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Developing functional machine learning (ML)-based models to address unmet clinical needs requires unique considerations for optimal clinical
utility. Recent debates about the rigours, transparency, explainability, and reproducibility of ML models, terms which are defined in this article,
have raised concerns about their clinical utility and suitability for integration in current evidence-based practice paradigms. This featured article
focuses on increasing the literacy of ML among clinicians by providing them with the knowledge and tools needed to understand and critically
appraise clinical studies focused on ML. A checklist is provided for evaluating the rigour and reproducibility of the four ML building blocks: data
curation, feature engineering, model development, and clinical deployment. Checklists like this are important for quality assurance and to ensure
that ML studies are rigourously and confidently reviewed by clinicians and are guided by domain knowledge of the setting in which the findings will
be applied. Bridging the gap between clinicians, healthcare scientists, and ML engineers can address many shortcomings and pitfalls of ML-based
solutions and their potential deployment at the bedside.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Keywords Machine learning • Healthcare • Critical appraisal • Bias • Guidelines • Quality

Introduction
Machine learning (ML) is a field that lies at the intersection of math-
ematics and computer science, integrating principles from comput-
ing, optimization, and statistics. Successive advances in this field
over the past few decades have brought a suite of very powerful
mathematical algorithms able to learn hidden patterns from large
quantities of data. From a data science-oriented perspective, ML is
simply a collection of mathematical theories and statistical techniques
that enable machines to improve at undertaking a given task with ex-
perience (e.g. recognition, prediction, prescription). Given that rec-
ognition and prediction are the backbone of clinical practice, many
of these ML algorithms have proven efficient in addressing some

longstanding challenges frequently encountered in analysing high di-
mensional, complex clinical data.1–6 These promising potentials
have led to a rapid expansion in the number of articles published
in clinical journals that focus on ML. Figure 1 shows the number of
clinical diagnostic accuracy studies published in PubMed between
2000 and 2021 and the sub-portion of these studies that use ML
methods. These trends translate to an annual growth rate of 8%
compared with 39%, respectively. It is reported that nearly 25% of
all diagnostic accuracy studies submitted to leading journals focus
on the performance of ML algorithms.7 This is one in four papers
in any given field to which an average clinician could be exposed.
This exponential growth in the use of ML techniques to address

unmet clinical needs has not been effectively translated to the
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bedside due to many scientific, technical, and logistical challenges,
dampening the enthusiasm by many healthcare providers. First, as
target end-users at the bedside, many clinicians are not familiar
with the concepts of ML and whether its applications in healthcare
can be trusted. This could create a barrier to change and limit the po-
tential deployment at the bedside. Many reviewers or editors of
medical journals are also not very familiar with such ML methodolo-
gies. In an interesting experiment at a ML-focused conference
(NeurIPS), double-blinded reviewers failed to reach consensus on
more than 57% of submitted papers at 22.5% acceptance rate.8

Such a large margin of disagreement among reviewers might deter
journals from accepting high-quality ML papers, or more worrisome,
publish poorly performed or flawed ones. Second, because of this
gap in common language between end-users and developers, clini-
cians are rarely integral members of data science teams, potentially
diminishing the clinical relevance, model explainability, and workflow
compatibility of many ML-centered solutions.9 Finally, the field of ML
itself continues to suffer from shortcomings that have led to hot de-
bates about its usefulness in recent years, including the black box la-
bel as well as gender and racial bias to mention a few.10,11 These
concerns, coupled with the lack of a clear regulatory pathway12

and poor access to large and high-quality datasets, have limited the
availability of approved ML-based medical devices in the USA and
Europe, creating a clinical paradigm with sceptical stakeholders and
growing mistrust between clinicians and ML applications.

Understanding the complexity (and subjectiveness) of modelling
decisions involved in building a functional ML application is central
to critically appraising clinical ML studies. Figure 2 showcases the

kind of ‘decisions’ that each data scientist typically considers through-
out the various steps of designing a ML pipeline (i.e. from data to de-
cisions). This featured article focuses on increasing literacy of ML
among clinicians by providing them with the knowledge and tools
needed to understand and critically appraise clinical studies focused
on ML. Clinical applications of ML in cardiovascular disease and car-
diac imaging have been described in detail elsewhere.3 Herein, we
provide a succinct review of commonly used ML techniques and
best practices and considerations for building and translating effect-
ive ML models. We also highlight the most crucial design flaws and
serious red flags for clinicians to consider while critically appraising
ML-centered articles in healthcare.

Basic definitions
and terminologies
Artificial intelligence (AI) is the machine’s ability to mimic humans in
learning and behaviour with automatic improvement and without ex-
plicit programming. Artificial intelligence encompasses multiple fields,
including computer vision, robotics, and ML.13 Machine learning as a
subfield of AI entails a collection of computer algorithms developed
to automate regular processes and services or predict and forecast
events of interest in a certain domain quickly and accurately using
previously recorded historical data of that event. In healthcare, ML
has been extensively used for clinical diagnostics, early prediction
of outcomes, and disease phenotyping.14 Deep learning (DL), on
the other hand, is a subclass of ML algorithms (i.e. multi-layered

Figure 1 Temporal trends in machine learning-centered articles published in PubMed between 2000 and 2021. This figure shows the results of a
simple search on PubMed for clinical diagnostic studies focused on ‘diagnosis’ between 2000 and 2021 (line with square markers) and the sub-
portion of those studies that reference ‘machine learning’, ‘artificial intelligence’, or ‘deep learning’ in the title or abstract (line with diamond
markers).
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neural networks) that are designed to learn complex tasks frommas-
sive amounts of structured and unstructured data types like video,
voice, image, or text.13 Figure 3 visualizes the relationship between
AI, ML, and DL as interrelated and overlapping fields.

