

Weng, S., Zhang, L., Feng, D., Feng, C., Wang, R., Valente Klaine, P. and Imran, M.

A. (2022) Privacy-Preserving Federated Learning based on Differential Privacy and

Momentum Gradient Descent. In: IEEE World Congress on Computational Intelligence

(WCCI 2022), Padua, Italy, 18-23 Jul 2022, ISBN

9781728186719 (doi: 10.1109/IJCNN55064.2022.9889795).

This is the Author Accepted Manuscript.

There may be differences between this version and the published version. You are

advised to consult the publisher’s version if you wish to cite from it.

http://eprints.gla.ac.uk/271300/

Deposited on: 19 May 2022

Enlighten – Research publications by members of the University of Glasgow

http://eprints.gla.ac.uk

https://doi.org/10.1109/IJCNN55064.2022.9889795
http://eprints.gla.ac.uk/271300/
http://eprints.gla.ac.uk/

Privacy-Preserving Federated Learning based on
Differential Privacy and Momentum Gradient

Descent
Shangyin Weng∗, Lei Zhang∗, Daquan Feng†, Chenyuan Feng‡, Ruiyu Wang∗, Paulo Valente Klaine∗,

Muhammad Ali Imran∗

∗ School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
Email: {2289305W}@student.gla.ac.uk, {r.wang.1}@research.gla.ac.uk,
{Lei.Zhang, Paulo.ValenteKlaine, Muhammad.Imran}@glasgow.ac.uk

† College of Electronics and Information Engineering, Shenzhen University, 518060, Shenzhen, China
Email: fdquan@szu.edu.cn

‡ Information Systems Technology and Design, Singapore University of Technology and Design, 487372, Singapore
Email: chenyuan feng@mymail.sutd.edu.sg

Abstract—To preserve participants’ privacy, Federated Learn-
ing (FL) has been proposed to let participants collaboratively
train a global model by sharing their training gradients instead
of their raw data. However, several studies have shown that con-
ventional FL is insufficient to protect privacy from adversaries, as
even from gradients, useful information can still be recovered. To
obtain stronger privacy protection, Differential Privacy (DP) has
been proposed on the server’s side and the clients’ side. Although
adding artificial noise to the raw data can enhance users’ privacy,
the accuracy performance of the FL is inevitably degraded. In
addition, although the communication overhead caused by the
FL is much smaller than that of centralized learning, it still
becomes a bottleneck of the learning performance and utilization
efficiency due to its frequent parameters exchange. To tackle these
problems, we propose a new FL framework via applying DP both
locally and centrally in order to strengthen the protection of par-
ticipants’ privacy. To improve the accuracy performance of the
model, we also apply sparse gradients and Momentum Gradient
Descent on the server’s side and the clients’ side. Moreover, using
sparse gradients can reduce the total communication costs. We
provide the experiments to evaluate our proposed framework
and the results show that our framework not only outperforms
other DP-based FL frameworks in terms of the model accuracy
but also provides a more powerful privacy guarantee. Besides,
our framework can save up to 90% of communication costs while
achieving the best accuracy performance.

Index Terms—Privacy-preserving federated learning, differen-
tial privacy, momentum gradient descent, gradients sparsifica-
tion.

I. INTRODUCTION

With the development of Machine Learning (ML) tech-
niques and increasing demand for data communication and
processing, data privacy has drawn significant attention from
academics and industries. Since the performance of ML mod-
els is determined by the quality and amount of the training
data, there are two urgent problems that need to be solved
to achieve secure data exchange [1]. Firstly, some service
providers of network applications would like to collect users’

data to train their algorithms, such as recommending systems,
on the purpose of providing better experiences for customers.
Some users may consider that this action violates their privacy
and refuse to share their sensitive data. As a result, ML
training becomes more problematic, as it is usually unrealistic
to synthesize a large amount of reasonable data similar to those
of real users. Secondly, the issue of “data silos” is becoming
more and more serious. Specifically, different companies or
different departments in the same company may refuse to share
their own data because of the lack of effective methods to
share data without privacy leakage, as exchanging those data
is a privacy violation of their own customers [1]. Since it is
impossible to obtain a good ML model without a large amount
of data, novel and secure ways of sharing data are needed.

