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Abstract

Background

Guinea worm (Dracunculus medinensis) was detected in Chad in 2010 after a supposed

ten-year absence, posing a challenge to the global eradication effort. Initiation of a village-

based surveillance system in 2012 revealed a substantial number of dogs infected with

Guinea worm, raising questions about paratenic hosts and cross-species transmission.

Methodology/principal findings

We coupled genomic and surveillance case data from 2012-2018 to investigate the modes

of transmission between dog and human hosts and the geographic connectivity of worms.

Eighty-six variants across four genes in the mitochondrial genome identified 41 genetically

distinct worm genotypes. Spatiotemporal modeling revealed worms with the same genotype

(‘genetically identical’) were within a median range of 18.6 kilometers of each other, but

largely within approximately 50 kilometers. Genetically identical worms varied in their

degree of spatial clustering, suggesting there may be different factors that favor or constrain

transmission. Each worm was surrounded by five to ten genetically distinct worms within a

50 kilometer radius. As expected, we observed a change in the genetic similarity distribution

between pairs of worms using variants across the complete mitochondrial genome in an

independent population.

Conclusions/significance

In the largest study linking genetic and surveillance data to date of Guinea worm cases in

Chad, we show genetic identity and modeling can facilitate the understanding of local trans-

mission. The co-occurrence of genetically non-identical worms in quantitatively identified
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transmission ranges highlights the necessity for genomic tools to link cases. The improved

discrimination between pairs of worms from variants identified across the complete mito-

chondrial genome suggests that expanding the number of genomic markers could link

cases at a finer scale. These results suggest that scaling up genomic surveillance for

Guinea worm may provide additional value for programmatic decision-making critical for

monitoring cases and intervention efficacy to achieve elimination.

Author summary

The global eradication effort for Guinea worm disease has dramatically decreased the

global burden of the disease and enabled 187 countries to be certified by the World Health

Organization to be free of endemic transmission. Despite this progress, several countries

continue to have endemic transmission. In Chad, a long absence of reported cases was

interrupted with the identification of new Guinea worm cases, prompting a substantial

scale up of surveillance and intervention efforts. Here, we study the value of increasing

genomic surveillance as a tool for programmatic evaluation of surveillance and interven-

tion efforts in Chad. Linking surveillance and genomic samples, parsimonious spatial

models help reveal a consistent geographic clustering of similar genetic sequences across

Chad. We also demonstrate that expanding the sequencing can offer better resolution for

distinguishing Guinea worm samples. In this retrospective study, we found evidence that

scaling up genomic surveillance can be an important monitoring and evaluation tool for

the eradication program in Chad.

Introduction

The eradication campaign for dracunculiasis, Guinea worm disease, has made substantial

progress since the first set of World Health Assembly resolutions aimed at elimination efforts

passed during the International Drinking Water Supply and Sanitation Decade (1981–1990)

[1]. The Guinea worm eradication campaign has decreased the global burden of disease by

more than 99% [2], enabled the World Health Organization (WHO) to certify 187 countries as

free from endemic dracunculiasis transmission [3], and decreased the significant economic

loss associated with dracunculiasis in rural settings [1]. Despite the substantial progress,

endemic transmission has persisted in Angola, Chad, Ethiopia, Mali, and South Sudan [2]. In

Chad, a decade-long absence of reported cases was interrupted with a detected resurgence of

Guinea worm cases in 2010 [4]; human cases continue to be reported [5] with a growing

understanding of the role of animal reservoirs in transmission [6–10]. The stalled progress in

Chad has led to a substantial increase in surveillance and programmatic efforts [11] as well as

investments in research and novel interventions [12, 13].

Eradication and control for a variety of pathogens rely on genetic analysis tools. In the case

of polio eradication, for example, these tools have been used to detect silent transmission

across geographic areas and thus inform programmatic decision-making [14–16]. The inclu-

sion of strain differentiation techniques into programmatic decision-making for poliomyletis

is feasible due to the continual mutation events in the virus genome, a growing global library

of samples and isolates, and a mature set of mathematical and statistical methodologies to

track specific lineages. Well-established phylogenetic methodologies to infer high-fidelity

ancestry and lineages do not yet exist for parasites such as Guinea worm [10, 17]. Nonetheless,
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genetic data collected from Guinea worms in Chad has already revealed research and

programmatically-relevant insights: human and dog hosts share a common genetic population

suggesting transmission between species [10]. Genome-wide data from a much smaller sample

of worms confirms this finding [12]. We build upon those research insights using linked

genetic and surveillance data from Chad to investigate the geographic connectivity of geneti-

cally defined worm populations. Spatial epidemiological models have been a key tool for infer-

ring the connectivity of different populations and providing insights into the propagation of

infectious diseases. Spatial models, such as the gravity [18] and Lev́y flight [19], have been uti-

lized to describe the movement of humans and animals as a key component to the spread of

infectious diseases [20–26]. These models and sophisticated inference algorithms have helped

characterize the movement of pathogens and provide insights for programmatic decision-

making [27, 28]. Genetic data can be used to indirectly study the movement of pathogens,

bypassing the need for host movement data [16, 29–31]. Using genetic and epidemiological

data to inform infectious disease models is a growing field, which encompasses phylodynamics

[32–35]. Similar to phylogenetic methodologies, phylodynamic analyses and models are most

mature for virus and bacteria pathogens [16, 27, 30, 31, 36]. Recent innovations of using the

biological characteristics of parasites clonally propagating in order to build phylodynamic

models have been applied for malaria parasite movement within neighborhoods of Thiés, Sen-

egal [37]. We demonstrate that probabilistic spatial models informed by Guinea worm genetic

data can reveal new insights into the geographic connectivity of worm populations in Chad.