Artificial intelligence was born back in the 1950s when a group of
computer scientists started exploring whether computers could be
designed to ‘think’ like humans. Early chess programmes are a
good example of scientists’ first attempts of making computers act
like humans. In this case, the programme involved hardcoded rules
without any interactive learning. This approach, at that time, was
called symbolic AI and dominated the field from the 1950s to the

1980s. Although symbolic AI proved to be a good approach to solve
well-defined and logical problems, it turned out to be ill-suited to
solving more complex and fuzzy problems such as image classifica-
tion, speech recognition, and language translation. In late 1980s,
ML arose to replace symbolic AI in automating intellectual tasks nor-
mally performed by human intelligence.
The concept behind ML algorithms is distinct from the rule-based

logic seen in symbolic AI. Rather than programming a set of condi-
tional statements derived from domain knowledge to guide decision
making, scientists feed data rather than rules to train the model, re-
fine its parameters, and test its performance for a given task

Data

Evaluation

**
****

* *

What statistical tests should I use ?

What confidence intervals should I use ?

Should I compare the performance with other 
algorithms and/or human performance ?

What evaluation metrics should I use ?

Should I balance the test set ?

Should I balance the training set ?

What ML techniques should I use ?

Should I perform EDA and generate data 
visualizations, and discuss these with clinical 
experts ?

Should I randomize the samples ?

What are these variables ? How much should I 
know about data quality and provenance ?

Should I consider the sample size ? e.g., cases 
vs classes ?

How should I compare to other studies ?

Should I care for real world prevalence ?

Should I check for algorithmic bias ?

Should the algorithm avoid a certain type of 
error ? (type 1 or 2)

What evaluation technique/s should I use ?

Should I explore ensemble learning ?

Should I care more about explainability or 
performance ?

Should I balance the classes ? And should I use 
under-sampling or oversampling or both ?

How should I explore the data ?

Should I remove outliers ?

What feature engineering should I do ?

What biases are in the data ?

Should I do data imputation for missing data ?

Is the data representative ?

How much do I understand the domain ?

Figure 2 The complexity of decisions considered when designing a machine learning model. This figure showcases the complexity and subject-
iveness in the questions/decisions the data scientist may consider when building a machine learning algorithm. Ideally, these important decisions need
to be made in conjunction with collaborating clinicians to enhance clinical relevance and utility. EDA, exploratory data analysis.
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(i.e. interactive learning). This model is then built in production. A key
difference here is that rule-based algorithms use current knowledge
already adopted by clinicians when making a decision (e.g. diagnosis),
whereas a ML approach might use different rules or ‘features’ that it
discovered during the data-driven process of model development. If
we consider the task of diagnosing acute myocardial infarction (MI)
using electrocardiogram (ECG) data as an example, a rule-based
automated interpretation system would follow programmed rules
like if ST amplitude≥ 0.1 mV, then print ‘...Acute MI,,,’.
On the contrary, a ML-based model would ‘learn’ the features and
data-driven decision rules for classifying ‘...Acute MI,,,’
from an existing and labelled ECG dataset without any preexisting
domain knowledge. The performance of this model is then tested
on new ECG tracings not included in the original datasets. This is
analogous to a cardiology fellow who is learning to read ECGs by re-
viewing few thousand examples under supervision until mastering
his/her own unique approach; before interpreting ECGs in a real-
world setting on his own.

The question then remains howML is different from statistics used
in the general medical literature. The main task of both is to find a
mathematical representation in a multidimensional probability distri-
bution, yet the focus and degree of formal development between
both are different. Statistics is a branch of applied probabilities with
well-outlined theoretical concepts focusing on drawing population in-
ferences from sample data to understand the causal relationship be-
tween the predictors and the outcome variable (i.e. knowledge
discovery to increase our understanding of a given phenomenon).15

For example, a statistician might explore the relationship between
the presence of comorbidities and incidental cardiovascular disease
using logistic regression. Here, the interest is inferring a function
that can explain the most variability in incidental cardiovascular

disease using a parsimonious subset of comorbidities, which would
contribute to our understanding of disease pathogenesis (i.e. reduced
dimensionality for knowledge discovery).16 On the other hand, ML
uses general-purpose mathematical learning algorithms (beyond
probabilities) to find generalizable patterns in high-dimensional data
space without requiring prior assumptions about either the popula-
tion or the residuals. In the previous example, a data scientist would
explore a suite of learningmodels (which might include logistic regres-
sion) to build a model that yields the highest classification perform-
ance (i.e. sensitivity and specificity), with little attention to the
impact of data properties on population density functions (i.e. no in-
ferences). Here the interest is to find the model that best learns gen-
eralizable rules when applied to new unseen data (i.e. prediction
rather than comprehension).15,17 Nevertheless, statistics and ML
share numerous principles and techniques, and the overlap between
both sometimes might be difficult to delineate. In fact, it has been
shown that adapting statistical inferential techniques in learning algo-
rithms (i.e. causal ML) dramatically boosts ML model performance.18