To solve the problem of secure data sharing, Google firstly
proposes Federated Learning (FL), which is a distributed ML
system without centralizing users’ data to train a smart key-
board application1. Shortly after that, it is applied to financial,
medical or industrial systems [2]–[5]. The key idea of FL is to
train a model with users’ data locally and transmit intermediate
gradients to the server, which are aggregated later in order
to generate a global model. In this way, a well-performed
model can be achieved and users’ data privacy is not broken
as users’ data never leave their local storage. However, FL still
suffers from privacy leakage, heavy communication costs, and
statistical heterogeneity [6].

By training in a distributed manner, the server and the
clients need frequent model exchanges, which brings huge
communication costs. To improve accuracy performance and
reduce communication costs of FL, several solutions have
been proposed. Fed-Avg is first proposed to use Stochastic
Gradient Descent (SGD) to train local models for multiple
epochs before transmitting gradients [7]. However, Fed-Avg

1https://ai.googleblog.com/2017/04/federated-learning-collaborative.html

has unsatisfactory convergence performance when the training
data is Non-Independent and Identically Distributed (Non-
IID). Fed-Prox [8] and SCAFFOLD [9] are proposed to
optimize the convergence rate of FL with Non-IID data by
forcing all local clients’ models closer to the global model.
In addition, to improve the convergence performance, Adam
and Momentum Gradient Descent (MGD) are applied in FL to
train local models [10], [11]. All these algorithms are trying
to reduce communication costs by accelerating convergence so
that the number of the total communication rounds decreases.
On the other hand, the amount of data exchanged in a single
round can be reduced to save costs through quantization or
sparsification [12].

Even though FL is applied to protect users’ privacy, studies
have shown that useful information can be recovered from
gradients, such as in [13], where the authors successfully
recover high-resolution images from gradients of a deep neural
network. As such, the concept of Differential Privacy (DP)
is adopted to enhance privacy protection in FL systems.
Authors in [14] first apply DP in single-end ML and derive a
tighter bound for calculating privacy losses, which is Moment
Accountant (MA). Then, DP is used in the central server of FL,
referred to as Central-DP (CDP), by adding artificial noise on
the aggregated gradients to hide a single client’s contribution
from the others [15]. In this way, malicious clients can not
know whether a certain client has participated in the last
training round or not. In their settings, the server is assumed to
be honest. However, central servers are not always trustworthy
in reality. Therefore, the authors in [16] implement Local-
DP (LDP) on clients by perturbing original gradients before
uploading to the server, in order to prevent the server from
recovering useful data. In [17], [18], the authors apply LDP
and CDP to FL, but they mainly focus on utility, which leads
to weak privacy protection. Meanwhile, adding noise to the
gradients inevitably degrade the accuracy performance.

As mentioned above, only using one type of DP in FL
can protect privacy from either malicious clients or the server.
Motivated by these issues, in this paper, we propose a Privacy-
Preserving FL (PPFL) framework which achieves both LDP
and CDP by adding noise and keeps track of the privacy losses
by the MA scheme. Furthermore, to improve the performance,
we also implement sparse gradients and MGD on both the
server’s side and clients’ sides. To the best of our knowledge,
this is the first well-performed FL framework that combines
LDP and CDP to protect privacy via artificial noise and
still has great performance. In this work, we accomplish
the LDP-FL system by Gaussian Mechanism, while most
existing works adopt the Laplace Mechanism, which is harder
for implementation in reality. Our main contributions are as
follows:

1. First, we apply the Gaussian Mechanism on the clients’
side to achieve (ε, δ)-LDP so that clients’ sensitive data
can never be revealed. MA is used to keep track of privacy
losses which control the ending of the FL.

2. Second, we also introduce CDP in [15] into our LDP-FL
to further protect privacy and We employ two accountants

for LDP and CDP separately.
3. Third, as the noise is scaled to the l2-norm of the

gradients, we apply sparse gradients to upload only part
of gradients to the server, which can reduce noise and
maintain the same privacy protection level. Meanwhile,
communication costs are saved.

