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Abstract 
 Electric vehicles must be widely accepted because of environmental concerns and carbon 

restrictions. Previous research has looked at consumer policy preferences and their influence 

on electric vehicle adoption. However, none have investigated the impact of policies linked to 

battery recycling on electric vehicle adoption. This study used a discrete choice model (the 

panel-data mixed logit model) to evaluate 552 actual consumer choice data from Southwest 

China collected via an online questionnaire. Our results indicate that (1) 75% of respondents 

feel that electric vehicles enhance the environment and are eager to embrace them. However, 

the lack of strong recycling policies may hinder their adoption of electric vehicles. Specifically, 

the four battery recycling policies significantly impact electric vehicle adoption. (2) Consumers 

appreciate producer-oriented incentives more than consumer-oriented incentives to a lesser 

extent, such as mandated battery recycling policies and electric vehicle battery flow tracing 
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policies. (3) Consumers place a larger willingness to pay on charging station density than 

vehicle attributes. (4) Regarding consumer heterogeneity, the usual young group in higher-rated 

cities prefers electric vehicles, while customers who own a car are more inclined to buy electric 

vehicles. Finally, more management insights and policy recommendations are provided based 

on these findings to help government and producer policymakers.  

  
Keywords: consumer preferences, electric vehicle adoption, discrete choice model, end-of-life 

battery recycling policies, policy incentives 
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1. Introduction 

 Fuel pollution and climate change have prompted governments worldwide to favor electric 

vehicles (EVs) (Stoffel et al., 2020; Valipour et al., 2020; Huang et al., 2021c). EV registrations 

grew by 41% in 2020, according to the International Energy Agency's "Global EV Outlook 

2021," despite a 16 percent drop in global car sales due to the pandemic (IEA, 2021). 

Approximately 3 million EVs (4.6 percent of new auto sales) are sold worldwide, with 1.367 

million sold in China, an increase of 10.9 percent annually (CAAM, 2021; IEA, 2021). By 

2030, there are estimated to be 220 million EV owners worldwide, with China accounting for 

half of the global market by 2025 (Ding et al., 2020; Huang et al., 2022). EVs are becoming 

more popular, but the fact remains that their market share remains limited. For example, China 

had 4.92 million new energy vehicles in 2020, accounting for only 1.75 percent of the overall 

vehicle ownership (CBIN, 2021). Accelerating vehicle electrification will continue to be a 

priority in the future(Zhou et al., 2019c). However, consumers appear to be hesitant to embrace 

EVs due to their ineffective recycling system for spent batteries. Whether this product is 

ecologically benign is becoming a new source of concern.  

 According to the data, China's EV lithium battery sales in 2020 were 80 GWh, weighing 

approximately 640,000 tons, indicating a rapid expansion of the battery supply chain (GGII, 

2021). EV batteries are typically lithium batteries with a lifespan of approximately 5-8 years 

and must be recycled at the end of their life cycle for recycling or disassembly usage (Mali and 

Tripathi, 2021). According to estimates, the total number of end-of-life EV batteries is expected 

to reach 780,000 tons by 2025, and as the EV market grows, the number of used batteries will 

be even larger (Li et al., 2020d; Yan and Sun, 2021). However, there is currently no recycling 

mechanism in place for end-of-life EV batteries in China, and firms lack the motivation to 

recycle spent batteries, which appears to be a new obstacle to the consumer adoption of EVs 

(Zhou et al., 2019a; Ding et al., 2020; Li et al., 2020d). For example, only 5,472 tons of EV 

batteries were recycled out of the 74,000 tons destroyed in 2018, representing a 7.4% recovery 

rate (Li et al., 2020d).  
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 The waste battery recycling policy has been stated from the early stages of the promotion 

of EVs, but it is not the emphasis; after all, there are relatively few EVs in society, much alone 

waste batteries, so the impact of recycling is minimal. Another important reason is that these 

policies are not mandatory, and the roles and obligations of the parties involved in end-of-life 

battery recycling are unclear (Ding et al., 2020). The above two reasons have led to the neglect 

of waste battery recycling policies and poor implementation of the actual results. However, 

green preferences and environmental awareness have been critical antecedents of consumer 

adoption of EVs (Globisch et al., 2019; Wu et al., 2019; Zhou et al., 2019b). Existing studies 

have emphasized the impact of EV-related policies, such as subsidies, taxes, and free parking. 

They have neglected the effect of used batteries on consumer preferences. Moreover, existing 

studies fail to examine the impact of battery recycling policies on EV adoption from a full life-

cycle perspective, as these policies can minimize vehicle aftermarket costs and environmental 

impacts. To the best of our knowledge, this study is the first to use discrete choice experiments 

to examine consumer preferences for these regulations and how they affect the uptake of EVs 

from a full life-cycle perspective.  

 Based on the above logic, we may be curious whether the policy on used batteries would 

impact the consumer uptake of EVs. If so, which recycling policies should be treated seriously 

from the standpoint of consumers, and how much of a quantitative influence do they have on 

EV adoption? To the best of our knowledge, there has been no research on these topics in the 

existing literature. We categorized the policies linked to EV battery recycling in Figure 1 by 

classifying them as subsidized programs, punitive policies, and retroactive measures. Referring 

to Figure 1's policy map, four policies were extracted: mandatory recycling battery policy 

(Policy_MRB), battery trade-in policy (Policy_BTI), battery flow traceability policy 

(Policy_BFT), and consumer recycling subsidy policy (Policy_CRS). In addition, we designed 

a discrete choice experiment survey to empirically investigate the influence of these policies 

on EV adoption to address the issues above. We gathered 552 consumer preference data from 

respondents in Southwest China who were potential EV buyers because they had experience 
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with EVs or wanted to buy one in the future. Our study's results and managerial insights provide 

additional practical recommendations for businesses and governments.  

