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Abstract: We construct combinations of three skew ideal lenses whose mapping between object
and image space corresponds to a rotation of the object space around a common intersection line
of all included lenses. The angle of image rotation ∆θ can be set arbitrarily within a range (0, 2π)
by tuning the parameters of the lenses. The resulting skew-lens image rotator could form the
basis of novel applications, e.g. simulating curved spaces.
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1. Introduction

Although geometrical optics is an ancient and well-developed field of research [1,2], new ideas
keep emerging. Transformation optics [3–6], the science of designing inhomogeneous material
structures that distort light rays according to the eponymous coordinate transformation, is the
source of many highly original devices. Unfortunately, it is usually very challenging, sometimes
even impossible, to fabricate the material structures prescribed by transformation optics [7,8].
This difficulty has motivated a new direction of research: realising transformation-optics ideas
using readily available materials, such as crystals available in bulk [9,10], and standard optical
elements, for example lenses [11,12].

We recently constructed, theoretically, an omnidirectional transformation-optics device purely
from ideal thin lenses [12]. The device can be interpreted as an omnidirectional lens [12] and as
various types of invisibility cloak [13]. The ideal lenses forming the device are in general not
parallel, a situation in which standard physical lenses do not work particularly well. However,
freeform lenses or phase holograms can be designed such that they redirect specific ray bundles
(such as the rays that contribute to the image seen from a particular viewing position) exactly like
ideal lenses, and the development of metalenses, lenses realised in the form of metasurfaces, is
progressing rapidly [14–17].

Studying the imaging properties of our lens-based transformation-optics device motivated
the development of a simplified description of imaging with pairs of skew ideal lenses [18]. In
this description, the concept of transverse planes is generalised to two conjugate sets of parallel
planes, one in object space, the other in image space. In general, the planes in one set are rotated
relative to those in the other. The longitudinal direction in object space is the same as that in
image space, indicating that the two spaces are sheared with respect to each other.

Here we show that the addition of another lens can result in the relationship between object and
image space being a pure rotation around the line where the planes of all three lenses intersect,
by an arbitrary angle in a range (0, 2π). The direction of the rotation axis is therefore close to
perpendicular to the line of sight through the three lenses, but we speculate that replacing the
three lenses by appropriate omni-directional lenses [12] can result in image rotation around an
axis at any arbitrary angle to the line of sight, including parallel to it. We thus present, for the
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first time to our knowledge, an optical system that employs tilted lenses for image rotation. We
also discuss the physical realisability of tilted-lens image rotators.

This paper is structured as follows. In section 2 we review the description of pairs of skew
ideal lenses developed in Ref. [18]. We describe the idea for achieving image rotation with three
ideal lenses in section 3 and work out the mathematical details in section 4. Sections 5 and 6
discusses the physical realisability and potential applications of three-lens image rotation. In
section 7 we discuss the conditions on the positions of the principal points in combinations of
ideal lenses that satisfy the loop-imaging condition, which is important in the construction of
ideal-lens transformation-optics devices. We present a concluding discussion in section 8.

2. Two skew-lens imaging

We define an imaging device in a standard way as a device which changes the directions of light
rays passing through such that all light rays emerging from a point Q intersect again at point Q′.
Point Q — an object — is said to be in an object space and point Q′ — an image — is said to be
in an image space. A real image is created at the actual light-ray intersection, whereas a virtual
image is created at an intersection of backward elongations of the light rays that otherwise do not
intersect.

Our design of a skew-lens image rotator arises from the theory of imaging due to a system of
two skew lenses, presented in Ref. [18]. Therefore, we will provide an overview of this theory
in the following lines; then, we will extend this concept to design a system of ideal lenses that
provides a mapping from object space to image space that corresponds to a rotation of the object
space, an image rotation. Reference [18] constructs skew coordinate systems for object space
and image space in which the imaging equations take the form of the ideal-lens mapping. The
corresponding coordinates are called lens-imaging coordinates. The object-space coordinate
system is defined by the set of basis vectors (u, v̂, ŵ), the image-space coordinate system by the
basis-vector set (u′, v̂′, ŵ′) (Fig. 1). Throughout this paper, we use the notation that hats denote
unit vectors (note that u and u′ are not unit vectors), and that unprimed entities refer to object
space and primed entities to image space. The basis vectors ŵ and ŵ′ are identical and coincide
with the direction of two-lens optical axis, the straight line passing through the principal points
of both lenses, P1 and P2. In this paper, we will assume that the vector P2 − P1 is perpendicular
to the intersection line V of the included lenses. Then, the projected focal lengths are defined
with respect to this two-lens optical axis, as gi = fi/cos φi, where φi is the angle between the
normal of the ith lens and the two-lens optical axis. In terms of these projected focal lengths, the
two-lens system has an effective focal length

fD =
(︃

g1g2
g1 + g2 − d

)︃
, (1)

where d is the distance between the principal points of the individual lenses (P1 and P2 in
Fig. 1). We will call d the scaling parameter in this paper. The remaining basis vectors u, v̂ span
the object-sided transverse planes; similarly, u′, v̂′ span the image-sided transverse planes. As
defined, the object-sided transverse planes form a parallel set of planes which is imaged due
to the two-lens system to another set of parallel planes, the image-sided transverse planes. In
general, the two sets of planes are not parallel to each other. In the global, Cartesian, x, y, z
coordinate system defined in Fig. 1 (chosen with its origin at P1; the z axis is pointing towards
P2, that is, along the two-lens optical axis, the y axis is parallel with the intersection line V of
the included lenses, and the x axis is perpendicular to both y and z), the position vectors of the
principal points P1 and P2 are P1 = (0, 0, 0) and P2 = (0, 0, d), the object-sided transverse planes
form an angle θ with the x axis and the image-sided transverse planes an angle θ ′. The difference
|θ ′ − θ | can be either bigger or smaller than the difference |φ2 − φ1 |; Fig. 1 shows the case when
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|θ ′ − θ |> |φ2 − φ1 |. We will specify the allowed ranges of all angular parameters in detail in
Section 4, where the relevant formulas are provided.

