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Superconducting detectors capable of registering single light quanta - single photons
- are highly sought after in a host of emerging 21st century technologies [1].
Superconducting nanowire single-photon detectors (SNSPDs or SSPDs) [2] operating
in the telecommunication wavelength range outperform conventional semiconductor
detectors in the following metrics: dark count rate, system detection efficiency (SDE),
photon counting rate and timing jitter [3, 4, 5, 6]. SNSPDs have been deployed
in many important emerging photon-counting applications including single photon
LiDAR [7, 8], quantum key distribution [9, 10], optical quantum computing [11], life
sciences [12, 13], fibre sensing [14, 15], exoplanet spectroscopy [16] and free space
optical communication [17].

Over the past decade multiple companies worldwide have successfully
commercialized high-performance SNSPDs mounted in Gifford McMahon(GM) or
Pulse Tube(PT) closed-cycle regenerative cryocoolers for laboratory settings [18].
The advent of reliable and affordable PT and GM platforms has eliminated reliance
on liquid cryogens (liquid helium and nitrogen), which previously deterred many
potential users from adopting superconducting detector technologies. Worldwide sales
of cryogenic SNSPD systems exceed hundreds per year [19], however the development
of SNSPDs in applications outside laboratory settings is limited by the Size, Weight
and Power (SWaP) of available cryocooler platforms.

A typical cryogenic system for SNSPDs consists of a commercial regenerative
cryocooler driven by an air-cooled helium gas compressor. Temperatures below 3 K
can be reached with this setup, with a power consumption >1 kW. Below 4 K the
efficiency of these cryocoolers diminishes due to real gas effects [20, 21]. Also, the
regenerative alternating flow cycle produces temperature oscillations, affecting the
performance metrics mentioned above. Steady base temperatures below 1 K can be
achieved by the addition of a 4He closed-cycle sorption cooler into the cryogenic setup
[22]. Current 4He sorption coolers are engineered to achieve hold times of 24 hours
or greater before cycling is necessary. This combination of the significant SWaP of
the cryogenic system, limited hold time and poor efficiency have prevented the use of
SNSPDs in more portable applications.

If the SWaP of the cryogenic systems could be reduced further, this would
dramatically expand the range of applications for SNSPDs outside of research



Author guidelines for IOP Publishing journals in LATEX2ε 2

laboratories. A particularly exciting prospect is deploying SNSPDs in space, either
as instrumentation satellites for communications and earth monitoring, or next-
generation space telescopes. Weight is a major constraint for spaceborne applications.
Even using the most efficient current launch platforms, the cost of delivery of a payload
to Low Earth Orbit (LEO) is estimated in US dollars at $2,750/kg [23, 24]. Due to
the limitations in current cooling options, there is a demand for a low SWaP, efficient
cryogenic system with a steady base temperature. The realisation of such a compact,
reliable and efficient cryogenic system will allow the integration of SNSPDs into future
satellites or space telescopes.

In the past 5 years several international groups (UK, USA and China) have
attempted to meet these requirements through proof-of-principle demonstrations
[25, 26, 27, 28], an example of which is displayed in Figure 1. Each has a similar
cryogenic architecture of a closed cycle regenerative cryocooler which pre-cools a Joule-
Thomson Cryocooler (JTC) that provides the base temperature for the SNSPDs. A
4He JTC is an attractive option as it can provide a steady base temperature below 4 K.
To produce cooling the JTC stages must be pre-cooled to below 45 K, and at least 20
K for a base temperature of 4 K and 10 K for 2.5 K. JTCs suffer from low efficiencies,
however this is acceptable as the required cooling power per SNSPD detector channel is
around 0.1 mW at 4 K. The main bottleneck for this approach is the JTC compressor.
The base temperature of a JTC cryocooler is determined by the suction pressure of the
compressor. For a 4He JTC a suction pressure of one atmosphere (1 atm = 101,325
Pa in SI units) provides a base temperature of 4.2 K, while 1/10 atm gives 2.5 K.
These suction pressures place the compressor in the vacuum category. Widely used
scroll vacuum compressors can easily provide the required pressures, but they are not
commercially available in low SWaP form.

Figure 1. The viewpoint authors with a compact cryogenic system for SNSPDs,
as reported by Gemmell et al. SUST 2017 [25].
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The new Superconductor Science and Technology paper by Hu et al. [29] reports
a compact cryocooler designed for space that operates at 2.4 K with an integrated high
performance SNSPD. At this temperature the authors achieved an SDE of 93% at 1550
nm wavelength. The SNSPD device is a twin layer superconducting nanowire design,
embedded in a tailored optical cavity, based on a design first reported in Ref [30].
Its performance approaches the best reported SDE measurement of 99% at 1550 nm
performed in a standard cryogenic platform [31]. This work [29] presents optimisation
made to a cryogenic system consisting of a two-stage PT cryocooler that pre-cools a
4He JTC previously reported on [32]. A new four-stage compression cycle for the JTC
improved the base temperature from 2.8 K to 2.4 K by reducing the suction pressure by
10 kPa. The new cryogenic system is 10 kg lighter, reducing its launch cost to LEO by
more than $25,000. Both iterations of this cryogenic system run on approximately 320
W of input power, an order of magnitude less than commercially available alternatives.
Additionally, the flow rate was reduced to improve heat exchange in the JTC, allowing
it to reach the extremely low base temperature.

The work of Hu et al. [29] details important steps towards realising the next
generation of space-ready 4 K coolers. State-of-the-art SNSPD detector performance
is demonstrated at 1550 nm wavelength in a low SWaP cryogenic platform. Further
advances in reducing the SWaP of cryogenic systems for superconducting detectors
depends on innovative engineering and sustained investment in solutions to this
important problem. There has been significant progress in micro-cooling research
in recent years [33], opening pathways to mass production of high performance, low
SWaP cryogenic platforms for wider commercial applications.
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