 The remainder of this paper is organized as follows. Section 2 examines the relevant 

literature. Section 3 introduces the method, including the choice experiment design, model 

specifications, and data collection. The sample description, model estimation, and willingness 

to pay are examined in Section 4. Section 5 discusses the theoretical and managerial 

implications of this study. Finally, Section 6 closes the research. 
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Figure 1. China's key policy for recycling end-of-life electric vehicle batteries (modified from Tang et al. (2019)). 
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2. Literature review 

 Choice behavior is influenced by "market conditions and constraints" as well as 

"preferences," which include perceptual indicators, attitude indicators, socio-demographic 

traits, and product attributes, among others (Swait, 1994). These indicators are the main 

explanatory factors for consumer decisions and impact actual consumer behavior. Consumer 

choice of EVs is a dynamic subject of research (Huang et al., 2021b; Li et al., 2021a; Mandys, 

2021). Although the issue is still relatively young, there is already a substantial body of 

literature, including several typical literature reviews, such as Liao et al. (2017), Hardman 

(2019) and Kumar and Alok (2020). Our study is based on two lines of research: consumer 

policy preferences and the EV waste battery policy effect.  

 Policy attributes refer to "market conditions and constraints" (Swait, 1994). This stream of 

the literature aims to determine the efficacy of policies and consumer policy preferences. Policy 

incentives can encourage people to choose EVs by lowering their prices or making them more 

convenient (Li et al., 2020b; Li et al., 2020c). Financial and non-financial incentives are two 

types of policy incentives that are commonly used, and their incentive effects on consumers 

vary. Many studies have demonstrated the significance of financial incentive schemes, such as 

subsidies or tax credits (Noori and Tatari (2016); Harrison and Thiel (2017); Qian et al. (2019)). 

However, the primary issue with financial incentives as a temporary policy is that they create 

a significant burden on government coffers and are inequitable, comparable to social assistance. 

They are only accessible when purchasing an EV. Consequently, a global trend toward lowering 

or removing financial incentives may emerge. For example, Denmark and Georgia in the 

United States have abolished tax exemptions, while China has been eliminating purchasing 

incentives since 2020 (Li et al., 2020b).  

 In the literature, scholars have begun to focus on non-financial incentives as alternatives 

to financial incentives. According to Huang et al. (2021d), the willingness to pay (WTP) for 

free and immediate issues of a driver's license is greater than that for the subsidy program. This 

finding is consistent with those reported by Qian et al. (2019). Wang et al. (2017) divided the 

policies into four categories: EV production, purchase, use, and infrastructure. They found that 

consumers favor rules that exclude them from buying limitations (such as a license plate control 

policy) and driving restrictions, followed by discounted/free charges and access to bus lanes. 

Moreover, the influence of the personal carbon trading program and transferable driving credit 

program on EV adoption was experimentally examined by (Li et al., 2020c; Li et al., 2022), 

who concluded that both policies might hypothetically replace purchase subsidies. However, 

these studies focus more on EV-related policies, do not examine the impact of used battery 
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recycling-related policies, and lack a full life-cycle perspective on consumers' willingness to 

adopt EVs, as these policies minimize car aftermarket costs and environmental impact. To the 

best of our knowledge, this study is the first to use discrete choice experiments to examine 

consumer preferences for these regulations and how they affect the uptake of EVs.  

 Our research is also related to a growing body of literature on the impact of EV waste 

battery policies in recent years. Most of these studies concentrated on EV supply chain 

operations management and examined the environmental and economic advantages of reusing 

spent batteries. Gu et al. (2017), for example, examined the influence of government subsidies 

and battery recycling on the optimal EV production strategy and discovered that both policies 

help counterbalance the negative impact of loss aversion on the optimal production quantity 

and expected utility. Tang et al. (2019) examined the long-term effects of reward-penalty 

mechanisms in the EV battery recycling business. They discovered that the technique had a 

greater influence on recycling rates and social welfare. Ding et al. (2020) examined the impacts 

of collection and dismantling subsidies on businesses' optimum decisions and discovered 

optimal policy preferences for the various firm and government objectives. Li et al. (2021b) 

reviewed all the current policies for recycling EV batteries. Although these studies have 

examined the effects of battery policies, they have not empirically determined the effects of 

EV battery policies on consumer preferences and EV adoption intentions. To the best of our 

knowledge, only the work by Li et al. (2020a) is related to ours. They formed a policy set of 

used battery recycling policies with EV-related policies. They used a technology acceptance 

model to analyze the impact of the policy portfolios on EV adoption. However, they consider 

waste battery recycling policies as a policy and do not subdivide them. We present four types 

of waste battery recycling policies for analysis and use a discrete choice model for empirical 

analysis. Therefore, the more detailed setting and differences in research methods make our 

study significantly different from existing studies. 