4. Fourth, we also implement MGD on the clients’ side to
speed up training and on the servers’ side to stabilize the
training process under the influence of the adding noise.

5. Finally, we conduct simulations with different settings,
provide detailed privacy loss estimations and compare
the results with other frameworks to show our proposed
PPFL’s effectiveness.

II. PRELIMINARIES

In this section, we present definitions and formulas of DP,
especially the Gaussian Mechanism for achieving DP, and DP-
based FL.

A. Differential Privacy

The DP mechanism guarantees privacy protection for shar-
ing databases. To be specific, for two adjacent databases D,
D′, which differ from each other at only one data point.
Applying the DP scheme to perturb the original values can
make the output of these two databases undistinguishable [19].
The DP mechanism is defined as follows:

Theorem 1: [19] A randomised mechanism M achieves ε-
DP if it satisfies the following constraints, ∀D,D′,∀S ⊂ R:

Pr [M(D) ∈ S] ≤ eεPr [M(D′) ∈ S] , (1)

where ε ∈ (0, 1).
However, this general definition is too strict to be fulfilled.

Therefore, an approximate term δ is widely adopted, which
means the probability of the general ε-DP is violated.

Theorem 2: [19] A randomised mechanism M achieves
(ε, δ)-DP if it satisfies the following constraints, ∀D,D′,∀S ⊂
R:

Pr [M(D) ∈ S] ≤ eεPr [M(D′) ∈ S] + δ, (2)

where ε ∈ (0, 1) and δ ≥ 0. This mechanism is referred to as
the Gaussian Mechanism and a common implementation is to
add a zero-mean Gaussian noise to the original databases.

B. Differential Privacy based Federated Learning

The procedure to achieve CDP-FL is introduced as fol-
lows [15]. In addition to the initial global model generation
and local model training via the SGD method, the server will
compute the norm of updated models and transmit the latest
gradients ∆wi

t as well as the norm ‖∆wi
t‖2 to the server.

On the server’s side, it will calculate the median value of all
received norms S for a novel global model aggregation. To
mitigate each client’s influence, the gradients are clipped as
follows:

∆wit = ∆wit/max(1,
||∆wit||2

S
), (3)

where ∆wit is the gradients of the client i in communication
round t. After that, the clipped gradients are aggregated and

the noise, which is computed according to the noise scale and
S, is added to the gradients. Finally, the aggregated gradients
with noise are used for next round optimization.

III. PROPOSED PRIVACY-PRESERVING FEDERATED
LEARNING FRAMEWORK

In this section, we propose a PPFL framework that achieves
LDP combined with CDP to enhance privacy protection. To
reduce the total used communication overhead and improve
the overall performance, only part of the gradients are sent
to the central server. Besides, in our setting, MGD is used to
train the local models to speed up training, as well as on the
central server to help stabilizing the training process under the
effect of artificial noise.

A. Local Differential Privacy and the combination of Differ-
ential Privacy techniques

In most existing FL frameworks, central servers are assumed
to be honest, so to achieve CDP, artificial noise is only
added after the aggregation in the central server. This prevents
malicious clients from identifying whether a certain client
joins the training process or not [15]. However, the central
servers are not totally trustworthy in reality and may try
to recover useful data from gradients. Therefore, an LDP
mechanism of adding LDP noise on the clients’ side should
be implemented on top of CDP to further protect clients’ data
privacy.

In conventional FL, each client trains their model locally,
computes the gradients and sends the gradients to the server
without modification. As mentioned in [13], the central server
can still recover useful information from the original gradients.
To avoid such attacks, artificial noise is added to the original
gradients and sent to the server. To enhance the privacy
protection, in our proposed method, a Gaussian Mechanism
is used on each client’s side to achieve (ε, δ)-LDP.