Subtypes of machine learning
models
Machine learning models can be classified into four subtypes based
on the degree of human supervision applied on data: supervised, un-
supervised, semi-supervised, and reinforcement learning (RL). In su-
pervised learning, a set of input variables is used to predict an
outcome of interest that has been labelled by experts. Supervised
techniques can be broken down into two subtypes according to
the level of measurement of the outcome variable: regression or clas-
sification. In regression, the outcome is measured as a continuous

Figure 3 Relationship between artificial intelligence, machine learning, and deep learning. Artificial intelligence is the general umbrella that encom-
passes machine learning with other domains, whereas deep learning is a subclass of machine learning algorithms (Credit: Salah Al-Zaiti. Created
with BioRender.com).
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numeric variable such as blood pressure, BMI, height, or weight. A
regular prediction algorithm, such as linear regression or regression
trees, is used when input data are collected at one time. If input data
are longitudinal (i.e. time-series), then forecasting algorithms such
Auto-Regressive Integrated Moving Average or exponential smooth-
ing models could be used. In classification, the outcome of interest is
measured as a categorical variable at either two levels (binary) or
more (ordinal or nominal).

Table 1 summarizes the commonly used regression and classifica-
tion techniques in supervised ML. This table also summarizes the ad-
justable free parameters needed to optimize each model

performance (i.e. hyperparameters). Hyperparameters refer to the
configurations of a model’s architecture that cannot be inferred
from the data and need to be arbitrarily decided by the data scientist.
For instance, when building a simple decision tree, the data scientist
needs to decide on the tree depth (number of levels) and number
of nodes (decision splits) before a tree can be built. The selection
of these hyperparameters is arbitrary and can be done by searching
all potential combinations of hyperparameters that perform best on
the historical data. Finding the best hyperparameters plays an import-
ant role in optimizing the goodness-of-fit on the sample data, ideally
leading to good performance when generalized to new unseen data.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1 Common supervised machine learning techniques used in healthcare

Algorithm Class Technique description Hyperparameters

Linear regression Regression Estimates the coefficients of a set of predictors (x1, x2,…)

that would yield the best approximation of y with the

least error in prediction.

None

Ridge regression Regression Similar to linear regression but applies stricter rules

(penalty) to shrink the estimated coefficients to further

improve the prediction (called L2 regularization).

Shrinkage value (penalty term)

LASSO regression Regression or

classification

Similar to ridge regression but assigns a larger penalty term

to the estimated coefficients, which shrinks some

coefficients to zero, reducing the number of features

(called L1 regularization).

Shrinkage value (penalty term)

Elastic−net

regression

Regression A method based on weighted combination of both ridge

regression and LASSO.

Shrinkage, weight between Ridge and LASSO

Logistic regression Classification An extension to linear regression replacing the linear slope

needed to predict values of ywith a step function needed

to split classes and predict y as a binary outcome.

None

Linear discriminant

analysis (LDA)

Classification Estimates n-dimensional hyperplane that separates two

classes by maximizing the ratio of between-groups to

within-groups variance of distributions.

None

Support vector

machine (SVM)

Classification Estimates n-dimensional hyperplane that separates two

classes based on maximizing the margin between data

points in the decision boundary and the hyperplane

projection.

Cost, curvature of the decision boundaries

Naïve Bayes (NB) Classification Uses Bayes rule to compute the conditional probability of

the outcome assuming that features in that class are

independent of each other.

Prior, smooth

K-nearest

neighbours

(KNN)

Regression or

classification

Predicts new class or value based on the majority vote of

closest k samples in the dataset.

Number of neighbours

Trees Regression or

classification

Rule-based branching tree representation that maps

decisions at every split choice and their possible

consequences in a way that maximizes data purity at

each split.

Tree depth, number of nodes, number per leaf

Ensemble

techniques

Regression or

classification

Combining hundreds of base classifiers (e.g. trees) and

bootstrapping to learn the ‘wisdom of the crowd’. Fusing

base classifiers can happen in a parallel fashion by

counting a majority vote (e.g. random forest) or in a

sequential fashion by learning from one classifier at a

time (e.g. gradient- or X-boosting).

Number of trees, interaction depth, shrinkage,

observations per terminal nodes, number of

candidate parameters at each split

LASSO, least absolute shrinkage and selection operator.
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The second subtype of ML models is unsupervised learning where
an algorithm autonomously draws associations from unlabelled data
without any a priori knowledge of true labels.With the emergence of
big data, data sources became massive, making labelling labour-
intensive, time-consuming, and very costly. With the wide availability
of such massive quantities of unlabelled training data, unsupervised
learning techniques become essential. Table 2 summarizes the four
most common unsupervised techniques along with their potential
applications in healthcare. Clustering entails grouping together pa-
tients with approximately similar characteristics given a set of fea-
tures. The emerging clusters can potentially identify unique
phenotypes of a given disease. A clustering example would be group-
ing patients with chest pain based on their age, sex, risk factors,
symptoms, lab tests, medications, and angiographic findings. The

resulting clusters can then be used to identify specific phenotypes
like Type 1 vs. Type 2 MI. Anomaly detection entails learning the
baseline pattern of how features typically aggregate in order to iden-
tify potential deviations from this normal state. An example of anom-
aly detection would be learning certain clinical contexts when
medication X is prescribed to a given patient so any new deviations
from this norm can be flagged as a potential medication error.
Dimensionality reduction entails the mathematical summarization
of data across features using orthogonal (independent) vectors for
simplified modelling and visualization. For instance, principal compo-
nent analysis has been historically used to summarize ECGwaveform
data from 192 body surface potential maps (BSPM) to yield only 12
independent waveforms that capture .90% of prognostic informa-
tion in the data, significantly enhancing the clinical utility of BSPM for