L1 L2

P P'P1 P2

V

y=y'

x=x'

z=z'

Fig. 1. Geometry and lens-imaging coordinates of a system of two skew lenses, L1 and
L2 (thick solid planes). We place the origin of a (global) Cartesian coordinate system
(coordinates x, y, z; the axes are shown as solid gray arrows) on L1’s principal point, P1,
such that the z axis points towards L2’s principal point, P2. P and P ′ are the object- and
image-sided principal planes of the combination; the principal points of the combination, P
and P′, coincide with the intersection of the corresponding principal planes and the z axis.
The system of object-sided lens-imaging coordinates is defined by the basis vectors u, v̂ and
ŵ (thick arrows) and origin P, the system of image-sided lens-imaging coordinates is defined
by the basis vectors u′, v̂′ and ŵ′ and origin P′. The lenses make angles φ1 and φ2 with
the x axis, the principal planes angles θ and θ ′; note that couterclockwise arrows indicate
positive angles, clockwise arrows negative angles.

Now, we will briefly review the derivation of the two-lens imaging equation. Let us denote
Pz = dfD/g2 and P′

z = d − dfD/g1 the z coordinates of the two-lens object-sided principal point,
P, and of the image-sided principal point, P′, respectively [18]. Then, the equations for the
transverse planes can be written in the form

x = − cot θ (z − Pz − w),
x′ = − cot θ ′ (z′ − P′

z − w′).
(2)

It can be seen that the object-sided transverse plane given by Eq. (2) intersects the z axis at
point Pz + w; similarly, the image-sided transverse plane intersects the z axis at point P′

z + w′.
The lengths of the basis vectors u and u′ are chosen such that

x = u, x′ = u′, (3)

and the basis vectors v̂ and v̂′ are chosen such that

y = v, y′ = v′. (4)

Equations (2), (3) and (4) provide coordinate transformations (x, y, z) → (u, v, w) and
(x′, y′, z′) → (u′, v′, w′), which can be written in the following matrix form:

⎛⎜⎜⎜⎜⎝
u

v

w

⎞⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎝
1 0 0

0 1 0

tan θ 0 1

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

x

y

z − Pz

⎞⎟⎟⎟⎟⎠
, (5)



Research Article Vol. 30, No. 15 / 18 Jul 2022 / Optics Express 25961

⎛⎜⎜⎜⎜⎝
u′

v′

w′

⎞⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎝
1 0 0

0 1 0

tan θ ′ 0 1

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

x′

y′

z′ − P′
z

⎞⎟⎟⎟⎟⎠
. (6)

These transformations correspond to those presented in Eqs (44) and (45) in Ref. [18] for
α = 0. Transformations (6) and (7) ensure that the origin of the object-sided lens-imaging
coordinate system coincides with the object-sided two-lens principal point, P, and that the origin
of the image-sided lens-imaging coordinate system coincides with the image-sided two-lens
principal point, P′. As mentioned at the beginning of this section and shown in Ref. [18], when
expressed in lens-imaging coordinates, the imaging equation due to two skew lenses is of the
standard form ⎛⎜⎜⎜⎜⎝

u′

v′

w′

⎞⎟⎟⎟⎟⎠
=

fD
w + fD

⎛⎜⎜⎜⎜⎝
u

v

w

⎞⎟⎟⎟⎟⎠
. (7)

The image position can be expressed in the global (x′, y′, z′) coordinate system by applying the
inverse coordinate transformation (u′, v′, w′) → (x′, y′, z′),

⎛⎜⎜⎜⎜⎝
x′

y′

z′ − P′
z

⎞⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎝
1 0 0

0 1 0

− tan θ ′ 0 1

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝
u′

v′

w′

⎞⎟⎟⎟⎟⎠
, (8)

which can easily be derived from Eqn. (6). Combining Eqs. (8), (7) and (5), we finally obtain the
two-lens imaging equation in the global coordinate system:

⎛⎜⎜⎜⎜⎝
x′

y′

z′ − P′
z

⎞⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎝
1 0 0

0 1 0

− tan θ ′ 0 1

⎞⎟⎟⎟⎟⎠
fD

w + fD

⎛⎜⎜⎜⎜⎝
1 0 0

0 1 0

tan θ 0 1

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

x

y

z − Pz

⎞⎟⎟⎟⎟⎠
. (9)

Below, we employ this equation as the basis for our derivation of an imaging equation due
to three skew lenses, and we show that such a combination (under certain circumstances) can
provide an image rotation.