 Regarding the modeling approach, our research is strongly connected to the discrete choice 

model (DCM), which allows us to separate the impact of decision characteristics and the trade-

off between choice attributes via repeated selections (Liebe and Meyerhoff, 2021). The 

revealed preference (RP) and the stated preference (SP) are two types of study data (SP). RP 

denotes data generated in real-world circumstances, whereas SP denotes various customer 

options in a hypothetical scenario (Kroes and Sheldon, 1988; Hensher et al., 2015). Researchers 

typically prefer SP. On the one hand, SP outperforms RP in simulating the decision between 

existing and exotic possibilities (Hensher et al., 2015). However, this is due to the limited 

availability of EVs in the market, which means market data are scarce (Mandys, 2021). In 
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summary, DCM is based on choice modeling, and in most situations, SP is employed. Section 

3.2 delves into specific DCM modeling concepts. DCM has also been utilized in a variety of 

disciplines, including vote choice (de Vries, 2007), travel mode selection (Yang et al., 2018), 

social policy (Stadelmann-Steffen and Dermont, 2020), hotel-booking channel selection (Xie 

et al., 2016), and vehicle choice (Li et al., 2020b). DCM is also commonly used for EV adoption 

(as mentioned in Section 2.1); therefore, it is appropriate for our investigation.  

 
3. Method 

 In this section, we focus on how to design the choice experiment, choose the model 

specification, and collect data using the method flowchart shown in Figure 2.  

 

 
Figure 2. Method flow chart. 

 
3.1 Choice experiment design 

  A core set of explanatory factors that characterize consumer preferences for EV adoption 

was determined based on a literature analysis and focus panel discussion (experts in social 

sciences and policymakers from academia and government). These variables were divided into 

two categories: product and policy attributes. Table 1 lists these attributes and their levels. Li 

et al. (2020b), the source of the product characteristics for this analysis, summarized the data 

relevant to the models represented in the Chinese EV market in 2020. The purchasing prices of 

EVs are RMB 200,000, RMB 240,000, RMB 280,000, and RMB 320,000. The driving ranges 

were 400, 500, and 600 km. The charging times were 30, 60, 180, and 360 min. These features 

are widespread in the Chinese EV markets (Li et al., 2020b).  
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Generate representative 
choice tasks

Step 3: Data collection Step 4: Results

Model estimation results

Matching
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Sample collection

 Panel-data mixed logit 
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Data input

Model input

Marginal WTP
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 As for policy attributes, the charging station density (the ratio of charging stations to gas 

stations) was set to 0.2, 0.4 and 0.6 (Li et al., 2018). Following Li et al. (2021b), the EPR policy 

states that the primary obligation of EV manufacturers is to recycle discarded batteries. In this 

case, the obligatory recycling battery value is expected to be 0.2, 0.4, or 0.6. The trade-in policy 

is an EV battery recycling approach (MIIT, 2018), popular in mobile phones, computers, and 

other sectors but implemented by only a few EV manufacturers in China. The value of an EV 

battery trade-in is estimated to be 10%, 20%, and 30% of the cost of a new battery. Following 

MIIT (2018), the battery decommissioning process can be separated into recycling, echelon 

utilization, and reclamation. Our study separated the amount of battery traceability into four 

stages: destination untraceable, traceable to recyclers, traceable to echelon utilization, and 

traceable to dismantle utilization. Consumer recycling subsidies are another strategy that China 

pushes producers to implement (MIIT, 2018), with the city of Shenzhen presently utilizing 

approximately 20 RMB/kWh (CAQN, 2018). As a result, our study considers three subsidy 

values: 15, 20, and 30 RMB/kWh.  

 
Table 1 
Attributes and their levels. 

Attributes 
No. of 
levels 

Levels 

Purchase price (RMB 10,000) 4 20, 24, 28, 32 

Driving range (km) 3 400, 500, 600 

Charging time (min) 4 30, 60, 180, 360 

Charging station density  3 2:10, 4:10, 6:10 

Mandatory recycling battery policy 3 20%, 40%, 60% 

Electric vehicle battery trade-in 
policy  

3 
10% of new battery price; 20% of new battery price; 
30% of new battery price 

Electric vehicle battery flow 
traceability policy 

4 

Destination untraceable; traceable to recyclers; 

traceable to echelon utilization; traceable to 
dismantle utilization 

Consumer recycling subsidies for 

electric vehicle batteries 
(RMB/kWh) 

3 15, 20, 25 

 

 Table 1 will generate  virtual choice tasks if a full factorial design is 

adopted (Hidrue and Parsons, 2015). Respondents are presented with 5,184 option sets, even 

though each set contains three alternative EV profiles. In practice, this is impossible; hence, 

creating and extracting the most representative choice tasks is recommended (Li et al., 2020b). 

After 15-20 profiles have been differentiated, the respondent feels exhausted, lowering choice 

efficiency (Allenby and Rossi, 1999). For that purpose, the researchers employed Sawtooth 

3 54 3 15552´ =
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Software's random task generating approach (Balanced Overlap) to create 20 efficient 

questionnaire versions with 100 total choice jobs (5 each version), each including three EV 

virtual product profiles and one "no-option." To avoid respondent fatigue, one set of 20 

questionnaires was chosen randomly and given to respondents, with just five alternatives for 

each respondent to pick from. The efficacy of the experimental design of this study can be 

assured, according to the Sawtooth software experimental report, when the research sample 

size is more than 350. An example task is depicted in Figure 3.  

 

  
Figure 3. Example Task used in the Survey (translated from the Chinese questionnaire). 