After computing the gradients on each client locally, clients
add Gaussian noise to them, which is scaled to the l2-norm of
the gradients. In our LDP settings, we refer the local data of
each client to as a small subset of the entire data set involved
in FL. To keep track of the accumulative privacy losses, MA
[14] is used for a tighter bound of the privacy loss. Based
on MA, the privacy losses are related to the proportion (q)
of the batch in the whole dataset, ε, δ, the noise scale and
communication rounds. In our case, as the noise is added to
every client’s gradients separately, q = 1

N , where N is the
total number of the clients. Besides, the total privacy losses
in a single round can be defined as the sum of the privacy
loss of all participants in this round. After applying LDP, the
gradients of the client i sent to the server are

∆wit = wt−1 − wit +N (0, C2
LDPσ

2
LDP), (4)

where wt−1 is the model in the previous round, wit is the client
i’s model in this round, N denotes a zero-mean Gaussian
distribution for the LDP noise, σ denotes the noise scale.
Besides, C needs to be chosen properly so that it can protect
privacy without seriously hindering the model’s performance

too much [14]. Therefore, to protect each single data point in
the training stage, C is computed as:

C =
||∆wit||2

n
=
||wt−1 − wit||2

n
, (5)

where n is the size of the involved data samples.
As mentioned in Section II-C, the gradients are usually

clipped before aggregating and adding noise. However, in our
LDP framework, the noise is added before the aggregation in
the central server and clipping gradients are used to alleviate
the influence of each participant. In LDP, there is no need to
limit each sample’s influence on the global model. Therefore,
we omit the process of clipping in the proposed LDP.

After the central server receives all the clients’ gradients,
it assigns each client a weight for their contribution. In our
framework, the weight is n

m , where m is the number of the data
samples of every client involved in this round. The server then
aggregates weighted gradients and then adds Gaussian noise to
them to hide each client’s contribution as introduced in [15].
Finally, the aggregated gradients with the combination of two
differential privacy implementations are used to compute a
new global model wt in communication round t as follows:

∆wt =
1

M

Mt∑
i=1

∆wit +N(0, C2
CDPσ

2
CDP), (6)

wt = wt−1 −∆wt, (7)

where ∆wit is the gradient of the client i in communication
round t with DP noise, M is the number of participants
in every round, Mt is the set of participating clients in
communication round t, Ccenter is the sensitivity of noise and
clip bound in CDP, and σcenter is the scale for CDP noise.

To calculate the privacy losses of the proposed combination
of two DPs, in this paper, we use two separate accountants for
LDP and CDP. In this way, whichever accountant runs out of
budget, the FL stops.

B. Gradients sparsification

Although the noise scale is well-chosen to preserve useful
information for the model, it can still degrade the overall
performance. The added Gaussian noise has a mean of zero
so that when the number of clients increases, the noise can
be offset to a certain degree after aggregation. However, the
performance is still degraded when increasing the number of
clients and, sometimes, it is impossible to have a massive
number of clients joining the FL. To further improve the
performance, as the noise is scaled to the l2-norm of the
gradients, by only sending part of gradients, the l2-norm value
is smaller. This means that the artificial noise would have less
effect on the gradients while still preserving the data privacy
on the same level. Besides, as the FL is usually performed on
smart devices which have limited power and communication
resources, sparsifying the gradients can save a large proportion
of communication costs.

Furthermore, we also consider how to sparsify the gradients.
To save as many communication costs as possible, while

reducing the effect of DP on the performance, the sparse
percentage should be as large as possible. On the other hand,
sending a small part of the original gradients slows down
the training process, resulting in degraded performance. In
ML, the magnitude of the gradients stands for each point’s
influence on the final losses. Therefore, in our scheme, we only
maintain a percentage of gradients with the largest absolute
values, which are mathematically more significant than the
smaller ones. Then Gaussian noise is computed according to
the sparse gradients’ l2-norm and added to them. In this way,
the proposed framework can improve the models’ performance
and also save communications costs.