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2 Common unsupervised machine learning techniques and their potential use in healthcare

Technique Learning algorithms Healthcare applications

Clustering K-means, hierarchical clustering, DBSCAN Disease phenotyping, genetic pathways, drug discovery, etc.

Anomaly detection One-class SVM, isolation forest, neural networks Waveform segmentation, physiological signal denoising,

medications error warning, etc.

Visualization and dimensionality

reduction

Principal component analysis (PCA), linear or stochastic

neighbour embedding, TDA

Genetic data, ECG waveform analysis, inflammatory

pathways, etc.

Association rule mining Apriori, Eclat EHR data mining, text mining, etc.

DBSCAN, density-based spatial clustering of applications with noise; SVM, support vector machine; EHR, electronic health records; ECLAT, Equivalence Class Clustering and
bottom-up Lattice Traversal; TDA, topological data analysis.

Figure 4 Basic architecture of a deep neural network. The figure shows the basic architecture of a deep neural network, which is composed of an
input layer (features), hidden layers (function nodes), and an output layer (prediction). The functional unit at each ‘synaptic connection’ is called a
neuron and includes a summation and activation functions.
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bedside care. Finally, association rule mining entails approaches to
learn strong rules with interesting relationships between-groups of
variables in large datasets. For example, implementing an apriori algo-
rithm on electronic health record data in an emergency department
might yield the rule (chest pain, ECG)→ (troponin), indicating that a
chief complaint of chest pain with documented ECG record are pre-
requisites to the availability of troponin results in the medical charts.

A third subtype of ML models is semi-supervised learning. Despite
the scarcity of labelled data in many fields (e.g. medical images, ECG
signals), many datasets contain a mixture of both labelled and un-
labelled data, which created an opportunity for leveraging techniques
from both supervised and unsupervised learning. These new semi-
supervised learning techniques are broadly grouped under two gen-
eral umbrellas: self-learning algorithms and co-learning algorithms.19

In self-learning, a single classifier is trained on a small subset of ‘seed’
data then used to classify unlabelled data. Data points classified with
high confidence are added to the ‘seed’ subset and the base classifier

is re-trained. This iterative process continues until all data points are
labelled. This technique has been successfully implemented in image
classification.20 In co-learning, a similar approach is used to train
three classifiers, rather than one, on the ‘seed’ subset, and then using
the consensus of the three algorithms in order to add new data
points to the ‘seed’ set before re-training. This technique has been
successfully used for classifying the level of activity of a patient using
motion data from cameras and sensors to monitor and determine
when assistance is needed (e.g. after falling).21 Unlike self-learning
and co-learning, a more novel approach is to train a single classifier
on a ‘seed’ set, then use this model to select the data points with
the lowest confidence in prediction and thereafter ask users to
manually label these informative examples before adding them to
the ‘seed’ set and re-training the classifier. This latter approach is
called active learning and has been successfully used in ECG beat clas-
sification, image classification, gene expression, and artefact
detection.22,23

A fourth subtype of learning models is RL, which constitutes a to-
tally different paradigm in terms of how the model learns. In general,
there will be an agent which observes and learns the best policy (e.g.
decision rules) by weighing actions (e.g. available treatment options)
against subsequent rewards (e.g. short-term patient outcomes)
where the policy can be adapted over time. Reinforcement learning
is widely used in robotics, gaming, computer vision, and autonomous
control.24 In healthcare, applications of RL are limited because its
techniques warrant due diligence. Some of the successful applications
include HIV therapy optimization, seizure control, and sepsis man-
agement.25 Reinforcement learning is a complex topic and has
been explained in detail elsewhere.26

Finally, although not a distinct subtype of learning approaches, it is
worth noting that DL has wide applications across supervised regres-
sion and classification, unsupervised, and semi-supervised learning, as
well as RL. As illustrated in Figure 4, the architecture of DL is based on
a neural network composed of an input layer (features), hidden
layers (function nodes), and an output layer (prediction). Input fea-
tures can either be structured data elements or unstructured data
(e.g. pixels). The functional unit at each ‘synaptic connection’ is called
a neuron and includes a summation and activation functions. A ML
engineer will first need to define the network architecture and hy-
perparameters (e.g. number of hidden layers, number of nodes per
layer, type of activation function, connection topologies, etc.). The
next and most computationally exhaustive task is optimizing the syn-
aptic weights in each neuron, which is frequently achieved using an
optimization approach called gradient descent. Calculating the
weights that optimize gradient descent is done using a first order it-
erative technique called backpropagation. Deep learning is a complex
topic and has been explained in detail elsewhere,27 but Table 3 pro-
vides a simple summary of the commonDL algorithms generally used
in medical literature.
A DL technique that is widely used in cardiovascular literature is

convolutional neural networks (CNN). This technique is specifically
useful for image and signal processing where a series of convolution
and pooling layers are used to extract numeric features from the un-
structured images and use these extracted features in a multi-layer
ANN. Figure 5 shows a simple illustration of a CNN model with
one convolution layer and one pooling layer. Briefly, an image is usu-
ally stored as n-dimensional byte array with a colour value of each

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 3 Common deep learning techniques with
exemplary applications in healthcare

Approach Description

Artificial neural network

(ANN)

This technique follows the architecture

presented in Figure 4 with a feed-forward

approach where inputs are only

processed in a forward direction from one

layer to the next until reaching the output

layer which is the prediction/classification.