 

 The study questionnaire also contained a survey of sociodemographic factors in addition 

to the EV choice experiment. Table 2 lists all the variables in this study and how each variable 

was coded using a linear, dummy, and label coding. Linear coding was used for continuous 

variables, dummy coding for categorical variables that were not ordered, and label coding for 

ordered variables. ASC stands for "alternative specific constant" and is frequently used to 

Electric vehicle
option A

Electric vehicle
option B

Electric vehicle
option C

20 28 24
600 500 400
360 30 30

6:10 4:10 2:10

Destination
untraceable
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25 15 20

10% of new
battery price

30% of new
battery price

20% of new
battery price

Task 1 of 5

Imagine you are going to purchase a battery electric vehicle. Please evaluate the electric vehicle available
to you below and select the option you would most likely purchase. You may also chooose to not purchase
either of the electric vehicles.

Driving range (km)
Charging time (min)

Charging station density
(relative to gasoline station )

Electric vehicle battery flow traceability

 

Purchase Price (RMB10,000)

I WOULD CHOOSE: A                        B                        C                        D

ELECTRIC VEHICLE ATTRIBUTES

GOVERNMENT SUPPORTS

Electric vehicle battery trade-in policy
(Reducing the price of new batteries )

D

I would NOT  purchase either of the electric vehicle options

Mandatory recycling battery policy
 (Manufacturers according to their production)

Consumer recycling subsidies for electric
 vehicle batteries (RMB/kWh )
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examine respondents' heterogeneous preferences (Wang et al., 2017; Huang and Qian, 2018). 

Finally, an overview of the choice experiment was presented prior to the completion of the 

questionnaire. It explains the policies around EV batteries and the risks associated with 

batteries that are not recycled or disposed of appropriately. In addition, a pilot study with 50 

participants was conducted to assess the reliability and practicality of the questionnaire. As a 

result of this method, the questionnaire's content validity can be improved (Qian et al., 2019; 

Huang et al., 2021a). 

 
Table 2 
Variable descriptions and assignment. 

Variables 
Encoding 
Type 

Variable assignment 

Price (RMB 10,000) Linear 20, 24, 28, 32 

Driving range (km) Linear 400, 500, 600 

Charging time (min) Linear 30, 60, 180, 360 

Charging stations (relative to 

gasoline station) 

Linear 20%, 40%, 60% 

Mandatory recycling battery policy Linear 20%, 40%, 60% 

Electric vehicle battery trade-in 
policy (X% of new battery price) 

Linear 10%, 20%, 30% 

Electric vehicle battery flow 
traceability policy 

Dummy Destination untraceable = (0,0,0); traceable to 
recyclers = (1,0,0); traceable to echelon utilization = 

(0,1,0); traceable to dismantle utilization = (0,0,1) 
Consumer recycling subsidies for 
electric vehicle batteries 

(RMB/kWh) 

Linear 15, 20, 25 

ASC Dummy Select "Do not select any of them": ASC = 1; No 
"Do not select any of them" is selected: ASC = 0 

Gender Dummy Male = 0; Female = 1 

Age Label [18, 25) = 1; [25, 30) = 2; [30, 40) = 3; [40, 50) = 4; 

[50, 60) = 5 
Income Label (0, 100,000] = 1; (100,000, 200,000] = 2; (200,000, 

300,000] = 3; (300,000, +∞] = 4 

City Label Third-tier or below = 1; Second-tier = 2; New first-
tier = 3 

Education Label Junior college or below = 1; Bachelor's degree = 2; 
Master's degree = 3; Doctor's degree = 4 

Household car ownership Linear 0, 1, 2 

 

3.2 Data collection 

 After the design of the choice experiment, an SP survey was conducted to facilitate data 

collection. The SP survey consisted of three parts. In the first part, respondents were asked to 

understand the basic concepts related to the four used battery recycling policies. They 

completed a quiz to show that they truly understood these policy tools. In the second section, 

respondents were asked to read the options and complete different selection tasks to indicate 
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their preference for different vehicles. In the third section, questions related to 

sociodemographic characteristics were asked. After completing the SP survey design, data were 

collected for the study. 

 The study's data come mostly from Chongqing, Chengdu, and Kunming, which are 

national pilot cities for EV promotion in southwest China, and where respondents are quite 

familiar with EVs (Huang et al., 2021c; Huang et al., 2021d). The literature examines customer 

preferences for EVs in Southeast China and first-tier cities, such as Huang and Qian (2018), Li 

et al. (2020b) and Huang et al. (2021d). The Credamo platform was used for data collection 

between August 24, 2021, and September 1, 2021, paid usage of the Credamo platform1 for 

data collecting. The platform, it should be noted, provides precise research services and helps 

the researcher increase data dependability by removing 30% of the total questionnaires. The 

following were the precision service rules used in this study: (1) the three target cities of 

Chongqing, Chengdu, and Kunming were chosen to limit the number of respondents; (2) 

respondents under the age of 18 or over the age of 60 are not considered possible EV buyers, 

as China's legal driving age is 18, and EV demand is usually lower for those over 60. Two new 

questions were added to the sample data processing to filter out invalid data: (1) Do you believe 

that EVs might be prohibited from the road owing to traffic regulations? (2) Do you have a 

driver's license or do you intend to purchase a car within the next 3-5 years? Respondents who 

replied "YES" to the first question but "NO" to the second were deemed unqualified, either 

because the surveys were not carefully studied before being answered or because the 

respondents were not potential EV buyers (Wang et al., 2017; Huang et al., 2021c). Finally, 

with a valid questionnaire rate of 77%, 552 valid data points (717 total sample sizes) were 

gathered. 