3. How to perform image rotation with three skew lenses

The idea how to obtain image rotation with a combination of three lenses is shown in Fig. 2(a).
Consider a system D of two skew lenses, with principal planes P, P ′ (which are placed before,
and after the two-lens system for the particular case shown in Fig. 2(a); for a different set of
parameters, however, the principal planes P and P ′ can be also placed such that both/one of
them is located between the lenses) and effective focal length fD (which can be both positive and
negative; Fig. 2(a) shows the case when fD<0). A set of planes which are parallel with P — the
object-sided transverse planes — are imaged due to D to a set of planes which are parallel with
P ′ — the image-sided transverse planes.

Since the object- and image-sided transverse planes form an angle ∆θ = θ ′ − θ, the mapping
due to the system D corresponds to the one due to a single lens, but with sheared object and image
spaces. If another shearing is implemented, however, such that it exactly cancels the original one,
the resulting mapping might correspond to the rotation of the object space, an image rotation.
The additional shearing can be performed if one inserts lens L3 into the imaging system such
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hf'D = g3

u=u'
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h

Fig. 2. (a) The construction of the three-lens image rotator starts with a system D of two
skew lenses, L1 and L2, characterised by its effective focal length, fD, the two-lens optical
axis, which coincides with the w and w′ axes of the lens-imaging coordinate systems, the
object- and image-sided focal planes F and F ′, and the object- and image-sided principal
planes P and P ′. To find the position of a principal point P3 of the third lens L3 such
that the combination D+L3 provides an image rotation, a bundle of parallel light rays (red
lines), incident on D from a direction that is perpendicular to the object-sided principal plane
P, is employed. Lens L3 is placed in the image-sided principal plane P ′ of the two-lens
system D, such that its object-sided focal point coincides with the point X, where the bundle
of rays intersects the image-sided two-lens focal plane, F ′. (b) The same system of three
lenses in lens-imaging coordinates (u, v, w) acts like a combination of two coplanar lenses of
opposite focal lengths, fD and −fD, offset in the transverse direction. The mapping due to
this lens combination — a pure shearing — exactly cancels the shearing of the lens-imaging
coordinate system, so that the mapping in the global Cartesian coordinates is a pure rotation
around the intersection line V. (c) A demonstration of the mapping of object-space point
O due to a system T = D + L3. When imaged due to all included lenses, the final image
O′′′ (O′ corresponds to an intermediate image due to lens L1, which is then re-imaged to
point O′′ due to lens L2) coincides with O, rotated by angle ∆θ around V. This rotation
is visualised by white solid curve: both O and O′′′ lie on an arc of a circle centered at V
(curved segment); the straight segments determine the rotation angle ∆θ.
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that the plane of L3 coincides with P ′ and the object-sided focal plane of L3 coincides with the
image-sided focal plane F ′ of the system D. By doing so, all the object-sided transverse planes
will be imaged to the image space due to this new system T = D + L3 with a magnification equal
to +1 (i.e. non-inverted). To cancel the coordinate shearing due to D, the principal point P3 is
required to be placed to a position such that all lines, which are perpendicular to the object-sided
transverse planes, become perpendicular also in the image space. To find the desired position of
P3, we will employ a collimated ray bundle, perpendicular to the object-sided principal plane
P. This bundle is focused to a point X in the image-sided focal plane F ′ due to the system D.
Then, the principal point P3 of lens L3 should be placed within the image-sided principal plane
P ′ of D such that the object-sided focal point of L3 coincides with point X. By doing so, the ray
bundle will be collimated again and perpendicular to the image-sided principal plane P ′ after
transmission through the lens L3 (see Fig. 2(a)).

One can see that the projected focal length g3 of lens L3 is exactly opposite to the effective
focal length fD of the two-lens system D, i.e. g3 = −fD. There is no shearing of the image due to
three-lens system T: the parallel ray bundle considered above was chosen to be perpendicular to
the transverse planes both in object and image space; as object-space points on one such ray are
imaged to image-space points on the same ray, planes that are perpendicular to the object-sided
transverse planes are therefore imaged to planes that are perpendicular to the image-sided
transverse planes again. This means that the mapping due to the three-lens system T = D + L3 is
a pure rotation by an angle ∆θ = θ ′ − θ. Figure 2(c) demonstrates this image rotation: point O′′′,
an image of object-point O due to the system T, corresponds to point O rotated by an angle ∆θ
around the intersection line V.

4. Mathematical treatment

In this section, we will formulate the ideas from the previous section mathematically. We will
see below that it is convenient to work in the lens-imaging coordinates of the two-lens system
D. In these lens-imaging coordinates, the three-lens system T is equivalent to a system of two
coplanar lenses like the one presented in Fig. 2(b): the two-lens system D acts like a lens LD of
focal length fD and with its principal points coinciding (i.e. P=P′) at the origin of the coordinate
system. The other lens, L3, is of focal length g3 = −fD and its principal point P3 is offset in the
(transverse) u-direction. The offset has to be chosen such that the image shearing due to the
combination LD + L3 exactly cancels the shearing of the lens-imaging coordinate system, so that
the mapping in the global Cartesian coordinates is an image rotation.