C. Applying MGD on central server and clients

The accuracy performance can be very unstable due to
the noise, which may slow down the training process or
result in poor performance. To speed up and help stabilizing
training steps, we apply the MGD on the central server
after aggregation, referred to as Global-MGD. In a traditional
single-end ML, MGD is applied between batches of data to
accelerate training. In our case, we not only use MGD during
local training to speed up gradient descent, but also apply it to
the central aggregation. To be specific, every communication
round of FL can be seen as a batch of the combination of
selected users’ data. After the first communication round, the
previous round’s aggregated gradients (Vdwt−1

) are used as
the next one’s momentum. By applying the MGD formulation,
every round’s gradient is calculated as a combination of the
recursion of previous rounds and the current one, which is:

Vdwt = β ∗ Vdwt−1 + (1− β) ·∆wt | Vdw0 = 0, (8)

wt = wt−1 − λ ∗ Vdwt
, (9)

where ∆wt is calculated in Eqt (6).
Algorithm 1 outlines our FL framework with the com-

bination of LDP and CDP, referred to as LCDP-FL, and
implementation of Sparse Gradients and Global-MGD. At the
beginning of the algorithm, we first initialize a global model
and two privacy accountants for LDP and CDP, respectively.
For communication round t, accountants check whether the
privacy losses exceed the budgets. If not, the server chooses a
set, Mt, of clients and sends them the current global model.
Then, each client in Mt performs local training, computes and
sparsifies the gradients, adds LDP noise on the gradients and
sends the gradients with noise and their norm values to the
server. Next, the server clips and aggregates all the received
gradients. Finally, the server computes a new global model
through Global-MGD and adds CDP noise to the new model.

IV. SIMULATION RESULTS AND DISCUSSION

In this section, we conduct a series of simulations to show
our proposed framework’s performance on the MNIST dataset
2, which is a hand-written digit image dataset and consists of
60,000 training images and 12,000 test images. The proposed
PPFL is compared with some well-known algorithms, namely

2http://yann.lecun.com/exdb/mnist/

Algorithm 1 LCDP-FL with sparse gradients and MGD
1: procedure CENTRAL SERVER
2: Initialize a global model w0 and privacy accountant

for server PAserver and clients PAclients, V∆w0 = 0
3: for communication round t = 0, 1, 2... do
4: δserver ← PAserver(M,σserver)
5: δclients ← PAclients(M,σclients)
6: if δserver > PBserver or δclients > PBclients

then return current model
7: end if
8: choose a random set of M clients as Mt

9: for Client i in Mt do
10: ∆ wit+1, ||wit+1||2 ← ClientDP(i,wt)
11: end for
12: Cserver = median{||wit+1||2}i∈Mt

13: ∆wt+1 = 1
M

∑Mt

i=1 ∆wit
14: V∆wt+1

= β ∗ V∆wt
+ (1− β) ∗∆wt+1

15: wt+1 = wt − V∆wt+1 +N(0, C2
centerσ

2
center)

16: end for
17: end procedure
18: procedure CLIENTDP(i,wt)
19: wit ← E epochs of MGD
20: ∆wit+1 = wt − wit
21: ∆wit+1 ← the largest top-rate% absolute values of the

∆wit+1

22: ∆wit+1+ = N(0, C2
clienti

σ2
clienti

)
23: return ∆wit,||wit+1||2
24: end procedure

DP-SGD [14], LDP-FL [16] and CDP-FL [15] in terms of
accuracy and communication costs in Table 1, where CR
is the number of total communication rounds, TC is the
number of total clients, CSR is the fraction of users to be
selected per round and Acc is the accuracy performance. In
this table, all our proposed schemes are implemented with
Global-MGD (β = 0.5) and update only 10% of the gradients
with the largest absolute values. Besides, we also compare our
framework to some classical schemes, called vanilla-FL, which
is Fed-Avg using MGD in local training [7], [11]. The training
dataset is divided into shards, where each shard contains data
with the same label and each client is assigned with two
shards. We run our proposed framework with 100 and 1,000
FL clients. Our LDP privacy budget is set as ε = 0.5 and
δ = 1e−6 and CDP privacy budget is set to the same as in
[15], where ε = 0.5, δ = 1e−3 for 100 clients and δ = 1e−5
for 1,000 clients. For each client, the local training model is
a multi-layer perceptron which consists of two hidden layers
with 200 units per layer and a Relu activation and MGD are
employed. Each local model performs ten epochs of MGD per
communication round. Our LCDP-FL stops when the privacy
budget runs out.