 

3.3 Model specification 

 Our research used a discrete choice experiment survey. Respondents were asked to select 

the best product option based on their preferences among several virtual EV profiles, and their 

WTP was calculated. The customer is portrayed as rational in this process, and he or she strives 

to maximize his or her utility by evaluating and choosing different product attributes 

(McFadden, 1986; Train, 2003; Li et al., 2022). The option with the highest utility is chosen in 

a given choice set ( ). As indicated in Eq. (1), the utility of an option ( ) for respondents 

 
1 https://www.credamo.com/ 

C inU
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( ) comprises an observable or systematic component of the explanatory variable ( ) and 

an unobserved random component or error term ( ).  

 (1) 

Where the observable part is a linear function of the observed attributes ( ),  is the vector 

of parameters to be estimated for all attributes. Thus, the probability of respondents  

selecting an alternative  instead of an alternative  from a certain choice set  can be 

described in Eq. (2): 

 (2) 

 However, the above is a conventional multinomial logit model (MNL) with the underlying 

assumption of independence of irrelevant alternatives (IIA); that is, the errors between different 

alternatives are independent and identically distributed (IID) with a type I extreme value 

distribution (McFadden, 1986; Cameron and Trivedi, 2005). In our study's choice set, three EV 

options and one "no-option" alternative are included, which do not meet the IIA assumptions 

(Li et al., 2020b). To loosen the IIA requirement imposed by McFadden's choice model, the 

panel-data mixed logit model (P-MXL) was utilized as an extension of MNL to mimic the 

correlation of choices across alternatives by defining random coefficients for alternative-

specific variables. Eq. (3) can be used to rewrite the utility that the respondent  obtains from 

an option  in the choice scenario  for P-MXL: 

 (3) 

Where  are random coefficients that change with the respondents and  is a vector of 

alternative-specific attributes of respondent  selecting an alternative  in the choice 

scenario .  is the fixed coefficient of , a vector of alternative-specific attributes.  

is a fixed alternative-specific coefficient of , a vector of case-specific attributes.  is a 

random term that follows type-I extreme value distribution. The probability of choosing 

alternative  ( ) for respondent  in  ( ) is represented by Eq. (4): 

 (4) 
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Note that the density function of  is , where  is a fixed parameter of the 
distribution. 
 Because it does not have a closed-form solution, the integral in (4) cannot be solved 

accurately and must be approximated. In other words, the model parameters can only be 

estimated using the maximum simulated likelihood, which necessitates sufficiently large 

randomly selected data to ensure consistency in the estimation (Wang et al., 2017; Li et al., 

2020b). To optimizes the simulated log-likelihood estimate, 500 scrambled Halton sequences 

were used.  

 As for WTP, when utility is specified as in (3), the partial derivative of utility  with 

respect to the k-th attribute  (or ) and the cost attribute  (or ) is denoted 

as . Letting this expression equal to 0 and solving for  

yields in (5): 

 (5) 

Eq. (5) represents the change in cost incurred to keep the utility constant for a change in , 

that is, the WTP for . 

 

4. Results 

4.1 Sample description 

 Table 3 shows the sociodemographic characteristics of the 552 respondents, revealing that 

males accounted for 52.9 percent of the total, a somewhat larger number than females. The 

young and middle-aged demographic, which should be the major force in acquiring EVs, 

accounted for 63.04 percent of the respondents, 25-40 years old. Furthermore, 80.65% were 

from new first- or second-tier cities, with 71.56% earning a higher education. In terms of their 

family's yearly income, 44.93% earned between RMB 100,000 and RMB 200,000, whereas 

21.74% earned between RMB 200,000 and RMB 300,000. Because this is a precise poll, 66.49% 

of the respondents' households possess a car, with 15.76% owning two. Furthermore, to provide 

a more realistic picture of respondents' opinions, we examined consumers' judgments of EVs' 

environmental friendliness, i.e., “to what degree do you believe electric vehicles can 

considerably help the environment?”. According to the survey, 75% of people believed that 

EVs would assist the environment, while 25% were skeptical. 
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Descriptive statistics of respondent characteristics. 

Variables Definition Answer Percentage (%) 

Gender Gender of the respondent Male 52.90 

Female 47.10 

Age Age of the respondent [18, 25) 11.59 

[25, 30) 39.13 

[30, 40) 23.91 

[40, 50) 19.20 

[50, 60) 6.16 

Income Annual family income of the respondent �10,000� 21.37 

(100,000, 200,000] 44.93 

(200,000, 300,000] 21.74 

>300,000 11.96 

City City level of the respondent New first-tier 47.10 

Second-tier 23.55 

Third-tier or below 29.35 

Household car 

ownership 

Household car ownership of the 

respondent 

0 17.75 

1 66.49 

2 15.76 

Education Educational background of the respondent Junior college or 

below 
28.44 

Bachelor's degree 43.84 

Master's degree 22.64 

Doctor's degree 5.07 

Environmental 

friendliness of 

electric vehicles 

To what degree do you believe electric 

vehicles can considerably help the 

environment 

Disapprove 6.70 

Undecided 18.30 

approve 48.91 

Strongly approve 26.09 

 
4.2 Model estimation 

  The P-MXL approach is used in this section to study customer preferences for EVs by 

adding influencing elements one by one. The projected results of P-MXL with the error 

component specifications are listed in Table 4. First, all the coefficients of vehicle attributes 

are highly significant at the 1% significance level, including purchase price, charging time, 

driving range, and charging station density, as shown in column (1) of Table 4. The first two 

attributes (price and charging time) have a negative impact on customer utility, whereas the 

others have a positive impact. This indicates that the greater the price and the longer the 

charging time, the less likely buyers will purchase an EV. The higher the number of charging 

stations and the larger the driving range, the more likely buyers will purchase EV.  
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 Second, all the coefficients of policy attributes are highly significant at the 1% significance 

level, including Policy_MRB, Policy_BTI, Policy_BFT, and Policy_CRS, as shown in columns 