In this article, we investigate the programmatic potential of leveraging genetic data for

enhanced surveillance efforts by performing a retrospective analysis and modeling of the epi-

demiological and genomic data collected in Chad from 2012–2018, excluding 2014. We lever-

age both previously reported [10] and new genetic sequences linked with surveillance data to

build spatial models that reveal a consistent geographic connectedness of worm populations in

Chad. We also show expanding sequencing across the mitochondrial genome for Guinea

worm changes population pairwise similarity, which could provide higher resolution in link-

ages between samples. These results are followed by a discussion on the implications of

increasing the scope of genetic sequencing for programmatic surveillance and decision-

making.

Materials and methods

0.1 Ethics statement

The World Health Organization and the Chad Ministry of Public Health (MOPH) have sanc-

tioned the extraction of emergent adult worms to interrupt the life cycle and prevent environ-

mental contamination with larvae. Trained program and ministry staff extracted female

worms from active cases as routine public health protocol to contain and treat Guinea worm

infections. The extracted worm is a by-product of standard disease treatment and intervention.

Usage of the material for genetic analysis is sanctioned by the country MOPH. Worms were

stored in ethanol as described in Eberhard et al. [38]. Samples from human cases are anon-

ymized prior to study inclusion.

0.2 DNA extraction and sequencing

Extraction was attempted on 712 worms collected in Chad from 2012–2018, excluding samples

from 2014 due to availability. Whole genomic DNA was extracted from 5–15mm sections of

adult female worm tissue with one of two methods: a modified Puregene DNA extraction pro-

tocol as detailed in Thiele et al. 2018 [10], or with the DNeasy Blood and Tissue Kit (Qiagen,

Germantown, MD, #69582) according to the manufacturer’s protocol for tissue extraction.
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Five hundred and ninety-five samples were successfully sequenced at one or more of the

four targeted mitochondrial genes (CO3, cytB, and ND3–5). Sanger sequencing and base calls

from chromatograms were performed as detailed in Thiele et al. 2018 [10]. Four hundred and

sixty-one samples were successfully sequenced at all four targeted genes. Thirty three of these

samples were first reported in a previous assessment of genetic diversity of Chadian Guinea

worms (S1 Table) [10]. The remaining 428 samples have not been published previously.

0.3 Alignment and variant identification

0.3.1 Targeted CO3, cytB, ND3–5 genes. Sequences for CO3, cytB, and ND3–5 for 461

worms were aligned to the Dracunculus medinensis mitochondria genome version JN555591.1

from the European Nucleotide Archive with the BWA v0.7.17 software package [39] to con-

firm amplification of the correct genes. Amplification fragments spanned the genomic coordi-

nates of 3, 690 to 4, 308 for CO3, 2, 628 to 3, 234 for cytB, and 12, 562 to 14, 523 for ND3–5.

Bases (A, C, G, T, or other for ambiguous or missing) were counted for each position in the

alignment ranges for the population. Missing bases were concentrated at the beginning and/or

ends of the gene ranges due to amplification variation. Positions in the alignment ranges were

excluded from variant discovery if more than two samples with successful amplification for

that gene had the designation of missing or ambiguous.

Positions with at least two different bases (excluding ambiguous) were variant candidates

and checked for irregularities. Two worm samples exhibited highly irregular singleton charac-

teristics, contributing more than 50% of the singleton variants in a single gene. These two

worm samples were excluded from variant discovery and analyses. From the remaining

worms, we identified 86 variant positions concatenated to create a molecular barcode. Forty-

one unique barcodes were identified across 459 worms. Six variants in the barcode were single-

tons in the population. Three barcodes contained an ambiguous base ‘N’, assigned to four sam-

ples in the population. Barcodes were assigned an identifying number based on the number of

samples belonging to each barcode. For methods describing the accumulation of barcode

diversity in the population at different genes, refer to S1 Appendix.

0.3.2 Complete mitochondria genome. Next-generation shotgun sequencing from nine-

teen publicly available Dracunculus medinensis mitochondrial genomes were downloaded

from the European Nucleotide Archive (PRJEB1236) [12]. Low quality bases with a minimum

mapping quality of 20 were trimmed from the ends of reads. Trimmed reads were aligned to

the D. medinensis mitochondria genome with the BWA v0.7.17 software package [39]. Vari-

ants were called on de-duplicated, uniquely aligned reads following best practices outlined by

GATK v4.1.4. Known variants are typically recommended to correct sequencing errors that

lead to spurious variant calls. A set of known variants is not available for the D. medinensis
mitochondria genome. Instead, bootstrap base recalibration was done using higher confidence

calls (QD >2.0, FS >60.0, MQ<40.0, MQRankSum <−12.5, ReadPosRankSum <−8.0) until

the final calls converged (2–3 steps) [40]. Final variants were filtered using the following input

parameters for GATK: FS <= 13.0 or missing, SOR<3.0 or missing, and −3.1<= ReadRank-