Recurrent neural

network (RNN)

This is similar to ANN but with feed

backward connections. Rather than

feeding the output of neurons from one

layer to the next, the outputs are re-fed to

the previous layer (or to the neurons in

the same layer). The synaptic weights are

then recalibrated using the new

information, making the optimization

technique very exhaustive and

time-consuming.

Convolutional neural

network (CNN)

This is a multi-layer network specifically

designed for processing unstructured data

like images. Input features are usually

values of pixels and hidden layers are

designed to convolute these values to

extract high-level features. Extracted

features are then pooled and fed into an

ANN.

Generative adversarial

network (GAN)

A technique to design two competing neural

networks, a generative one to learn

producing data outputs and another to

discriminate artificial data. GANs have

been applied in assessing gender and racial

algorithmic bias or in altering medical

images or signals and augmenting data to

train ML models.
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pixel for each of the three main colour channels: red, green, and blue
(i.e. RGB image). First, a Kaufman filter (i.e. Kernel) of a given matrix
size (e.g. 3× 3) hovers over each colour channel and the resulting
multiplication of pixel values and kernel values is stored in a new
byte array. This step is called ‘convolution’ and is used to extract
the low-level features of the image (e.g. edges, gradient). Next, to re-
duce the spatial dimensionality of the byte arrays, adjacent pixel va-
lues in a given size (e.g. 2× 2) are summarized together by using
either the mean or the max value (i.e. average pooling or max pool-
ing, respectively). This step is called ‘pooling’ and is useful for extract-
ing dominant features. After a series of iterations between
convolution and pooling layers, the resulting byte array can be flat-
tened into n× 1 array and fed into a classical multi-layer ANN to
train the model on classifying the images based on known outcomes
of interest.

Understanding model
development
Learning from labelled cases (data) is the central premise of the field
of ML. However, the process is far from simply dumping a dataset

into a number-crunching machine and then wishing the machine to
magically produce a useful model. Instead, both computational and
clinical experts need to collaborate to guide the process, make key
decisions along the way, and assess learned models to ensure that
the data are properly used, and the learned model meets the needed
performance. It is also possible that the learning process is an itera-
tive one. Additional data collection and curation effort and/or algo-
rithm improvement may need to happen between iterations to
achieve the ultimate goal. Therefore, it is obvious that there are add-
itional steps and considerations beyond invoking a programmed
learning algorithm to process a dataset and obtain a ML model.
Collectively, we consider in this section the whole process of trans-
forming a dataset into a classifier or a regressor during model devel-
opment. Figure 6 summarizes the four main building blocks of a ML
pipeline.
The first ML building block is data curation and preprocessing.

Data quality requirements for ML models are steep, and the quality
and quantity of data used to train a model determine its subsequent
performance. Similar to any other clinical investigation, unbiased
sampling techniques, valid and reliable measurement methods, and
accurate outcome adjudication and ascertainment are essential pre-
requisites to valid ML models. Once these pre-requisites are met,

Figure 5 Basic architecture of a convolutional neural network. This figure illustrates how features can be extracted from a raw image (e.g. single
photon emission computed tomography myocardial perfusion scan) for use in a neural network. The pixel values in each colour channel are multi-
plied by a kernel filter to extract low-level image features (convolution layer). Next, adjacent pixel values are grouped together using mean or max
value to reduce spatial dimensionality (pooling layer). After repeated iterations of these two layers, the final byte array matrix is flattened and fed into
a classical neural network to make predictions.
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additional indicators of poor data quality include data ‘missingness’,
incompleteness, inconsistency, inaccuracy, duplication, outliers, and
crowdsourcing (i.e. irrelevant data).29 Thus, ML engineers should in-
vest extensive amount of time for handling missing data, noise, and
outliers; dealing with duplicates; and feature engineering. These steps
entail univariate and bivariate data exploration, visualization, and
proper data reduction or clustering before any model development.