(2) – (5) of Table 4. Policy_MRB has a larger estimated coefficient than Policy_BFT, 

suggesting that consumers prefer production-oriented recycling policies for used batteries to 

consumption-oriented policies. Specifically, "Policy_MRB" is used as an explanatory variable 

in column (2) of Table 4 to examine how the mandated recycling of end-of-life batteries (EPR) 

influences consumer adoption of EVs. The estimated results demonstrate that this policy is 

significant for consumer utility at the 1% confidence level. This indicates that consumers are 

worried about end-of-life battery concerns and are more likely to purchase EVs from 

responsible producers. "Policy BTI" is used in column (3) to determine whether customers are 

concerned about the trade-in policy for old batteries. If the end-of-life battery can be redeemed 

to reduce the price of a new battery by 10%, then “Policy_BTI” is 1 and it can increase to 3, 

meaning that the redemption reduces the price of a new battery by 30%. The estimated results 

indicate that "Policy_BTI" is significantly positive for consumer utility. The larger the 

manufacturer's trade-in offer, the more willing consumers are to buy EV products. In column 

(4), “Policy_BFT” is added to measure whether consumers are concerned about the traceability 

of the flow of end-of-life EV batteries. According to Table 2, the flow is not traceable as a 

reference group, and the results show that increasing the traceability of used batteries 

significantly affects the consumer adoption of EVs. In column (5), “Policy_CRS” is used to 

evaluate whether subsidies for battery recycling practices help stimulate consumers' 

willingness to buy EVs. The subsidy amount was divided into 15, 20, and 25 RMB/kWh. The 

estimated results show that "Policy_CRS" has a significantly positive relationship with 

consumer utility. The more subsidies there are for end-of-life battery recycling, the more likely 

consumers will buy EVs. 

 Third, in terms of customer perception and heterogeneity, most coefficients of the 

demographic factors are significant at the 1% significance level, except for income. This 

implies that environmental conservation remains a strong intrinsic motivator for EV adoption, 

with typical youth groups in higher-tier cities favoring EVs. As defined in Section 3.1, ASC is 

often used in MXLs to analyze consumer heterogeneity preferences (Wang et al., 2017; Huang 

and Qian, 2018). Our study also uses ASC of “No-option” to analyze individual heterogeneous 

preferences. As for individual characteristics, estimated results show only “Income�ASC” is 

not significant. Specifically, “Gender�ASC” is positively significant at the 10% significance 

level, implying that men are more likely to buy EVs. “Age�ASC” is positively significant at 
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a 5% significant level. This implies that younger people are more likely to buy EVs, while 

older people tend to stay put or maintain the status quo. “Education�ASC” is positively 

significant at a 5% level, indicating that the highly educated group prefers to maintain the status 

quo. “City�ASC” is negatively significant at a 1% significant level, meaning consumers living 

in high-level cities are more willing to buy EVs, such as the new first-tier city, and consumers 

in lower-level city classes are more willing to maintain the status quo. Finally, “Household car 

ownership�ASC’ is negatively significant at the 5% significance level. This means that 

consumers who already own family vehicles are more likely to purchase EVs. 

 

Table 4 
Product and policy attribute preferences of consumers. 

Variables (1) (2) (3) (4) (5) 

Vehicle attributes      
   Purchase price -.037*** -.037*** -.036*** -.034*** -.035*** 

 (.006) (.006) (.006) (.006) (.006) 
   Charging time -.002*** -.002*** -.002*** -.002*** -.002*** 
 (0) (0) (0) (0) (0) 

   Driving range .002*** .002*** .002*** .002*** .002*** 
 (0) (0) (0) (0) (0) 
   Charging station density .46*** .448*** .457*** .594*** .595*** 
 (.128) (.13) (.13) (.131) (.132) 

Policy attributes      
   Policy_MRB  .562*** .552*** .546*** .561*** 
  (.161) (.161) (.165) (.166) 

   Policy_BTI   .059* .075** .079** 
   (.031) (.032) (.032) 
   Policy_BFT (ref. Destination 

untraceable) 

     

   Traceable to recyclers    .545*** .548*** 
   (.085) (.085) 

   Traceable to echelon utilization    .691*** .698*** 
   (.081) (.081) 

   Traceable to dismantle utilization    .825*** .837*** 
   (.082) (.082) 

   Policy_CRS     .017*** 
     (.006) 
Demographic Factors Interacted with ASC 

   Gender�ASC .551* .584* .571* .558* .571* 

 (.306) (.322) (.316) (.309) (.315) 

   Age�ASC .379** .395** .387** .38** .386** 

 (.159) (.166) (.163) (.16) (.163) 

   Income�ASC .054 .064 .061 .048 .05 

 (.196) (.205) (.201) (.195) (.198) 

