
There may be differences between this version and the published version. You are advised to consult the publisher’s version if you wish to cite from it.

https://eprints.gla.ac.uk/271577/

Deposited on: 23 May 2022

Enlighten – Research publications by members of the University of Glasgow
https://eprints.gla.ac.uk
Approach to Normally-Off AlGaN/GaN MIS-HEMTs with High Drain Current using AlGaN Overgrowth Technique

A. Ofiare, S. Taking, M. Elksne, A. Al-Khalidi, S. Ghosh, M. Kappers, R. A. Oliver and E. Wasige

1High Frequency Electronics Group, University of Glasgow, UK, 2Faculty of Electronic Engineering Technology, Universiti Malaysia Perlis, Malaysia, 3Department of Materials Science & Metallurgy, University of Cambridge

afesomeh.ofiare@glasgow.ac.uk

In this paper we present the processing and device characteristics of AlGaN/GaN metal-insulator-semiconductor high electron mobility transistors (MIS-HEMTs) aimed at the realisation of uniform and reproducible normally-off characteristics with high threshold voltage (V_{TH}). The new approach utilizes the overgrowth of the AlGaN barrier layer to thicken it to 21 nm thickness from a basic structure having only a 3 nm thin barrier layer. This way, an equivalent recessed gate normally-off AlGaN/GaN MIS-HEMT can be realised with expected uniform V_{TH} across the sample since the barrier layer thickness is epitaxially grown. Initially, the epitaxial HEMT structure consists of a 10 nm SiN$_x$ layer on only a 3 nm AlGaN barrier, with a 1 nm AlN exclusion layer between this and the GaN channel grown on high-resistivity (HR) silicon substrate, see Figure 1(a). Here, the area for overgrowth was defined by the selective removal of the SiN$_x$ layer using SF$_6$-based plasma. The overgrowth of 18 nm AlGaN barrier layer along with 2 nm GaN cap layer was done using metal organic chemical vapour deposition (MOCVD) at 1075°C. A second standard sample with 21 nm AlGaN barrier layer and 2 nm GaN cap was also grown for benchmarking purposes.

Four different device structures were fabricated: Device #1, as illustrated in Figure 1(b) where the Ohmic contacts are placed on the overgrown AlGaN layer, devices #2 and #3, where the Ohmic contacts are placed on the SiN$_x$ cap layer and 3 nm AlGaN layer respectively and for reference, depletion mode device, device #4 where 10 nm SiN$_x$ is completely removed including in the gate and access regions before AlGaN overgrowth. The device dimensions were L_G and L_{GS} of 4 µm, L_{GD} of 5 µm and W_G of 75 µm. Measured output characteristics show high drain current density of 1074 mA/mm for the depletion mode device #4 at -1 V V_{GS} as seen in Figure 1(c) which is comparable to conventional depletion mode AlGaN/GaN HEMT devices. The highest drain current for the selective area overgrown devices was 760 mA/mm for device #1 at 5 V gate bias. For device #4, the standard structure realised through the overgrowth of AlGaN barrier layer, V_{TH} was -15 V which might indicate a thicker final AlGaN layer. Further investigation using TEM analysis is planned to determine this. For all the selective area overgrown devices, a positive shift in the threshold voltage is observed when compared to the standard depletion mode device, up to -0.44 V for device #2, with no significant differences between these 3 devices. The 1-nm AlN exclusion layer prevents realisation of higher turn-on voltages in this case. Bi-directional C-V sweep at 1 MHz (not shown here) shows low hysteresis indicating reduced charge trapping effects which shows good quality SiN$_x$ grown using MOCVD. The advantage of this approach is it avoids the use Cl-based plasma etch on the AlGaN barrier which considerably influences the device characteristics, and which is difficulty to control precisely [1]. These preliminary results show high drain current density can be achieved by maintaining a good interface for AlGaN regrowth. Through improved processing of the gate region and overgrowth conditions, we believe that the approach can be used to realise high V_{TH} (>3 V) normally-off high performance AlGaN/GaN MIS-HEMTs for use in power electronics.

![Figure 1](image)

Figure 1. (a) Initially grown wafer structure, (b) Cross-section of fabricated device #1, (b) Measured output characteristics of devices 1 to 3 with V_{GS} steps of 1 V and for device 4, V_{GS} steps of 2 V.

References