A. Proposed PPFL with LDP only

In this part, we first investigate our LDP mechanism’s
performance and the impact of the sparse gradients and MDG
at the server’s side on accuracy performance. For LDP-only,

1 11 21 31 41 51 61
Communication rounds

0.90
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99

Ac
cu
ra
cy

LDP-FL Update all gradients
LDP-FL Update absolute top 10% gradients
LDP-FL Update absolute top 10% gradients, with Global MGD (beta = 0.5)
vanilla-FL Update all gradients

Figure 1. Accuracy performance of Non-PPFL (vanilla-FL) and LDP-FL for
100 clients.

0 10 20 30 40 50 60 70
Communication rounds

0.90
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99

Ac
cu

ra
cy

LDP, Update absolute top 10% gradients, with Global-MGD
LDP, Update full gradients
Vanilla-FL, Update full gradients

Figure 2. Accuracy performance of Non-PPFL (vanilla-FL) and LDP-FL for
1,000 clients.

the learning rate for the local model optimizer begins at 0.1,
decays by 0.96 for the first 20 rounds and is fixed at 0.044
after 20 rounds. The noise scale is σ100 = 8 for 100 clients
and σ1000 = 2 for 1,000 clients. Fig. 1 shows the results for
the vanilla and our proposed FL framework with 100 clients.
We show that although our PPFL has degraded accuracy
performance when compared with the vanilla one, the sparse
gradients and central-MGD can alleviate the performance
degradation caused by the adding noise. To be specific, the
final accuracy of the FL with these techniques outperforms
the others and reaches a value of about 96.31%. As shown
in Table 1, our proposed LDP-FL framework has a higher
accuracy performance than the one in [16], while our proposed
framework has a more general and easily achieved privacy
settings by adding δ in DP. For 1,000 clients, our proposed
framework outperforms the original PPFL (without Sparse
Gradients and Central-MGD) and obtains almost the same
accuracy of 97%, compared with non-PPFL, as shown in Fig.
2.

B. Proposed PPFL with CDP and LDP combined

In this section, we investigate the performance of our
proposed framework combined with CDP presented in [15].
In our LCDP-FL, εLDP = 8. As the noise is scaled to the
norm of the gradients, the learning rate needs to be chosen
properly. When training with 100 clients, the initial learning
rate is set as 0.0025, decays by 0.78 for the first 10 rounds

2 4 6 8 10 12
Communication rounds

0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95

Ac
cu

ra
cy

vanilla FL, Update full gradients
LCDP FL, Update full gradients
LCDP FL, Update full gradients, with global-MGD
LCDP FL, Update absolute top 10% gradients
LCDP FL, Update absolute top 10% gradients, with global-MGD
LCDP FL, Update absolute top 1% gradients
LCDP FL, Update absolute top 1% gradients, with global-MGD

Figure 3. Accuracy performance of LCDP-FL on 100 clients.

0 10 20 30 40 50
Communication rounds

0.90
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99

Ac
cu

ra
cy

LCDP FL, Update full gradients
LCDP FL, Update full gradients, with global-MGD
LCDP FL, Update absolute top 10% gradients
LCDP FL, Update absolute top 10% gradients, with global-MGD

Figure 4. Accuracy performance of LCDP-FL on 1000 clients.

and is fixed at 0.000267 after ten rounds3. In addition, when
training with 1,000 clients, the initial learning rate is set as
0.1, decays by 0.78 for the first 10 rounds and is fixed at
0.0107. The noise scale for LDP is set as σ = 2, while
for LCDP-FL, it is set as σ100 = 1.18 for 100 clients and
σ1000 = 1.43 for 1,000 clients on the purpose of comparison
with the state-of-the-art CDP-FL [15]. For the PPFL with
LCDP with 100 clients, Fig. 3 shows that our proposed method
achieves the highest accuracy performance, namely 80.24%,
among all the LCDP-FL. At the same time, it can reduce 90%
of the total communication costs. Although it has much worse
accuracy than the non-PPFL one, it outperforms the CDP-FL
[15] with 100 clients, as presented in Table 1. Besides, we
also investigate the performance of only updating 1% of the
gradients, which has the worst performance, as only very little
useful information is updated for the center server each round.