Pos, BaseQRankSum, MQRankSum, ClippingRankSum <= 3.1 [12]. Given the low sample

size for recalibration, orthogonal variant calling was performed using the bcftools program

[41]. Genotype maximum likelihoods were determined using the mpileup command with

parameters specifying a minimum mapping quality of 20 and ploidy of 1. For both variant call

sets, variants found within positions 5950–6670 were removed due to high heterozygous calls

likely from heteroplasmy and 2× mapping coverage. For all other variants, a minimum depth

of 10 reads was required across all samples to be included in downstream analyses.
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0.4 Clustering of molecular barcodes

Discriminant analysis of principal components (DAPC) was used to infer population structure

based on the molecular barcodes using the R package adegenet v2.1.3 [42–44]. Populations

were defined by host identity. Barcodes found in samples from humans only were grouped

with barcodes found in samples from humans and dogs to create more even groups (humans

only = 5 barcodes, both = 12, dogs only = 24). To investigate whether the barcodes differenti-

ated by host species, we specified one discriminant axis for the two classifications. We investi-

gated the optimal number of principal components based on analyzing the distribution of

eigenvalue magnitudes and leveraging cross-validation to evaluate the lowest root mean square

error (RMSE) for discrimination. Due to the small number of unique barcodes, we tested the

robustness of the RMSE estimates using 70%, 80%, and 90% of the data as the training set with

1000 permutations each. We observed the xvalDapc function default of a 90% training set gave

the lowest RMSE estimate.

0.5 Linking genomic samples to epidemological data

We linked the sequenced samples with corresponding surveillance data using national case

reports and standardized surveys, described in detail in [45]. Case data was collected from an

active and passive village-based surveillance system by the Chad Guinea Worm Eradication

Program (CGWEP) and the Ministry of Public Health [46]. Summary case reports at the vil-

lage level were compiled across surveillance sites by the CGWEP program. Information on

infected dogs was collected through a standardized survey with the self-identified owner.

Where available, global position system (GPS) coordinates from the standardized surveys were

validated with village coordinates from the national case reports. The GPS coordinates were

consistent across national case reports and standardized surveys for 207 samples. In instances

where coordinates differed between the standardized surveys and the national case report, the

national case report coordinates were assigned (181 samples). For cases reported with a village

name in the standardized survey but without GPS coordinates, the GPS coordinates associated

with the village name in the national case report was assigned to that sample (2 samples). For

cases reported with a village name and GPS coordinates, but the village name was not in the

national case report, standardized survey case coordinates were assigned to that sample (37

samples). Four hundred and twenty-six worms were linked across 245 hosts.

0.6 Probabilistic spatial models of Guinea worm connectivity

0.6.1 Spatial models. Spatial movement models have demonstrated that distance is an

important factor influencing the spread of pathogens. [21–23, 30]. Here, due to the yearly life

cycle of the Guinea worm parasite [1], we specified a spatial model similar to a probabilistic

diffusion model for a discrete spatial network representing the villages affected by Guinea

worm in Chad. The model describes the probability of a worm being transmitted from village i
to village j based on the geographic distance d between a pair of worms such that pij = Cif(dij).
Ci is a scaling factor and f is informed by the pairwise geographic distance between pairs of

worms with identical or non-identical barcode identity. Similar to other parametric formula-

tions such as the diffusion, gravity [22], or Lévy flight models [30], our non-parametric formu-

lation could be used to predict where a future linked Guinea worm case might appear.

0.6.2 Genetic identity and geographic distance between samples. To infer f in the model

above, we used the genetic identity between samples and the associated GPS coordinates for

villages. We estimated the number of variant differences across the mitochondrial genome

that may connect a direct lineage (i.e. a maternal-offspring pair of worms) from a spontaneous

mutation rate. Without a known organismal mutation rate, we assumed a similar mutation
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rate as the Caenorhabditis elegans spontaneous mitochondrial mutation rate estimated at

1.05e−7 site/generation [47]. From this rate, we expected 0.0015 mutations for the 14,628 base

pair Dracunculus medinensis mitochondrial genome between generations. Given this extrapo-

lated generational mutation rate of less than one, worms were grouped by exact barcode iden-

tity. We did not make any assumptions of pairwise genetic distance from models of DNA

evolution for analyses comparing genetic similarity between pairs of worms. We calculated the

pairwise genetic similarity as 1—the Hamming distance from the molecular barcodes to obtain

the number of shared variants [48]. Haversine distance was used to compute the geographic

distance between each pair of worms d using the R package geosphere v1.5 [49].

Grouping barcodes by exact identity may exclude pairs of samples that share a recent line-

age in the event of an underestimated mutation rate or an unlikely, but possible, sequencing

error. We tested the impact of a single base pair difference in barcodes between a pair of

worms on geographic clustering (see section 0.6.4). Relaxing thresholds on a pairwise basis

avoided issues clustering barcodes with more than a single base pair difference. For example,

barcodes A and B had two base pair differences, but barcode A and C and barcode B and C

each have a single base pair difference.