   Education�ASC .516** .535** .524** .514** .52** 

 (.22) (.231) (.226) (.22) (.224) 

   City�ASC -.858*** -.895*** -.879*** -.858*** -.869*** 

 (.249) (.26) (.256) (.251) (.255) 
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   Household car ownership�ASC -.649** -.686** -.67** -.64** -.651** 

 (.287) (.301) (.295) (.286) (.292) 

Log simulated likelihood -
2343.451 

-
2337.245 

-
2335.444 

-
2272.149 

-
2268.295 

Standard errors are in parentheses 
*** p<.01, ** p<.05, * p<.1  

 
4.3 Willingness to pay 

 Table 5 shows the marginal WTP for the vehicle and policy attributes based on the 

computed coefficients in Table 4. These values were calculated as the ratio of the change in the 

utility value of the corresponding attributes to the purchase price. First, we find that consumers 

have a greater WTP for policy attributes and a lower WTP for vehicle attributes, as shown in 

Table 5. Specifically, consumers have the greatest WTP for the policy (traceable to dismantle 

utilization) of all attributes, willing to pay RMB 239,142.86 than destination traceable. Second, 

consumers appreciate producer-oriented incentives more than consumer-oriented incentives, 

such as “Policy_MRB” and “Policy_BFT” with additional WTP of RMB 160,285.71 and RMB 

239,142.86, respectively. Third, consumers place a larger WTP on charging station density than 

on vehicle attributes. According to Table 5, in terms of charging station density, consumers are 

prepared to pay an additional RMB 170,000 for a 20% increase in charging stations while only 

willing to pay RMB 571.43 for the next level of improvement in charging time and driving 

range.  

 
Table 5 
Marginal WTP for changes in vehicle and policy attributes.  

Attribute WTP (RMB) 

Charging time 571.43 

Charging station density 170000.00 

Driving range 571.43 

Policy_MRB 160285.71 

Policy_BTI 22571.43 

Policy_BFT (ref. Destination untraceable) 
 

Traceable to recyclers 156571.43 

Traceable to echelon utilization 199428.57 

Traceable to dismantle utilization 239142.86 

Policy_CRS 4857.14 

 
5. Discussion 

5.1 Theoretical contributions 
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 Our work adds to the current body of knowledge in two ways: the first is related to the 

effect of battery recycling policies in encouraging EV adoption, and the second is related to the 

use of discrete choice models to investigate the EV battery policy effect.  

 First, it contributes to the literature by exploring the influence of battery recycling-related 

policies on EV adoption, which emphasizes EV battery recycling policies. As mentioned in the 

literature review, previous studies have placed more emphasis on the impact of EV-related 

policies, such as subsidies (Wang et al., 2018; Xiao et al., 2020), taxes (Liu et al., 2017), license 

plate lottery (Zhuge et al., 2020), free vehicle licensing (Qian et al., 2019), carbon trading (Li 

et al., 2020b) and related policy mix (Li et al., 2020c), and ignored the impact of end-of-life 

battery-related policies on EV adoption. Moreover, existing studies fail to examine the impact 

of non-financial policies on EV adoption, particularly battery recycling, from a full life-cycle 

perspective, as these policies can minimize vehicle aftermarket costs and environmental 

impacts. To the best of our knowledge, this study is the first to use discrete choice experiments 

to examine consumer preferences for these regulations and how they affect the uptake of EVs 

from a full life-cycle perspective. Our study indicates that all EV battery recycling policies 

significantly impact EV adoption. We quantify the impact of the four policies on EV adoption, 

as shown in Table 5. Results indicate that consumers seem to be more willing to pay for 

“Policy_MRB,” “Policy_BTI,” and “Policy_BFT” and less willing to pay for the remaining 

two consumer-side incentives (see Table 5). This may be due to the current lack of recycling 

mechanisms and systems for EV batteries in China (Tang et al., 2019; Li et al., 2021b). As a 

result, our findings add to the existing literature and provide a better understanding of the 

factors influencing EV adoption.  

 The second implication is the application of discrete choice models to study EVs using the 

battery policy effect. Previous research has focused on the influence of battery recycling 

policies on EV manufacturing decisions and the use of game theory models (Gu et al., 2017; 

Tang et al., 2019; Ding et al., 2020). These studies also regard the battery recycling policy as a 

recycling subsidy, which is rather monolithic and general. In contrast, our study refines 

recycling subsidy policies and focuses on the influence of these policies on consumer behavior. 

The results reveal that "Policy_MRB" and "Policy_BFT" have more market power, which 

opens up a new situation for studying EV producers' operational decisions. 

 

5.2 Managerial implications 

  Governments and producer policymakers will benefit from the findings of this study. First, 

consumers place a larger WTP on charging station density than that for other vehicle attributes. 
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This finding is consistent with the existing research and suggests that convenience factors have 

become more important for consumer adoption (Globisch et al., 2019; Hardman, 2019; Huang 

et al., 2022). In this study, this may be because participants of the survey were mostly 

automobile owners who had a better grasp of EVs and placed greater emphasis on convenience, 

particularly in light of China's multiple non-fiscal policy requirements, such as limitless traffic, 

unlimited numbers, and access to bus lanes (Wang et al., 2018; Huang et al., 2021c). 

Insufficient charging infrastructure has been a key impediment to EV adoption, with a charging 

facility to EVs ratio of 1:3.5 in China in 2019 (Huang et al., 2021c; Huang et al., 2022). 