This formulation enables a simple description of the imaging due to the system T in lens-
imaging coordinates: first, an intermediate image (u′, v′, w′) due to lens LD is created, in
accordance with Eq. (7). Then, the intermediate image (u′, v′, w′) is re-imaged by lens L3 (with
principal-point position (h, 0, 0) and focal length g3 = −fD) as follows:

⎛⎜⎜⎜⎜⎝
u′′ − h

v′′

w′′

⎞⎟⎟⎟⎟⎠
=

−fD
−fD + w′

⎛⎜⎜⎜⎜⎝
u′ − h

v′

w′

⎞⎟⎟⎟⎟⎠
. (10)

Combining this equation with Eq. (7) yields the imaging equation due to the three-lens system
T in lens-imaging coordinates, which can be written in the matrix form

⎛⎜⎜⎜⎜⎝
u′′

v′′

w′′

⎞⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎝
1 0 − h

fD

0 1 0

0 0 1

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝
u

v

w

⎞⎟⎟⎟⎟⎠
. (11)
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To transform this imaging equation into global Cartesian coordinates, we simply replace the
factor describing the effect of a thin lens in Eq. (9) by the matrix describing the effect of the
three-lens system T (Eq. (11)). This gives the equation

⎛⎜⎜⎜⎜⎝
x′

y′

z′ − P′
z

⎞⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎝
1 0 0

0 1 0

− tan θ ′ 0 1

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝
1 0 − h

fD

0 1 0

0 0 1

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

1 0 0

0 1 0

tan θ 0 1

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

x

y

z − Pz

⎞⎟⎟⎟⎟⎠
. (12)

Performing the matrix multiplication yields

⎛⎜⎜⎜⎜⎝
x′

y′

z′ − P′
z

⎞⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎝
1 − h

fD tan θ 0 − h
fD

0 1 0

− tan θ ′ + tan θ + h
fD tan θ ′ tan θ 0 1 + h

fD tan θ ′

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

x

y

z − Pz

⎞⎟⎟⎟⎟⎠
. (13)

For Eq. (13) to describe a rotation, the necessary (but not sufficient) requirement is that 3 × 3
matrix on the right-hand side must be anti-symmetric. That yields the condition

− tan θ ′ + tan θ +
h
fD

tan θ ′ tan θ =
h
fD

, (14)

which can be solved for h/fD to give

h
fD
=

sin (θ − θ ′)
cos (θ ′ + θ)

. (15)

We are required to set θ = −θ ′ in order that the denominator equals 1 and hence that the matrix
in Eq. (13) can be a pure rotation matrix. With our earlier definition ∆θ ≡ θ ′ − θ, the condition
on the fraction h/fD simplifies to

h
fD
= − sin∆θ, (16)

and it is easy to show that the diagonal terms in the 3 × 3 matrix in Eq. (13) are both equal to
cos∆θ if θ = −θ ′. Therefore, Eq. (13) can be written in the form

⎛⎜⎜⎜⎜⎝
x′

y′

z′ − P′
z

⎞⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎝
cos∆θ 0 sin∆θ

0 1 0

− sin∆θ 0 cos∆θ

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

x

y

z − Pz

⎞⎟⎟⎟⎟⎠
. (17)

From Fig. 2(a) one can see that the point P′ is the point P, rotated around line V by an angle
∆θ = θ ′ − θ, and therefore satisfies the equation

⎛⎜⎜⎜⎜⎝
−Vx

−Vy

P′
z − Vz

⎞⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎝
cos∆θ 0 sin∆θ

0 1 0

− sin∆θ 0 cos∆θ

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

−Vx

−Vy

Pz − Vz

⎞⎟⎟⎟⎟⎠
. (18)

Here, Vx and Vz are the x and z coordinates of the intersection of the line V with the plane
y = 0 and Vy ∈ R. Summing Eqns. (18) and (19) gives

⎛⎜⎜⎜⎜⎝
x′ − Vx

y′ − Vy

z′ − Vz

⎞⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎝
cos∆θ 0 sin∆θ

0 1 0

− sin∆θ 0 cos∆θ

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝
x − Vx

y − Vy

z − Vz

⎞⎟⎟⎟⎟⎠
. (19)
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This equation states that the mapping between object space and image space is a rotation by an
angle ∆θ = θ ′ − θ = 2θ ′ around V. Therefore, we will call the three-lens system T a skew-lens
image rotator. The formulas for the parameters of the skew-lens image rotator, namely the
coordinates of the intersection line V, focal lenghts f1, f2, f3 and the principal-point position
P3 = (−fD sin∆θ, 0, 2fD sin2 ∆θ

2 ) of lens L3, are provided in Appendix A.
The formulas derived in Appendix A show that crucial parameters of the skew-lens image

rotator are the angle of rotation ∆θ, the angle φ13 = ∆θ/2 − φ1 between lenses L1 and L3, and
the angle φ12 = φ2 − φ1 between lenses L1 and L2, depicted in Fig. 2(a). To specify the allowed
ranges of these angular parameters, we will employ the following formulas for the focal lengths
f1, f2, and f3 of the lenses included in the rotator (the full derivation is provided in Appendix A):

f1 =
d

2 sin ∆θ2
sin (∆θ − φ13),

f2 =
d

2 sin ∆θ2
sin (φ13 − φ12),

f3 =
d

2 sin ∆θ2

sin (∆θ − φ13) sin (φ13 − φ12)

sin φ12
.

(20)

To avoid non-physical cases when either fi = 0 or fi = ∞ (where i = {1, 2, 3}) and ensure that the
order of lenses L1, L2 and L3 is preserved, the angles ∆θ, φ13 and φ12 must satisfy the following:
φ12 ≠ Nπ(N ∈ N), Sgn(φ12) = Sgn(φ13), |φ12 |< |φ13 | (if |φ13 |>π, then the condition |φ12 |<π
needs to be satisfied for light rays to pass through both lenses L1 and L2; similarly, |φ13 −φ12 |<π),
∆θ ≠ φ13, ∆θ ≠ 0 and ∆θ ≠ ±2π. All other combinations (∆θ, φ13, φ12) are allowed and we
can therefore specify the ranges of these angles: ∆θ ∈ (0,±2π), φ13 ∈ (0,±(π + |φ12 |)) and
φ12 ∈ (0, Sgn(φ13)min(π, |φ13 |)).