The second ML building block is feature engineering. The word
‘feature’ is typically interchangeable with ‘variable’ or ‘independent
variable’. Model performance depends on the appropriate selection
and inclusion of input features. An important consideration is the
number of features in relation to the size of training subset where
a larger number of features requires exponentially larger sample
size (i.e. called ‘curse of dimensionality’). Thus, it is important to
use appropriate feature selection techniques to remove irrelevant
features that might simply introduce noise into predictions while en-
suring that relatively important features are not omitted. Table 4
summarizes the commonly used feature selection techniques in
ML. While most techniques for feature selection are data driven, it
is worth noting that ML engineers should seek domain experts’ ad-
vice for identifying subsets of features that are mechanistically linked
to predicting the outcome at hand,30,31 an approach that has been
shown to significantly improve model performance.32

The third and most critical ML building block is model development.
The starting point of this process is typically a partition of the dataset into
a training subset and a testing subset. The ratio of this split is arbitrary

and is frequently based on sample size. Common partitioning splits
seen in clinical research include 70%/30%, 80%/20%, or 90%/10%.
These two parts are disjointwith regard to a chosen variable (e.g. subject
identifier, time of observations, etc.). The most important consideration
is to make sure data from the same subject do not end up in both train-
ing and testing subsets (i.e. data leakage bias). When possible, the parti-
tioning is done in a random fashion and at least preserves the prevalence
of data samples per each class in the testing subset in comparison with
the target population for which the model will be used. However, many
data scientists elect to artificially keeping the prevalence of disease at
�50% in the training dataset by oversampling the positive class (cases)
or under-sampling the negative class (controls). This dataset balancing
technique is meant to counteract false predictions caused by the algo-
rithm’s over-reliance on the probabilistic distribution of the dominant
class. For instance, in an unbalanced dataset with disease prevalence of
only 10%, the algorithm would learn to predict ‘no disease’ whenever
the uncertainty is high because there is a 90% chance this prediction
would be true. Thus, balancing the training dataset can improve the clas-
sification performance during model development, although this can ad-
versely affect generalizability to real-world data.
After the partitioning, the testing subset is set aside and not

touched till ‘lockdown’ models have been obtained. To obtain lock-
down models, training data are used. Using the whole training dataset
for this task is impractical because a single training set is insufficient to
find optimal hyperparameters or to assess variability in performance
or risk of overfitting. Thus, to build more reliable lockdown models,

Figure 6 The iterative steps for developing a functional machine learning model. This is a simplified depiction of the actual iterative steps in build-
ing a machine learning pipeline. The first step in model development is data preprocessing followed by either supervised machine learning or un-
supervised machine learning based on availability of labelled outcome data. Then, input features are pre-computed (i.e. handcrafted) or raw
non-tabular data (i.e. image, waveform, etc.) is used for model development. Next, the dataset is partitioned into a training set and a testing set
(usually 2:1). The training subset is further partitioned into k-folds to iteratively derive and update model hyperparameters, and the other testing
subset is used to fine-tune and select the outperforming classifier or regressor. The best-performing model is then externally validated on new un-
seen data to determine generalizability before integration in the clinical workflow. Reproduced with permission from Helman et al.28
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the training subset is further partitioned into k-folds to use as cross-
validation (CV) folds. These folds need to be created with proper
stratification to maintain approximately equal ratios between positive
and negative classes. The most used number of folds is 10 (i.e. 10-fold
CV), which would allow adequate statistical comparison between var-
iations in performance induced by different choices of parameters
across these 10 folds. This is done in a round-robin way where the
model is trained with nine folds (or k-1) and tested on the remaining
fold. In each of the 10 iterative rounds, a different combination of hy-
perparameters is used (i.e. grid search). A performance metric [e.g.
area under receiver operating characteristic (ROC) curve] is com-
puted for each of the 10 folds and one-way ANOVA is used to deter-
mine whether different combinations of parameters have a
statistically significant impact on performance. Next, the model (or
models) that produces the highest average performance rank across
the 10 CV folds is chosen and a final lockdownmodel is trained on the
full training subset under the selected hyperparameters.

It is worth noting that if the training subset is not large enough to
yield reliable distribution ratios in k-folds, the above procedure ismodi-
fied by using an alternative CV approach referred to as leave one out
cross-validation (i.e. LOOCV). In this approach, the grid search for se-
lecting the hyperparameters for the lockdown is iteratively developed
on n-1 training subsets and keeping that last subject in each iteration
for parameter fine tuning. In either approach (k-fold CV or

LOOCV), the final lockdownmodel is validated on the hold-out testing
subset to assess how learned prediction rules generalize to new data
and obtain final performance metrics. Table 5 summarizes the standar-
dized performance assessment metrics used in predictive analytics.
The above procedure for partitioning the dataset during model

development is used to assess for overfitting; the biggest challenge
in building a valid and generalizable ML model. Overfitting implies
that the algorithm has captured patterns in the data irrelevant to out-
come of interest (e.g. confounders, redundancy, missingness, out-
liers, etc.) rather than the real associations between variables. Such

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 4 Common feature selection techniques in
machine learning

Technique Description

Recursive feature

elimination (RFE)

Iteratively removing features that do not

contribute to model performance based on

predetermined accuracy metric. Machine

learning engineers can specify desired

number of features for inclusion in final

model.

LASSO In this approach, a penalty term that shrinks

marginal coefficients toward zero. Features

with estimates equal to zero will be

dropped from the regression model;

indirectly selecting features while

optimizing the least squares estimator.

Principal component

analysis (PCA)

PCA uses linear equations to create

informative combinations between

features in the dataset. The new

combinations are weighted in a way that

the first few vectors explain most variability

in features in the dataset (principal

components or eigenvalues). These

principal components are independent and

can be used in subsequent analysis rather

than using the original features in the

dataset. This compresses the

dimensionality in the data by reducing the

number of features and trading accuracy

for simplicity.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 5 Performance metrics for assessing machine
learning models

Metric Description

Regression-based metrics

Root mean square error

(RMSE)

A measure for the deviation of the predicted

values from the actual ones. The lower

RMSE the more accurate the model.