Furthermore, Fig. 4 shows that our proposed framework
with 1,000 clients also reaches the highest accuracy perfor-
mance among all the LCDP-FL, namely 94.2%, which also
outperforms the one for the CDP-only in [15], as shown in
Table 1. However, when adopting CDP, our PPFL has slightly
worse accuracy than non-PPFL, caused by the small learning
rate value.

3Our experiments show that for learning rates larger than 2.5e−3, the DP
noise destroys the training while having a smaller one will make the training
process too slow.

Table 1 This table shows performance comparisons between My PPFL and
other well-known privacy-preserving ML

Algorithm CR TC CSR Acc DP
DP-SGD [14] 700 1 1 97% (8,1e-5)-DP
Our LDP-FL 52 100 0.5 96.3% (0.5,1e-6)-DP
Our LDP-FL 63 1000 0.22 97% (0.5,1e-6)-DP
LDP-FL [16] 10 100 1 95.36% (0.5)-DP
CDP-FL [15] 11 100 0.5 78% (8,1e-3)-DP
CDP-FL [15] 54 1000 0.22 92% (8,1e-5)-DP

Our LCDP-FL 11 100 0.5 80.24%
(8,1e-3)-CDP &

(8,1.07e-107)-LDP

Our LCDP-FL 54 1000 0.22 94.3%
(8,1e-5)-CDP &
(8,4e-111)-LDP

C. Discussion of privacy losses

In this section, the privacy losses of the LCDP-FL is dis-
cussed. As mentioned in Section III, we use two accountants
for LDP and CDP separately. However, according to the MA
calculation in [14] and that CDP has a much larger q than
LDP, CDP has relatively higher losses than the one of LDP.
Therefore, the FL always stops when the CDP accountant
exceeds the privacy budget. Meanwhile, we calculate the
privacy losses for LDP. Through MA, the difference between
the privacy losses of LDP and CDP is very large, as shown
in Table 1. Even though we desire as small privacy losses
for each client as possible, the FL controlled only by CDP’s
accountant can train for very few rounds, resulting in poor
performance. In our case, the privacy protection for LDP is
more important, and, with LDP, CDP can be achieved to a
certain degree. Thus, the CDP privacy budget can be loosened
in further research to achieve better performance.

V. CONCLUSION

In this paper, we propose a new DP-based framework for
PPFL by adding sparse gradients and Global-MGD, in order to
improve its convergence performance. To be specific, we pro-
pose an LDP framework based on Gaussian Mechanism and
MA (to track privacy losses), and also implement CDP [15]
to enhance privacy protection. We also propose a new scheme
to calculate DP noise scale for our LDP-FL. Experimental
results show that for MNIST, our proposed FL framework
achieves better performance than other DP-based FL. Besides,
our framework can also reduce massive communication costs
using sparse gradients. We also provide mathematical results
of privacy losses of our framework with all the settings to
show the privacy protection level.

It has been shown that under our privacy losses calculation
scheme, the privacy losses for LDP and CDP have a huge
difference so that the FL training stops when CDP runs out
of budget. Therefore, in future work, a new scheme should be
investigated to balance the privacy losses for LDP and CDP
in order to let CDP and LDP cooperatively decide when to
stop FL training. In addition, as our framework still suffers
from Non-IID datasets, a new regularization technique should
be implemented to adjust DP-based FL for better accuracy
performance.

REFERENCES

[1] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learning:
Concept and applications,” ACM Transactions on Intelligent Systems and
Technology (TIST), vol. 10, no. 2, pp. 1–19, 2019.

[2] Y. Lu, X. Huang, Y. Dai, S. Maharjan, and Y. Zhang, “Blockchain and
federated learning for privacy-preserved data sharing in industrial IoT,”
IEEE Transactions on Industrial Informatics, vol. 16, no. 6, pp. 4177–
4186, 2020.