Fig. 3. Demonstration of image rotation with three lenses. A square lattice is placed
behind three-lens image rotator T, whose lenses are framed with red, green and blue rings
respectively. The actual field of view through all three included lenses is circumscribed
by a green ellipsoid inside the red-framed lens (which is actually an image of the frame of
the middle lens due to the red-framed one). The lattice, as seen through all three lenses,
appears rotated by an angle ∆θ = −15◦ around a vertical axis. The chosen parameters are
(a) φ1 = 2.5◦, φ2 = −2.5◦ and d = 0.5 (in arbitrary units) and (b) φ1 = 0.5◦, φ2 = −0.5◦
and d = 0.1 (in arbitrary units). The remaining entities had been calculated using formulas
in Appendix A. One can see that the field of view increases when the inclination φ2 − φ1
between first two lenses of rotator T (red and green-framed) becomes smaller, which appears
to be the case generally. (c) For comparison, the simulation was performed without the
lenses but with the camera physically rotated by 15◦ around the same axis. The simulations
were performed using an extended version of our custom raytracer Dr TIM [19].

The image rotation due to the three-lens system discussed above is demonstrated by the
ray-tracing simulations shown in Fig. 3. Figure 3(a,b) show views through two different three-lens
combinations that are designed to rotate the image seen through all three lenses by an angle
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∆θ = −15◦ around an axis V; Fig. 3(c) shows the same scene but without the lenses and with
the camera instead rotated around V by −∆θ. The part of the image in which the scene is seen
through all three lenses in (a,b) is identical to the corresponding part of the image shown in (c),
as expected. A comparison of Figs. 3(a) and (b) shows that the size of the field of view, that is
the angular size of the image seen through all three lenses, depends on the parameters of the
three lenses. Specifically, the field of view can be increased, if the inclination φ2 − φ1 between
the first two lenses is reduced.

5. Physical realisability of skew-lens image rotators

The way ideal thin lenses are often used is as a first step in the design of optical systems. These
systems can then be realised by replacing the ideal thin lenses with physical, usually refractive,
lenses. The resulting device works well if the lenses are used paraxially, but this is not the
case in our skew-lens image rotators, and raytracing simulations with more realistic optical
components (specifically simple phase holograms of lenses; Fig. 4(b)) indeed show that the
simulated skew-lens image rotator does not work. It is therefore important to discuss the limits
of applicability of our devices.

ba

dc e

Fig. 4. Comparison of the view through a skew-lens rotator comprising ideal thin lenses (a)
and phase holograms (b-e). (a) Same as Fig. 3(a), but simulated for a pinhole camera. (b)
Same as (a), but with the ideal thin lenses replaced by ideal phase holograms with a parabolic
phase profile of the form Φ(r) = −kr2/(2f ) [20]. (The centre of the image is shown again on
the right, enlarged.) Most of the first hologram acts as a mirror as the phase gradient added
by the phase profile makes transmitted rays evanescent. (c) Same as (a), but with the ideal
thin lenses replaced by ideal phase holograms that are optimised to refract rays that enter the
camera’s pinhole precisely like an ideal thin lens. The view is identical to that shown in (a).
(d) Same as (c), and with the phase holograms still optimised for the camera position in (c),
but with the camera position moved slightly to the right. (d) Same as (c), but simulated for
the same camera aperture size as that used in Fig. 3.

Firstly, research on metalenses is still progressing rapidly and in many ways making metalenses
more like ideal thin lenses, for example making them flatter and working at higher NAs (and
therefore less paraxially) [21]. It appears unrealistic to expect metalenses to become virtually
ideal, but there is a possibility that they will become “ideal enough” for theoretical ideal-lens
devices such as skew-lens image rotators and omnidirectional lenses [12] to become practical, at
least over a limited parameter range.
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Secondly, a phase hologram can be optimised to image a pair of positions into each other,
stigmatically and in the simplest case for a single wavelength, simply by setting the phase shift
introduced by the phase hologram to compensate for the difference in phase due to the difference
in geometrical path length between light rays that have passed through different points on the
hologram. Specifically, a phase hologram can be designed to image between the position of the
pinhole of a pinhole camera and the image of this pinhole position due to an ideal thin lens. In a
device comprising several ideal thin lenses the lens closest to the pinhole camera produces an
image of the pinhole position, the next-closest lens produces an image of that image, and so on,
and if the ideal thin lenses are replaced by phase holograms optimised for these image positions
then the view through the resulting device is identical to that through the ideal-lens device in a
photo taken by the the pinhole camera. This is shown in Fig. 4(c). If the pinhole position differs
from the position for which the holograms are optimised (Fig. 4(d)), or if in a photo taken with a
finite-size aperture (Fig. 4(e)), the view through the holographic device differs from that through
the ideal-lens device. In this way, it might be possible to create physical realisations of ideal-lens
devices that work for a particular observer position.