Mean absolute error

(MAE)

A measure of the absolute values for the

difference between the predicted and the

actual values.

R2 or adjusted R2 The proportion of variance in the outcome

that can be explained by the predictors.

Adjusted R2 is more robust when new

variables are added to the model.

Akaike’s information

criterion (AIC)

Provides an indication of the model

performance that accounts for model

complexity.

Bayesian information

criterion (BIC)

A measure similar to AIC but using Bayesian

approach. It performs better for positive

findings.

Classification-based metrics

Area under ROC curve ROC visually plots a curve between the true

positive rate (recall) and the false positive

rate with a total possible area under the

curve of 1. The larger this area the more

precise the classification performance.

Precision The accuracy of the positive predictions (i.e.

positive predictive value). Precision=TP/

(TP+ FP).

Recall (sensitivity) The ratio of positive instances that are

correctly detected by the classifier (i.e.

sensitivity). Recall=TP/(TP+ FN)

F1 score The harmonic mean between precision and

recall, which is a measure that works well

with imbalanced data. F1 score= 2×
[(precision× recall)/(precision+ recall)].

Precision-recall curve Precision-recall curve visually plots a curve

between true positive rate (precision) and

sensitivity (recall). Precision-recall curve is

typically used in real-time alerting systems

where high false positive rate is

problematic (e.g. alarm fatigue).
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‘noise’ causes the model to overfit the training data, so it generalizes
poorly to new data (Figure 7A). To assess for overfitting, one first
must estimate the overall bias in model predictions during training
and compare it to the associated variance during testing. Bias refers
to the overall model accuracy on historical data (e.g. root mean
square error for regression, area under ROC curve for classification),
whereas variance refers to the consistency in performance on future
data. There is a tradeoff between bias and variance (Figure 7B). This
means that very accurate models during training could yield large
prediction error on new data (low bias – high variance), whereas
less accurate ones during training could generalize well on new
data without loss in performance (high bias− low variance). These
challenges emphasize the need for evaluating a suite of regressors
or classifiers during model development before selecting the model
that best fits the data (i.e. optimizes bias− variance tradeoff).

When training a deep neural network with stochastic gradient
descent, the risk of overfitting is high. Therefore, at each round of
training, it is typically necessary to further reserve a certain amount
of data (10% of training data used in this round) as a validation dataset
and to stop further gradient descent when a chosen performance
metric or simply the value of the loss function stops improving after
a set number of training epochs. Another challenge in training a deep
neural network is the high cost in terms of computational power and

therefore a random grid-based search of hyperparameters cannot be
done with very fine resolution using an affordable amount of re-
sources. Therefore, more recent approaches around AutoML need
to be adopted where more effective ways of exploring the hyper-
parameter space can be achieved via algorithms such as genetic algo-
rithm or Bayesian model optimization.
The fourth and final ML building block is prospective validation and

integration into clinical workflow, which are not trivial tasks.
Implementation into clinical workflow requires system training, per-
formance engineering, monitoring, and system updating.33 More im-
portantly, before any implementation, ML models require unique
considerations for evaluation for optimal clinical utility, including pro-
spective validation in representative clinical settings, as well as estab-
lishing benchmarks against reference standards. Unfortunately, almost
80% of DL-based models are based on open-source datasets.34

Nearly half of studies carried out in representative clinical settings
show no incremental diagnostic gain over existing clinical decision
support tools.35 These observations suggest a need for more sophis-
ticated models to warrant a change in clinical practice. However, it is
worth noting that the improved accuracy which accompanies in-
creased model complexity also accompanies diminished model ex-
plainability. Figure 8 shows a hypothetical tradeoff between model
accuracy and mode explainability. Explainability here refers to a

Figure 7 Overfitting and bias-variance tradeoff in machine learning model development. (A) The simple classification case of a binary outcome
(denoted by diamonds and circles) using two variables X1 and X2. Unlike the first two classifiers that focused on capturing a real association between
X1, X2, and the outcome, the last classifier seemed to capture patterns in the data irrelevant to outcome of interest (e.g. confounding, redundancy,
missingness, outliers, etc.), thus ‘overfitting’ the model to training data. In (B), the plot to the left demonstrates three dynamic phases of the tradeoff
between bias (training error) and variance (testing error): low bias− high variance (overfitting), low bias – low variance (optimal fitting), and high bias
– high variance (underfitting). The two plots to the right show the area under receiver operating characteristic curve of three classifiers (C1, C2, and
C3) fitted on a training cohort of n= 745 and testing cohort of n= 499.32 C1 shows the lowest bias (high area under receiver operating charac-
teristic) during training but high variance (low area under receiver operating characteristic) during testing (i.e. overfitting), whereas C3 shows the
highest bias (low area under receiver operating characteristic) during training and highest variance (low area under receiver operating characteristic)
during testing (i.e. underfitting).
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human’s ability to understand the algorithm’s ‘logic’ (e.g. how andwhy
a certain class was assigned). Explainable ML models are essential in
healthcare not only because of their compatibility with clinical work-
flow and bedside care, but also for improving rigour and reproducibil-
ity of clinical investigation. There are currently numerous
‘under-the-hood’ techniques to improve ML model explainability, in-
cluding partial dependence plots, rule extraction (e.g. fuzzy rules), fea-
ture importance (e.g. local interpretable model-agnostic explanations
or LIME), decision trees, sensitivity analysis, layer-wise relevance
propagation, and attention mechanisms (e.g. heatmaps).36–38