0.6.3 Spatial models by molecular barcode sets. To characterize f, we partition the sam-

ples according to their genetic identity. Samples with identical barcodes are grouped; for each

barcode k, all of the pairwise geographic distances within the set are used to compute a barcode

functional form fk. The set of functions fk are then averaged to produce a single f. We also

investigated the impact of partitioning samples with a less restrictive criterion based on the

assumed mutation rate as described above. Similar to research in the comparison of power-law

distributions [50], we utilized the empirical cumulative densities f using stat_ecdf and com-

pared distributions using the Kolmogorov-Smirnov test with base R v3.6.3 [51]. We plotted

the empirical distributions as smoothed kernel density distributions using the function

stat_density contained in the R package ggplot2 v3.3.0 [52].

0.6.4 Sensitivity analyses. We investigated the results with sensitivity analyses including

statistical bootstrapping. Distance permutations between pairs of worms included 100 iterations

of sampling without replacement for the all-by-all pairwise geographic distances. Multi-infected

host bootstrap subsampling included 100 iterations of choosing a single case worm at random

for each host. In instances where only one case is observed per host, that case was consistently

the representative. Each iteration was considered an independent distribution and analyzed as

described above. In addition, we also tested the impact of relaxed similarity thresholds for defin-

ing matched identity of the molecular barcodes between pairs on the geographic clustering.

0.6.5 Analyzing the diversity of genetic samples by geography. A cumulative barcode

diversity score was calculated for each worm with GPS coordinate data (426 worms). The

number of unique barcodes was counted for an expanding radius around each worm until

every other worm in the study was included in the radius. We also investigated the effect of

opportunistic sampling on barcode geographic clustering by comparing the cumulative dis-

tance from each case to every other worm in the population. From each worm, we expected

the number of samples to increase at variable rates depending on sample clusters. Deviations

from an increase (i.e. a sustained flat line) between samples would indicate geographic breaks

between sample clusters.

0.7 Analyzing sensitivity of additional regions outside of CO3, cytB, and

ND3–5

Variants in the complete mitochondrial genome were grouped by whether the variant was in

the CO3, cytB, and ND3–5 gene ranges (‘targeted genes’) or in other regions of the genome
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(‘untargeted genes’, including non-coding regions). Gene ranges were determined by the start

and end positions of genes in the Dracunculus medinensis mitochondria genome version

JN555591.1 instead of the amplicon alignment ranges due to the differences in sample process-

ing and sequencing technology. The genomic ranges for the genes are 3,778–4,543 for CO3,

2,619–3,720 for cytB, and 12,550–14,467 for ND3–5. Pairwise genetic similarity was calculated

from barcodes created with all variants, variants within targeted gene ranges, or variants

within untargeted gene ranges. For bootstrap subsampling tests, variants within untargeted

genes were randomly selected to contain the same number of variants found within targeted

genes to create a new barcode for genetic similarity comparisons. Pairwise genetic similarity

comparisons for the different gene groups were robustly tested across two variant calling pipe-

lines (GATK and bcftools mpileup, see 0.3.2) with all variants and singleton variants excluded.

Smooth kernel density distributions were generated with ggplot2 v3.3.0 option “stat_density”.

A two sided Kolmogorov-Smirnov test was used to compare genetic similarity distributions of

different gene groups with base R v3.6.3 [51].

Results

0.8 Genetic and epidemiological characteristics of Guinea worm cases

Four hundred and fifty-nine worms (30 worms from humans hosts, 429 worms from dog

hosts) collected from 2012–2018 were successfully sequenced (Fig 1A). Four hundred and

twenty-six successfully sequenced worms were matched to GPS coordinates for each reported

case. Worm cases mainly clustered along the Chari River (Fig 1A). Identical mitochondrial

sequences were observed for cases across years (Fig 1B). Eighty six variants were identified in

the CO3, cytB, and ND3–5 genes of 618, 606, and 1,961 base pairs, respectively. The concate-

nation of the 86 variants resulted in 41 unique molecular barcodes (S2 Table).

Barcode accumulation curves suggest the 41 barcodes in this study did not saturate the

potential diversity of the unobserved population. We estimated the number of barcodes that

may be uncovered with more sequencing. A standard negative binomial and an empirical

Bayes approach [53] estimated we may observe 25–40 additional barcodes for a sampled popu-

lation size of 5000. Despite the differences between methods, both indicated that modestly

increasing the number of samples sequenced is not likely to capture the complete underlying

genetic diversity. However, the extrapolation was hindered by the available data; it is unclear

whether the abundance of low-frequency barcodes in the currently sampled population are

representative of the population. See S1 Appendix for further methodological details and

numerical investigations.

0.9 Molecular barcode similarity and persistence between host species

Twelve of the 41 identified barcodes were shared between human and dog hosts. There were

more unique dog barcodes than human barcodes driven by the high number of reported cases

in dogs (Fig 1A). From the years included in this study, it does not appear worms were shifting

from one host species to the other (S1(A) Fig). Barcodes were likely to appear in dogs and

humans in the same year (barcodes 2, 6, 8, 10, 36), dogs a year prior to humans (barcodes 5, 7,

13, 21), or in humans a year prior to dogs (barcodes 3, 4, 14).