Thirdly, it is — at least in principle — possible to devise transformation-optics devices in
which the light-ray trajectories are identical to those in our ideal-lens structures. The permittivity
and permeability tensors of the material that forms such a device can be calculated from the
mapping, via the Jacobian and the metric tensor [22]. However, it should be noted that at the focal
planes (for a single lens; in lens combinations, any images of electromagnetic-space positions at
infinity) the metric tensor diverges, which in turn can be avoided by ensuring that physical space
does not contain such positions. Finally, it should also be noted that there are simpler ways to
design rotating transformation-optics devices [23], but perhaps the general idea of realising ideas
developed in the context of ideal thin lenses in the form of transformation-optics devices will
find applications.

6. Application of a skew-lens image rotator for simulations of curved spaces

Provided physical realisations of tilted-lens image rotators can be made to work well enough,
these devices might well find use in existing applications of optical image rotation, for example
in optical derotation [24].

Here we discuss an additional potential application, one that makes good use of the fact that
our tilted-lens image rotators rotate around the axis along which the lenses intersect, and that this
rotation axis is usually approximately perpendicular to the direction along which light would
travel through the lenses. In Ref. [25], a novel approach to optical simulation of curved spaces
has been presented. The strategy is based on the idea of unfolding manifolds into a flat space, so
the light rays propagate as in a flat space inside these flattened manifolds. When unfolding the
curved space, wedges of “missing space" appear [25]. To preserve the topology of the manifold
even after such an unfolding and flattening, the faces of the wedges of “missing space” need to be
equipped with “gluing instructions”, which ensure that these faces are identified with each other
mathematically. In the corresponding optical simulation, the faces are identified optically, by a
device that transfers the optical field between the two faces of the “missing space”. Such a device
is called a space-cancelling wedge.

Regarding just ray-optical simulations of curved spaces (i.e., neglecting the wave-optical
aspects), a symmetric skew-lens image rotator (i.e. φ12 = φ13/2) is an appropriate candidate for a
space-cancelling wedge. That this is indeed the case for a surface of a tetrahedron can be seen in
Fig. 5: panel (a) shows an unfolded net of a surface of a regular tetrahedron, surrounded by three
ideal-lens space-cancelling wedges, each providing an image rotation by an angle ∆θ = π. Panels
(b) and (c) present raytracing simulations of the view of a white sphere located on the surface
of a tetrahedron as seen from within the surface, with an added third, Euclidean, dimension
perpendicular to the surface. Whereas, (b) shows the simulation with space-cancelling wedges
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realised using skew-lens image rotators, (c) presents the same scene with perfect space-cancelling
wedges. In the simulation with ideal-lens space-cancelling wedges, white vertical lines can
be seen, caused by light rays missing the lenses completely: this appears to be a fundamental
defect, which cannot be removed completely, but significantly suppressed by shrinking the angles
between the lenses, decreasing the scaling parameter d or combining both strategies.
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Fig. 5. Optical simulation of a curved space using skew-lens image rotators. (a) Schematic
of the unfolded surface of a tetrahedron (shaded; the lines of unfolding are indicated as dotted
white lines) surrounded by space-cancelling wedges comprising π skew-lens image rotators
(solid black lines), i.e. ∆θ = π for each rotator. Each space-cancelling wedge “optically
glues” together corresponding edges of the tetrahedron surface: the SC wedge comprising
lenses L1 to L3, for example, glues together edges 1 and 1’, the other (un-labelled) SC
wedges respectively glue together edges 2 and 2’, and 3 and 3’. (b) Ray-tracing simulation
of the view inside the three space-cancelling wedges. Note that the angle φ13 between the
1st and 3rd lenses of each π skew-lens image rotator is slightly less than π (in fact, it is
179.8π/180), leading to a few light rays to miss the lenses, resulting in the vertical white
lines. (c) If the skew-lens image rotators are replaced by perfect space-cancelling wedges,
the white lines disappear.

7. Application of the skew-lens image rotator to resolving an open question of
the loop imaging condition

Here we use the three lens rotator construction to resolve a previously unsolved problem arising
from the authors’ previous work on ideal-lens transformation optics (TO) devices [12,13,26].
When designing these devices, we derived an essential condition that must be satisfied for a lens
structure to be a TO device: the loop-imaging condition requires the combination of all ideal
lenses (or, more generally, optical components/materials) encountered along any closed loop to
image every object-space point back to itself [12]. This then poses the general question: which
combinations of ideal lenses image every point back to itself?

In Ref. [26], this question was asked for glenses [27], a generalisation of ideal thin lenses. A
number of conditions on the positions of the nodal points (in ideal thin lenses, the nodal point
coincides with the principal point) were derived, and it was noted that the conditions on the
nodal-point positions become less restrictive as the number of glenses increases. Specifically,
for a combination of 3 glenses to image every point to itself, the nodal points (which, in lenses,
coincide with the principal points) of all three glenses must coincide. For a combination of 4
glenses to image every point to itself, the nodal points must lie on a straight line. And that for a
combination of some minimum number of glenses, the nodal points no longer have to lie on a
straight line. That minimum number of glenses was shown to be ≤ 6, so it is either 5 or 6.

Applying our findings of image rotation with three lenses, we can show that the minimal
number is in fact 5. We show this by constructing an example of a combination of 5 lenses (which
are special cases of glenses) that images every point to itself, as follows. Consider two skew-lens
image rotators, T and T′, each rotating the image by an angle ∆θ = π, positioned such that their
intersection lines (and also rotation axes) V and V′ coincide. As the rotation axes are the same,
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the combination of T and T′ effects a single 2π rotation, and so maps every point to itself, and
therefore satisfies the loop-imaging condition.