[3] J. Xu, B. S. Glicksberg, C. Su, P. Walker, J. Bian, and F. Wang,
“Federated Learning for Healthcare Informatics,” Journal of Healthcare
Informatics Research, vol. 5, no. 1, pp. 1–19, 2021. [Online]. Available:
https://doi.org/10.1007/s41666-020-00082-4

[4] M. Sheller, B. Edwards, G. Reina, J. Martin, S. Pati, A. Kotrotsou,
M. Milchenko, W. Xu, D. Marcus, R. Colen, and S. Bakas, “Feder-
ated learning in medicine: facilitating multi-institutional collaborations
without sharing patient data,” Scientific Reports, vol. 10, 2020.

[5] S. Samarakoon, M. Bennis, W. Saad, and M. Debbah, “Federated
Learning for Ultra-Reliable Low-Latency V2V Communications,” in
2018 IEEE Global Communications Conference (GLOBECOM), 2018,
pp. 1–7.

[6] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning:
Challenges, methods, and future directions,” IEEE Signal Processing
Magazine, vol. 37, no. 3, pp. 50–60, 2020.

[7] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-Efficient Learning of Deep Networks from Decen-
tralized Data,” in Proceedings of the 20th International Conference
on Artificial Intelligence and Statistics, ser. Proceedings of Machine
Learning Research, A. Singh and J. Zhu, Eds., vol. 54. PMLR, 2017,
pp. 1273–1282.

[8] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith,
“Federated optimization in heterogeneous networks,” arXiv preprint
arXiv:1812.06127, 2018.

[9] S. P. Karimireddy, S. Kale, M. Mohri, S. Reddi, S. Stich, and A. T.
Suresh, “Scaffold: Stochastic controlled averaging for federated learn-
ing,” in International Conference on Machine Learning. PMLR, 2020,
pp. 5132–5143.

[10] J. Mills, J. Hu, and G. Min, “Communication-efficient federated learning
for wireless edge intelligence in iot,” IEEE Internet of Things Journal,
vol. 7, no. 7, pp. 5986–5994, 2019.

[11] W. Liu, L. Chen, Y. Chen, and W. Zhang, “Accelerating federated learn-
ing via momentum gradient descent,” IEEE Transactions on Parallel and
Distributed Systems, vol. 31, no. 8, pp. 1754–1766, 2020.

[12] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and
D. Bacon, “Federated learning: Strategies for improving communication
efficiency,” arXiv preprint arXiv:1610.05492, 2016.

[13] J. Geiping, H. Bauermeister, H. Dröge, and M. Moeller, “Inverting
gradients–how easy is it to break privacy in federated learning?” arXiv
preprint arXiv:2003.14053, 2020.

[14] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov,
K. Talwar, and L. Zhang, “Deep learning with differential privacy,” in
Proceedings of the 2016 ACM SIGSAC conference on computer and
communications security, 2016, pp. 308–318.

[15] R. C. Geyer, T. Klein, and M. Nabi, “Differentially private federated
learning: A client level perspective,” arXiv preprint arXiv:1712.07557,
2017.

[16] L. Sun, J. Qian, X. Chen, and P. S. Yu, “LDP-FL: Practical private
aggregation in federated learning with local differential privacy,” arXiv
preprint arXiv:2007.15789, 2020.

[17] M. Naseri, J. Hayes, and E. D. Cristofaro, “Toward robustness and
privacy in federated learning: Experimenting with local and central
differential privacy,” arXiv preprint arXiv:2009.03561, 2021.

[18] K. Wei, J. Li, M. Ding, C. Ma, H. H. Yang, F. Farokhi, S. Jin,
T. Q. S. Quek, and H. V. Poor, “Federated learning with differential
privacy: Algorithms and performance analysis,” IEEE Transactions on
Information Forensics and Security, vol. 15, pp. 3454–3469, 2020.

[19] C. Dwork, A. Roth et al., “The algorithmic foundations of differential
privacy.” Foundations and Trends in Theoretical Computer Science,
vol. 9, no. 3-4, pp. 211–407, 2014.