In addition, DAPC of barcodes highlighted a challenge to discriminate between lineages of

human and dog hosts. The rate of cumulative variance decreases drastically after the first four

principal components (S1(B) Fig). Cross-validation identified 15 components with the lowest

RMSE across different training set ranges (0.44, S1(C) Fig). The overlap of discriminant distri-

butions predicted with five or fifteen principal components suggests molecular barcodes do

PLOS NEGLECTED TROPICAL DISEASES Surveillance & genetic data uncovers geographic scale of Guinea worm transmission in Chad

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0009609 July 26, 2021 7 / 19

https://doi.org/10.1371/journal.pntd.0009609


not differ by host (S1(D) Fig). The mean successful assignment was 48% and 61% respectively,

compared to the mean for random chance of 49% (35% and 65% confidence interval).

0.10 Genetically identical barcodes are geographically clustered

0.10.1 Population level comparisons. Genetically identical barcodes were spatially clus-

tered in Chad. Identical barcodes were within a median 18.6 kilometer range (standard devia-

tion = 82.5 kilometers), and often within an approximately 50 kilometer radius (Fig 2A).

Fig 1. Characteristics of genetically characterized Guinea worm cases in Chad from 2012–2018. A.) Number of

cases per host species collected from 2012–2018, with GPS matched sample distributions across the Chari River. Chad

maps were generated with GADM data. B.) The number of GPS matched samples that belong to barcode sets. Note,

not all barcode colors are shown in the left figure. Barcodes with less than 10 samples in the population are colored in

light gray for visual clarity. C.) Samples belonging to barcode sets 2, 3 and 4 are shown in their respective ranges.

Smoothed kernel densities for the three barcode sets show the mass of the distributions correlate with the spatial

connectedness of samples.

https://doi.org/10.1371/journal.pntd.0009609.g001
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Non-identical barcodes were more evenly distributed within a median 222.2 kilometers (stan-

dard deviation = 157.5 kilometers, Fig 2A). The spatial distributions between identical and

non-identical barcode distributions were statistically different (Kolmogorov–Smirnov test,

p< 0.001). Reclassifying pairs of worms with a single variant difference to account for the

chance of underestimated mutation rates or sequencing errors does not alter our findings (S2

Fig). Permuting the distance between pairs of worms removed spatial clustering for identical

worms (S3 Fig).

Geographic clustering of barcodes was not due to the similarity of parasites within hosts

that carry multiple infections. Sixty-five of the 245 hosts had multiple worm infections, with a

median of 4 worms (range = 2–24) per multi-infected host (S4 Fig). Worms captured from the

same host were not always genetically identical. The distribution of genetic similarity for

worms from the same host did not differ from worms with the same GPS coordinates from

Fig 2. Distance density estimates of pairwise similarity for identical and non-identical barcodes. A.) Pairwise

comparisons of identical barcodes in black (n = 10, 695) to a null of non-identical barcodes in gray (n = 79, 830). This

distribution at 400 kilometers is the max distance between sampled cases along the Chari River. This enrichment of

pairwise sample distance around 400 kilometers should not be considered the transmission upper bound. B.) The

number of comparisons for each barcode are the unique pairs of all worms sharing that barcode identifier. The null

distribution in gray of non-identical barcodes is subset to only include comparisons where one of the common

barcodes must be found in the pair (n = 56, 913).

https://doi.org/10.1371/journal.pntd.0009609.g002
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different hosts (S4 Fig). Bootstrap subsampling of a single worm from each host maintained

spatial clustering with low variability (S5 Fig).

0.10.2 Individual barcode comparisons. Individual barcodes showed variation in their

geographical range (Fig 2B). For example in Fig 1C, cases with barcode 2 were found in the

southeast mouth of the Chari River, while cases with barcode 3 and 4 were spread along the

entire river. The geographic range for samples in each common barcode can be seen in S6 Fig.

We replicated the smooth kernel density estimates for 10 of the 38 barcodes; note that three of

the barcodes do not contain associated GPS locations for any sample. The geographic variabil-

ity was not correlated to the total number of worms assigned to a barcode (S2 Table). Two of

the barcodes seen in Fig 2B represented with pink and mint were more similar to the null dis-

tribution than other barcodes, driven by their broader geographic range in Chad.

The variation in geographical ranges for barcode groups was not driven by geographical

isolation. For most worms, we observed a steep increase in unique barcodes up to 200 kilome-

ters (Fig 3). Worms with a slow increase in the unique barcodes after 200 kilometers corre-

sponded to the human cases observed furthest east (Fig 1A). These worms followed a similar

steep increase once the radius includes samples along the Chari River. The plateau of diversity

observed in most worms around 18–20 unique barcodes is an artifact of opportunistic sam-

pling proximity (S7 Fig).