Furthermore, if T and T′ are positioned such that the third lens L3 of T is coplanar with the
first lens L′

1 of T′, then lenses L3 and L′
1 can be combined into a single lens, L13 (see Fig. 6). The

focal length of the combined lens L13 is f13 = f ′1 f3/(f ′1 + f3), where f ′1 and f3 are the focal lengths
of lenses L′

1 and L3, respectively. The combination of T and T′, which satisfies the loop-imaging
condition, therefore consists of 5 lenses.(a) (b)

Fig. 6. Combining two π skew-lens image rotators (i.e., each provides an image rotation by
angle ∆θ = π). Two such rotators (see panel (a)) are combined such that all lenses intersect
at common line and lens L3 of one of the rotators coincides with lens L′

1 of the other one, so
they can be combined into a single lens, L13 (see panel (b)). The 5-lens combination built in
this way effects a single 2π rotation, and so maps every point to itself, and therefore satisfies
the loop-imaging condition [26]. The fact that the principal points of included lenses do not
lie on a straight line proves that a combination of five lenses can image every point to itself
even if the principal points of the intersecting lenses do not lie on a straight line.

How about the locations of the principal points? The parameters for each rotator can be chosen
such that the principal points of all 6 lenses (before combining L3 and L′

1 into a single lens) in
the two rotators lie in the same plane and at the same (finite) distance from the line V (which is
the case for the “regular rotator” described by Eqn. (35) in Appendix A) – they lie on a circle.
As the principal points of lenses L3 and L′

1 coincide, this common principal point is also the
principal point of the combined lens L13, and so the principal points of all 5 lenses in the 2π
rotator lie on a circle of finite radius. Specifically, the principal points do not lie on a straight
line. This proves that a combination of five (g)lenses can image every point to itself even if the
principal points of the intersecting lenses do not lie on a straight line.

8. Conclusions

We have constructed, to our knowledge for the first time, an optical image rotator from three tilted
ideal lenses.

Our work contributes to previous findings related to tilted lenses: our description of imaging
with tilted lenses is closely related to the Scheimpflug theorem [28], which is the basis of
perspective-control (or tilt-shift) lenses. Tilted lenses were also considered in optometry to
adjust for the cylindrical power [29–31]. Furthermore, the analysis and use of tilted optics was
considered in modern optical instruments and in modifying laser beams parameters [32,33].
Strategies for optical map transformations have been considered for some time, both theoretically
and experimentally, including rotations about the optical axis [34–37].

Unfortunately, our tilted-lens image rotators do not work very well if the ideal lenses are
replaced by more realistic lenses. Perhaps in the longer term research on metalenses will lead to
physical realisations, but for the moment our work is mostly of theoretical interest.
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Appendix A. Parameters of the three-lens image-rotation system

In this paper, we showed that an appropriate combination of three skew lenses provides an image
rotation of the entire object space. However, a relationship between the parameters of the system
T and the inclination angle ∆θ = θ ′− θ remains unrevealed. We will settle this debt in this section.
First, we will find the intersection line V = (Vx, Vy, Vz) of all lenses included in the rotator (which
is actually the line around which the rotation is performed). Then, we will derive formulas for
focal lengths f1, f2 and f3 of all included lenses in terms of angles φ1 and φ2 (formed by lenses
L1 and L2 respectively with x-axis), the scaling parameter d and the angle of image rotation ∆θ.
After that, we will re-express the obtained formulas for f1, f2 and f3 using more “user-friendly"
parameters: the scaling parameter d, the angle of rotation ∆θ, angle φ13 between lenses L1 and
L3, and angle φ12 between lenses L1 and L2. Finally, we will express the principal-point positions
P1, P2 and P3 in a Cartesian coordinate system (ξ, η, ζ) such that the origin coincides with point
V0 = (Vx, 0, Vz), η axis coincides with line V and the ξ-axis is parallel with lens L2.

Now, let us find the intersection line V of all lenses included in the rotator. This can be found
easily as an intersection of lenses L1 and L2 of focal lengths f1 and f2. These lenses form angles
φ1 and φ2 respectively with x-axis (as indicated in Fig. 1). The plane of the lens L1 can be
parametrically expressed as x = −z cot φ1; analogously, the plane of the lens L2 can be expressed
as x = −(z − d) cot φ2. Just recall that d, the scaling parameter, is a distance of principal points
P1 = (0, 0, 0) and P2 = (0, 0, d) of lenses L1 and L2. Then, the intersection line V of L1 and L2
can be found

V =
(︃

−d
tan φ1 − tan φ2

, Vy,
d tan φ1

tan φ1 − tan φ2

)︃
, Vy ∈ R (21)

In the following lines, the formulas for focal lengths f1, f2 and f3 and the principal-point
position P3 of lens L3 will be derived. According to the theory of imaging with two skew lenses
presented in [18], the object-sided transverse planes make an angle θ with the x-axis, which is
related to the parameters of the system D=L1+L2 by the Eq. (35) in Ref. [18]

− cot θ = − cot φ1
d − g1 − g2

d − g2 − g1 cot φ1/cot φ2
, (22)

where gi = fi/cos φi are the projected focal lengths of included lenses and the scaling parameter
d is the separation between the principal points of the lenses. A similar formula can be derived
for the angle θ ′ between the x-axis and the image-sided transverse planes (Eq. (36) in Ref. [18]):