Consequently, the government's responsibility to increase the market supply of charging 

stations remains critical.  

 Second, consumers have the greatest WTP for the policy (“Policy_MRB” and 

“Policy_BFT”) among the policy attributes. This means that EV battery policies play an 

important role in EV adoption, with customers preferring producer-oriented policies to 

consumer-oriented incentives. This is a fascinating finding, and one possible explanation is the 

insecurity caused by an imperfect recycling system for EV batteries. There is currently no 

complete EV waste battery recycling system in China, and relevant vehicle enterprises lack an 

incentive to recycle waste batteries (Ding et al., 2020; Li et al., 2020d). Consumers seem to be 

concerned that in the absence of a complete battery recycling system. Their adoption of EVs 

will cause more harm to society and the environment; thus, consumers also expect 

manufacturers to take the initiative to take responsibility for recycling used batteries, especially 

by establishing relevant recycling mechanisms, including disposal and tracking. This finding 

supports the idea that manufacturers should establish a recycling system that allows customers 

to send back their spent EV batteries for reuse, recycling, or disposal (Li et al., 2021b). In 

addition, this finding also supports the use of the EPR policy in the field of EVs, and this policy 

was proposed by the New Energy Automobile Industry Development Plan (2021-2035)" 

(GOSCC, 2020). As a result, vehicle companies should actively participate in developing 

battery recycling systems to stimulate potential consumer demand for EVs. In contrast, 

government incentives need to prioritize incentives for car companies to establish recycling 

systems, followed by incentives for consumers to send back used batteries.   

 

6. Conclusion and policy implications 

Large-scale EV battery retirement poses a risk to society and the environment, and the 

lack of a recycling system for used batteries may deter consumers from purchasing EVs. 

Previous research has examined consumer policy preferences and their influence on EV 
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adoption. However, none have investigated the impact of policies linked to battery recycling 

on customer preferences and EV adoption. To close this gap, we utilized a discrete choice 

model to assess 552 real consumer choice data items from Southwest China acquired via an 

online survey. Our study seeks to determine whether policies on used batteries might affect 

consumer adoption of EVs given the current lack of or deficiencies in the battery recycling 

system used. Which recycling policies should consumers take seriously, and how much of a 

quantitative effect do they have on EV adoption? This study addresses the knowledge gaps 

mentioned above.  

Our study puts forward several findings and implications. First, 75% of the respondents 

felt that electric vehicles enhanced the environment and were eager to embrace them. However, 

the lack of strong recycling policies may hinder their adoption of electric vehicles. Specifically, 

the four battery recycling policies significantly impact electric vehicle adoption. This means 

that consumer environmental awareness is becoming a significant psychological barrier to EV 

adoption. Therefore, from a consumer perspective, it is crucial for EV adoption to focus on 

waste battery recycling and adhere to the extended producer responsibility system for waste 

batteries. Second, consumers appreciate producer-oriented incentives more than consumer-

oriented incentives to a lesser extent. This means that establishing an EV waste battery 

recycling system should adhere to the strategy of producer responsibility as the main focus, 

supplemented by the consumer. Therefore, producers should actively assume responsibility for 

EV waste battery recycling and establish a waste battery recycling system. Government policy 

design should prioritize supporting the establishment of the recycling system, followed by 

encouraging consumer participation. Third, consumers place a larger WTP on charging station 

density than vehicle attributes. The shortage of charging service facilities has gone beyond the 

technical shortcomings of the vehicles themselves. It is more important to vigorously improve 

the level of service of supporting facilities to encourage EV adoption. Therefore, the 

government and enterprises should shift their focus to the investment and layout of charging 

facilities, such as developing new business models and setting reasonable tariffs, to solve the 

problem of difficult charging. Finally, in terms of customer perception and heterogeneity, 

environmental conservation remains a strong intrinsic motivator for EV adoption, with typical 

youth groups in higher-tier cities favoring EVs adoption. Consequently, while developing 

appropriate initiatives, the government and enterprises should pay more attention to this group's 

demands and proposals. 

Compared to previous studies, our study is novel in the following regard. First, we 

developed a novel discrete choice model that accounts for the influence of battery recycling 
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policies on EV uptake. To the best of our knowledge, this study is the first to propose a choice 

model that considers the impact of battery recycling policies. Second, we refine the battery 

recycling policies and quantify the impact on EV adoption. Our research shows that consumers 

prefer production-oriented policies to consumer-oriented ones. The research has not yet 

proposed this finding, and it provides a theoretical foundation for production-side battery 

recycling policies such as extended producer responsibility. 

Finally, despite the significant advances proposed here, this study has a few limitations. 

First, this analysis only considers four sample policies from the existing EV recycling policies; 

there may be more relevant but unconsidered regulations. Future studies should examine the 

policy framework in greater detail and develop more persuasive measures to encourage the use 

of EVs and their recycling systems. Second, while this study reveals consumer preferences for 

EV recycling policies, the underlying influencing mechanisms remain unknown. Under market 

constraints, future studies should reveal how these policies affect firms’ operational decisions, 

such as production and pricing. Third, this study only analyzes the impact of battery recycling 

policies on EV adoption, and a potentially new circular causality seems to be forming; that is, 

whether firms recycle batteries depends on consumer adoption of EVs and whether consumers 

adopt EVs depends on whether used batteries can be recycled effectively. Future research could 

reveal the impact of this kinetic relationship through simulation analysis. 
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