0.11 Expanding genetic markers can improve sensitivity for comparing

worm populations

The extraction protocol of Guinea worm from an infected host results in degraded parasite

DNA and a microbial mixture that is problematic for standard extraction and untargeted

sequencing protocols. This limitation has dampened large scale genetic studies of Guinea

Fig 3. Opportunistic sampling does not drive apparent spatial connectedness of samples. Accumulation curves of

worm cases on geographical proximity of barcode diversity show a consistent addition of diversity in quantitatively

identified transmission ranges of barcodes sets (<50 kilometers). The left figure shows all accumulation curves for each

worm case, and the right figure is separated by the barcode set number (1–10 for common barcodes, other for

barcodes found in less than 10 samples). The numbers in the lower right corner are the number of worms in each

barcode set.

https://doi.org/10.1371/journal.pntd.0009609.g003
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worm using additional markers in the mitochondrial and nuclear genome. It was unclear

whether the untargeted regions of the mitochondrial genome would significantly alter popula-

tion-level worm relatedness enough to consider further protocol development for complete

characterization. To determine the value of including variants outside of the genes targeted in

this study, we compared variants in other regions of the mitochondrial genome from an inde-

pendent set of 19 worm samples with successful DNA extraction and shotgun sequencing [12].

Including mitochondrial variants outside of CO3, cytB, and ND3–5 gene ranges changed

the distribution of genetic similarity between pairs of worms (Fig 4). Forty-seven variants were

found within genes targeted in this study, and 129 variants within untargeted genes. Variants

within targeted genes differentiated two peaks in the density estimates compared to all variants

and variants within untargeted genes that differentiated three peaks in the density estimates.

The distribution of genetic similarity between worms using the 47 targeted gene variants were

statistically different than the distribution of genetic similarity using the 129 untargeted gene

variants (Kolmogorov–Smirnov test, p< 0.001). The broader pairwise similarity distribution

of untargeted genes was robust to the number of variants in the pairwise calculation (Fig 4).

Distributions of randomly subsampled 47 untargeted gene variants compared to the distribu-

tion of 47 targeted gene variants showed that in some instances the population was less geneti-

cally identical with major peaks shifted to the left, and maintaining a higher density in the

0.75–0.85 pairwise genetic similarity range (Fig 4). However, because of the small sample size

without accompanying GPS coordinates of this independent population, we could not extrap-

olate the effect of barcode sets on the spatial links between identical and non-identical pairs.

Despite requiring a minimum of 10 reads for each variant at a position to ensure true vari-

ant signals, we additionally confirmed the change in pairwise genetic similarity excluding

Fig 4. Distribution of all-by-all pairwise genetic similarity of variants within or outside of amplification targeted

genes. Targeted gene variant regions were determined with CO3, cytB, and ND3–5 genomic ranges specified in the

mitochondrial reference genome. Smoothed density kernel distributions are overlayed on pairwise genetic similarity

distribution histograms for the different genomic regions.

https://doi.org/10.1371/journal.pntd.0009609.g004
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variants observed in one sample in the population. Excluding variants found in only one

worm, we dropped from 176 variants to 135 variants for comparison across the mitochondrial

genome. The shape of the pairwise distribution including variants identified outside of the

CO3, cytB, and ND3–5 gene ranges had three mass peaks compared to two mass peaks when

only considering variants within the CO3, cytB, and ND3–5 gene ranges (S8 Fig), Kolmogo-

rov–Smirnov test p = 0.001). The robust trend of a broader distribution when including single-

ton variants showed the pairwise distance between pairs of worms was not driven by unique

variants in the population. Variants were called with an orthogonal method to circumvent any

issues with genotype calling on a small sample size in GATK. More variants across the mito-

chondrial genome were identified calling with bcftools than GATK (185 versus 176 variants).

A single variant from the GATK set was not represented in the bcftools set; 137 variants over-

lapped in reference and alternative alleles for each variant position between the two variant

calling methods. For the remaining 38 variants, bcftools had one less alternative allele call com-

pared to GATK tools. Despite these differences, variants called with bcftools replicated the dif-

ferent distributions for variants within targeted genes and outside targeted genes with a new

mass peak around 0.75 pairwise genetic similarity. (Kolmogorov–Smirnov test, p = 0.001,

S9 Fig).

Discussion

To our knowledge, this is the largest retrospective study to date on Guinea worm transmis-

sion in Chad that links surveillance and genetic data with samples from 2012–2018, excluding

2014. Knowing the geographical range of transmission for genetically linked samples has the

potential to be an important monitoring and evaluation tool for the elimination campaign.

We identified 41 unique molecular barcodes from the 459 Chadian worm samples, with 426

samples having associated GPS data. The analyses in this study provide quantitative bound-

aries on the geographic range of transmission, with the majority occurring within a median

18.6 kilometer radius, and often within an approximately 50 kilometer radius. These results

suggest the most effective interventions should consider case sweeps, water monitoring, and

abatement approximately 20 kilometers around a reported case to reduce the spread of genet-

ically related parasites. The population distribution falling under 50 kilometers implies that

extending these efforts from 20–50 kilometers would largely dampen the dispersion of genet-

ically related worms, with diminishing returns for efforts greater than 50 kilometers from a

reported case. However, worms linked by barcode identity are not geographically isolated

populations. Samples are surrounded by worms representing five to ten different barcodes

within a 50 kilometer radius (Fig 3), and individual barcodes can vary in their transmission

range from three to 150 kilometers. Geographically imposed interventions from these results

need to consider the dispersion range variation for cases identified in areas with co-occurring

lineages.