− cot θ ′ = − cot φ2
d − g1 − g2

d − g1 − g2 cot φ2/cot φ1
. (23)

As shown in section 4, for the system D to be a part of an image rotator, the angles θ and θ ′
must satisfy the condition θ + θ ′ = 0. This implies a constraint on the parameters of the system
D. Specifically, summing Eqs. (22) and (23) with θ = −θ ′ yields the following relation:

cot φ1(d − 2g1) = − cot φ2(d − 2g2). (24)

If Eq. (24) is satisfied, the following simple expressions can be derived for cot θ and cot θ ′
respectively:

cot θ = cot φ1

(︃
1 −

2g1
d

)︃
, (25)

cot θ ′ = − cot θ = − cot φ1

(︃
1 −

2g1
d

)︃
. (26)

For a given rotation angle ∆θ = θ ′ − θ = 2θ ′, Eq. (26) can be solved for the focal length
f1 = g1 cos φ1 to give

f1 =
d
2

(︃
cos φ1 + cot

∆θ

2
sin φ1

)︃
, (27)
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where we have denoted cot θ ′ ≡ cot ∆θ2 . A formula for the focal length f2 = g2 cos φ2 of lens L2
can be obtained from Eq. (24):

f2 =
sin φ2

2

(︃
d cot φ1 − 2

f1
sin φ1

)︃
+

d cos φ2
2

. (28)

Finally, the third lens L3 needs to be added to the system D to complete the image rotator. The
plane of the lens L3 coincides with the image-sided principal plane P ′ of the system D. From
Eq. (16), the position of the principal point of lens L3, expressed in lens-imaging coordinates, is
(u, v, w) = (u′, v′, w′) = (−fD sin∆θ, 0, 0). Here, of course, fD denotes the effective focal length
of system D, given by Eq. (1). Since the plane of lens L3 coincides with the image-sided principal
plane P ′ of the two-lens system of lenses L1 and L2, the position P3 = (P3x, P3y, P3z) of the
principal point of lens L3, expressed in global Cartesian coordinates, can be found using Eq. (8)
to be ⎛⎜⎜⎜⎜⎝

P3x

P3y

P3z − P′
z

⎞⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎝
1 0 0

0 1 0

− tan ∆θ2 0 1

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝
−fD sin∆θ

0

0

⎞⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎝
−fD sin∆θ

0

2fD sin2 ∆θ
2

⎞⎟⎟⎟⎟⎠
. (29)

The projected focal length g3 of lens L3 equals −fD and thus the actual focal length f3 is

f3 = −fD cos
∆θ

2
. (30)

It is convenient to express the formulas for the focal lengths f1, f2 and f3 in terms of the
following parameters: the scaling parameter d, the angle of rotation ∆θ, angle φ13 between lenses
L1 and L3, and angle φ12 ∈ (0, φ13) between lenses L1 and L2. From Figs. 1 and 2(a), one can
deduce that φ13 = ∆θ/2 − φ1 and φ12 = φ2 − φ1 (provided that θ = −∆θ/2 and θ ′ = ∆θ/2).
Inserting these parameters to Eqs. (27), (28) and (30) yields the following formulas for f1, f2 and
f3

f1 =
d

2 sin ∆θ2
sin (∆θ − φ13),

f2 =
d

2 sin ∆θ2
sin (φ13 − φ12),

f3 =
d

2 sin ∆θ2

sin (∆θ − φ13) sin (φ13 − φ12)

sin φ12
.

(31)

Finally, we will express the principal point positions P1, P2 and P3 in a coordinate system
(ξ, η, ζ), whose origin coincides with a point V0 = (Vx, 0, Vz) on the line V, η axis coincides with
the line V and the ξ-axis is parallel with the lens L2. In such a coordinate system, vectors P1, P2
and P3 are of a form

P1 = R1(cos φ12, 0, sin φ12),
P2 = R2(1, 0, 0),
P3 = R3 (cos (φ12 − φ13), 0, sin (φ12 − φ13)) ,

(32)

where parameters R1, R2 and R3 are given by the following formulas

R1 = −
d

sin φ12
cos

(︃
φ12 − φ13 +

∆θ

2

)︃
,

R2 = −
d

sin φ12
cos

(︃
φ13 −

∆θ

2

)︃
,

R3 = −
d

sin φ12
cos

(︃
φ12 −

∆θ

2

)︃
.

(33)
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It is worth mentioning that the formulas presented in Eqs. (31) and (33) can be simplified if
additional assumptions are implemented. Here, we provide two examples:

1. Symmetric rotator: φ12 = φ13/2. In such a case,

f1 = f3 =
d

2 sin ∆θ2
sin (∆θ − φ13),

f2 =
d

2 sin ∆θ2
sin
φ13
2

,

R1 = R3 = −
d

sin ϕ13
2

cos
(︃
∆θ − φ13

2

)︃
,

R2 = −
d

sin ϕ13
2

cos
(︃
φ13 −

∆θ

2

)︃
.

(34)

2. Regular rotator: φ12 = φ13/2 and φ13 =
2
3∆θ. In this case,

f1 = f2 = f3 =
d

2 sin ∆θ2
sin
∆θ

3
,

R1 = R2 = R3 = −
d

2 sin ∆θ6
.

(35)
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