEEE International Conference on Edge Computing (EDGE) (2018),
pp. 93–100.

5. Hasani, S., Thirumuruganathan, S., Asudeh, A., Koudas, N., and Das, G.
Efficient construction of approximate ad-hoc ml models through materialization
and reuse. Proc. VLDB Endow. 11, 11 (July 2018), 1468–1481.

6. Lee, J., Mtibaa, A., and Mastorakis, S. A case for compute reuse in fu-
ture edge systems: An empirical study. In 2019 IEEE Globecom Workshops (GC
Wkshps) (2019), pp. 1–6.

7. Li, C., Huang, S., Liu, Y., and Zhang, Z. Distributed jointly sparse multitask
learning over networks. IEEE Transactions on Cybernetics 48, 1 (2018), 151–164.

8. Li, Y., Zhang, Z., Liu, B., Yang, Z., and Liu, Y. Modeldiff: Testing-based dnn
similarity comparison for model reuse detection. In Proceedings of the 30th ACM
SIGSOFT International Symposium on Software Testing and Analysis (New York,
NY, USA, 2021), ISSTA 2021, Association for Computing Machinery, p. 139–151.

9. Moro, S., Cortez, P., and Rita, P. A data-driven approach to predict the
success of bank telemarketing. Decision Support Systems 62 (2014), 22–31.

10. Schölkopf, B., Williamson, R., Smola, A., Shawe-Taylor, J., and Platt,
J. Support vector method for novelty detection. In Proceedings of the 12th Inter-
national Conference on Neural Information Processing Systems (Cambridge, MA,
USA, 1999), NIPS’99, MIT Press, p. 582–588.

11. WEI, Y., Zhang, Y., Huang, J., and Yang, Q. Transfer learning via learning to
transfer. In Proceedings of the 35th International Conference on Machine Learning
(10–15 Jul 2018), J. Dy and A. Krause, Eds., vol. 80 of Proceedings of Machine
Learning Research, PMLR, pp. 5085–5094.

12. Wu, X., Xu, W., Liu, S., and Zhou, Z. Model reuse with reduced kernel mean
embedding specification. CoRR abs/2001.07135 (2020).

13. Zhao, P., Cai, L., and Zhou, Z. Handling concept drift via model reuse. CoRR
abs/1809.02804 (2018).

14. Zhou, Z.-H. Learnware: on the future of machine learning. Frontiers of Computer
Science 10 (06 2016).

	Enlighten Accepted coversheet
	271623
	On the Reusability of Machine Learning Models in Edge Computing: A Statistical Learning Approach