The modeling results presented in this article are consistent with previous analyses, but also

expand the scope of geographic and genetic relatedness. Overlapping barcodes of worms col-

lected from human and dog hosts supports the earlier conclusion by Thiele et al. [10] that

humans and dogs share a similar Guinea worm population in their analysis of 75 samples (S1

(A) Fig). Barcodes did not consistently shift from one host species over time, suggesting a fluid

transmission of D. medinensis between humans and dogs. Previous genetic analyses using spa-

tial principal components analysis had identified a geographic trend of genetic relatedness

down the Chari River in Chad [10, 38, 45]. The research in this article broadens that analysis

by revealing that genetically identical and near-identical samples cluster geographically for

multiple areas across Chad. (Fig 1C).
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The findings of this work also align with the known epidemiology of the disease and biology

of the parasite. Recent surveillance efforts involving the collaring and GPS tracking of dogs in

Chad showed dogs visit water sources within a 10 kilometer range with variation across study

sites [54]. The substantial geographic distance distribution for genetically identical pairs of

worms under 50 kilometers are broadly in agreement with the dog roaming range and varia-

tion by geography (Fig 2). Both of these research efforts support the current epidemiological

intuition and hypotheses about geographic connectivity of infections and the role of dogs as a

reservoir [10, 46, 54].

The numerous sets of identical or nearly identical molecular barcodes among the 459 sam-

ples was expected. We anticipated some barcode sets would be maintained throughout the few

years represented in this study due to the parasite biology of a year-long life cycle and the sus-

pected low spontaneous mutation rate (see section 0.8). Even though the probability of having

observed a direct transmission event in the available genetic samples is quite low (given the

total number of reported cases), the molecular barcodes demonstrate distinct value even

though the transmission network is only partially observed. The direct maternal inheritance of

mitochondrial DNA and the persistence of barcodes across available years suggests a sustained

population of worms are related through transmission. Taken together, these findings strongly

suggest an epidemiological connection identified using the genetic data and can help inform

the local epidemiology of Guinea worm in Chad.

There are several limitations to the analysis and modeling in this article. The samples that

were sequenced and included in this analysis were retrospectively selected in order to span the

geography of Chad and not through a systematic sampling frame. As mentioned, this led to an

absence of 2014 samples in this study. We evaluated the robustness of each conclusion with

sensitivity analyses to address the challenges posed by data constraints and methodologies

(Figs 1 and 2). We demonstrated the geographic clustering results were not sensitive to dogs

with multiple worm infections which could have artificially inflated the geographic proximity

between pairs of worms (S5 Fig).

In addition, the characteristics of the Dracunculus medinensis genome are not as well-

understood as viruses, bacteria, or other parasites. Without knowledge of baseline genetic

diversity or a mutation rate for Guinea worm, we could not more accurately assess the genetic

similarity threshold to group lineages. Despite these constraints, we showed that allowing for a

single base pair difference in barcodes between a pair of worms maintained spatial clustering

relative to two or more base pair differences in barcodes between a pair of worms (S2 Fig).

Lineage representation is likely limited by the use of four mitochondrial genes coupled with

the small sample size relative to the number of observed and unobserved total cases from

2015–2017. In an independent population of samples with complete coverage of the mitochon-

drial genome, we confirmed variants in other regions of the mitochondrial genome changed

the distribution of population pairwise genetic relatedness (see section 0.11). This trend was

replicated with a combination of bootstrapping and variant callers. Due to small sample sizes

of available whole mitochondrial DNA, we were unable to conclude whether the extra variants

refine geographic clustering. The substantial number of additional variants in the mitochon-

drial genome strongly suggests that access to more of the genome will better resolve identical

lineages for Guinea worm.

Despite these limitations, the modeling and analyses in this article have important implica-

tions for policy makers and elimination programs. From 2010–2019, there was a concurrent

increase in both reported cases and surveillance efforts. A complete characterization of the

genetic diversity could help distinguish whether Guinea worm prevalence was increasing or a

consequence of improved surveillance. The continued appearance of genetically identical

worms across years suggests genomic data is informative for understanding transmission,
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surveillance, and even intervention efficacy. Monitoring the genetic landscape could provide

programmatic evidence for the effectiveness of geographically localized interventions by

observing the potential elimination of barcode lineages. Sustained barcodes are particularly

useful in instances where case reports may be disrupted due to insecurity or inaccessibility.

A comprehensive bank of all genomic samples paired with geographic data would allow a

broader set of analyses to help the elimination program, for example use in outbreak analysis,

characterization of importation versus local circulation, or to reveal potentially unknown ani-

mal reservoirs. Currently, we cannot provide programmatic guidance on a specific number of

samples that should be collected and sequenced to capture the genetic diversity in Chad due to

the high diversity of the currently sampled population (S1 Appendix). However, if a subset of

historical samples share barcodes with the currently sampled population we would likely be

powered to define a sample size for genetic surveillance. Conversely, more unique barcodes in

historical samples would support the need to sequence all available worm samples due to the

high diversity of the population. Current surveillance protocols already collect emerging

worms in addition to a standardized survey for all reported cases. Given the reported case

counts and access to high-throughput sequencing technologies, it is tractable to sequence a

large subset or all of the available retrospective and prospective Guinea worm samples.

The confirmed change in population pairwise genetic similarity across the whole mitochon-

drial genome suggests expanding the marker set is an important future research direction. An

expanded marker set would complement innovations constructing phylogenies from whole

genome sequencing of the Guinea worm larvae [55] and microsatellites of the worm nuclear

genome [10]. A holistic program of sequencing strategies and analytic methodologies will help

translate research insights into programmatic input for the elimination of Guinea worm in

Chad. Furthermore, additional analyses of the full range of epidemiological data collected by

the CGWEP alongside linked genomic data are warranted, and may further elucidate trans-

mission dynamics in Chad. The parasite genome has the potential to be an integral tool for the

end-game strategy in Chad and beyond.

Supporting information

S1 Appendix. Predicting the increase in barcode variety with additional sequencing.

(PDF)

S1 Table. Sequenced worms metadata. Collection year, host, GPS coordinate availability, and

whether included in Thiele et al. 2018 [10] for each sample.

(CSV)

S2 Table. Barcode counts for sequenced samples. GPS columns indicate the number of sam-

ples for each barcode used in geospatial analyses by species. Columns starting with ‘All’ indi-

cate the number of worms assigned to each barcode, including samples that were not linked

to GPS data for each host species. Temporal presence/absence of barcodes can be tracked in

S1(B) Fig per species.

(CSV)

S1 Fig. Molecular barcode comparison of worm barcodes identified per species. A. The

presence of different barcodes per host by year. A blue-filled cell next to each barcode is indica-

tive that the barcode was represented at least once in the respective year. Refer to S2 Table for

sample counts of each barcode by species. B. DAPC eigenvalues for principal components

with all 41 unique barcodes. A drop in variance is observed from 4 to 5 components, but cross-

validation suggests 15 components provide the highest classification success. C. Root mean

square error (RMSE) ranges for components with different training set percentages. While
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using 90% of the data as the training set produces the highest RMSE distribution, it obtains the

lowest RMSE when compared to the 70% or 80% training set scenarios. D. DAPC analyses by

number of components. Barcodes found in samples from humans only were grouped with bar-

codes found in samples from humans and dogs to create more even groups with barcodes

found only in samples from dogs (humans only = 5 barcodes, both = 12, dogs only = 24).

(TIF)

S2 Fig. Spatiotemporal modeling of barcode relatedness collapsed by a single base pair dif-

ference. Number of pairwise comparisons for identical barcodes = 13,967, for non-identical

barcodes = 76,558.

(TIF)

S3 Fig. Permutation of distance between cases on barcode relatedness densities. The x-axis

is the permuted distance between pairs of worms and the y-axis represents the density for pop-

ulation genetic similarity scores for all worms (n = 426). Each line represents worm pair dis-

tance permutation (n = 100) for the population. The lines for identical and non-identical

barcodes are consistent between permutations and overlap.

(TIF)

S4 Fig. Barcode identity within hosts and genetic similarity distribution by shared loca-

tion. A. Each multi-infected host with the number of worms pertaining to each barcode set.

“Not common” refers to barcodes found in less than 10 samples in the population for visual

clarity. B. Distributions of genetic similarity between worms with the same reported GPS coor-

dinates, colored by whether the pair is obtained from the same or different hosts.

(TIF)

S5 Fig. Host subsampling on barcode relatedness densities. The x-axis is the distance

between pairs of worms and the y-axis represents the density for population genetic similarity

scores with one worm per host (n = 282). Each line represents a bootstrap (n = 100) of a single

worm per host.

(TIF)

S6 Fig. Location of common and not common barcodes in Southern Chad. Samples are col-

ored by their barcode identifier, and shapes represent the host species. Barcodes 3, 4, and 10

have similar spatial distributions. Barcodes 2 and 5 have similar spatial distributions and are

highly focal. Some barcodes span a very large geographic area, which suggests they are ances-

tral sequences that have diffused over time or are transmitting due to human behaviors.

(TIF)

S7 Fig. Geographic distance between cases for each worm. The geographic distance between

worms relative to a single worm were organized in ascending order. The x-axis is the cumula-

tive worm count by distance and the y-axis is the cumulative distance from each index worm.

Spans of a flattened curve are indicative of geographic stretches that do not contain any sam-

ples and support the lack of barcode diversity observed in certain geographic distances in

Fig 3.

(TIF)

S8 Fig. Distribution of pairwise similarity using GATK variants found in greater than one

worm. The x-axis is the measured genetic similarity for variants within genes targeted by the

amplification protocol (n = 35) and extending to the rest of the mitochondrial genome

(n = 100), and y-axis is the number of pairwise comparisons (19�19 = 361). Filled regions
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show the smoothed density estimates for histograms.

(TIF)

S9 Fig. Orthogonal validation of population pairwise similarity using variants identified

by bcftools mpileup. The x-axis is the measured genetic similarity for variants within genes

targeted by the amplification protocol (n = 47) and extending to the rest of the mitochondrial

genome (n = 138), and y-axis is the number of pairwise comparisons (19�19 = 361). Filled

regions show the smoothed density estimates for histograms.

(TIF)
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