Methodological considerations for
design rigour
A main challenge in any scientific inquiry is ensuring that conclusions
are valid and reliable. This implies that published results must be repro-
ducible.8 Unfortunately, more than 70% of scientists failed in

replicating others’ findings and nearly half failed in reproducing their
very own findings,39making bias, or systematic errors, an unprecedent-
ed threat to evidence-based practice.40 Using robust experimental
workflows to reduce unintentional errors is at the heart of scientific
inquiry principles. There are numerous types of bias specific to ML lit-
erature. Table 6 summarizes numerous sources of bias relevant to ML
research as previously identified by Mehrabi et al.41 In this table, we
also relate the magnitude of threat of each source of bias to prediction
accuracy of the ML model and its generalizability to new data.
Herein we highlight few sources of ML bias that are closely related

to healthcare research. The first important methodological consider-
ation is the impact of study design onMLmodels. Most MLmodels are
developed on historical data from observational research (cohort and
case–control designs). Each of these designs bring inherited methodo-
logical limitations on data quality and potential clinical use. While co-
hort studies are methodologically suitable for disease prognosis
(forecasting) and diagnostics (predictive analytics), case–control stud-
ies are less reliable for designing predictive analytics. Specifically,

Low error
(complex model)

High error
(simple model) Model Accuracy

High
(white box)

Low
(black box)

Model
Explainability

DL

RF

SVM

K-NN

Trees

LR

Figure 8 Hypothetical tradeoff between model accuracy and model explainability. This figure shows a hypothetical relationship between model
accuracy (computational cost) and model explainability. It is worth noting that this is an over-simplistic view of the relationship between these two
constructs, and that the relationship between the selected classifiers is not linear. Yet, this figure emphasizes that predictive modelling is ‘mission
critical’; explainable (simple) models are preferred because they will be trusted more, and thus used more.11 These models might also be more
accurate than complex ones (note the horizontal error bars for accuracy). DL, deep learning; RF, random forest; SVM, support vector machine;
K-NN, nearest neighbours; LR, logistic regression.
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predictive models developed on case–control studies were poorly ca-
librated and had less discriminative power when compared with co-
hort studies for modelling the same outcome.42 This poor
performance can be attributed to poor control over known and un-
known confounders during the selection of samples in case–control
designs, emphasizing that careful construction of a case–control de-
sign can lead to comparable discriminative performance as a cohort
design. Other limitations for the poor model calibration in case–con-
trol designs are (i) the over-representation of the outcome class, (ii)
the poor representation of data available during the time of diagnosis,
and (iii) the overemphasis on features closer to the outcome of inter-
est (temporal bias).43 Thus, a ML model based on case–control stud-
ies must be prospectively validated using a cohort design for fair
evaluation and recalibration before any clinical deployment.42

A second important consideration for ML applications in health-
care is sampling bias. Although most ML engineers focus on the ad-
equacy of training samples and the numeric distribution of input
features, little attention is paid to the sampling techniques used to
collect the historical data in the first place. If biased sampling techni-
ques were used, then the probabilistic distribution of features in
training data might be different than that in representative clinical set-
tings.44 This might produce models that are not only poorly general-
izable to unseen data, but also lack physiological plausibility. Another
important sampling concern is using multiple samples from the same
patient across training and testing subsets. Unless these multiple sam-
ples are physiologically distinct, then the modelling dataset would be
flawed. An example would be using each heartbeat within a 10-s
ECG rhythm strip as a training sample. This essentially violates the

Gaussian distribution principles where input features are expected
to be independent and identically distributed. This frequently yields
unrealistic and exaggerated performance metrics during model train-
ing, which would again poorly generalize to new unseen data.
Another critical consideration in ML research is the rigour of the

ascertainment of the outcome variable. The conclusion validity of any
supervised ML model depends heavily on the quality of labels on
which the model was trained. High-quality labels need to be based
on a good reference standard (e.g. gold standard) or a majority panel
vote (e.g. consensus adjudication) where reviewers are blinded to
model predictions.45 Poorly labelled outcome data will negatively af-
fect model building twice, once during model training and once dur-
ing model evaluation, leading to high bias− high variance tradeoff.
Moreover, given that sophisticated ML models require large amount
of data, many studies rely on ‘silver’ labels. Outcome ascertainment
using silver labels can be based on with electronic health records
(EHR)-phenotyping (i.e. rule-based queries) or semi-supervised la-
belling (i.e. predictions by active learning), each of which comes
with its own limitations. For example, EHR-based phenotyping has
been shown to miss up to 21% of acute MI events.46 Thus, assessing
the quality and robustness of outcome ascertainment is important
before evaluating model performance claims.

Quality assessment checklist
Ensuring rigours and reproducibility in ML research is essential for
designing functional algorithms for clinical use, and there are
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Table 6 Summary of common sources of bias relevant to machine learning literature41

Type of bias Description Threat to prediction
accuracy

Threat to generalizability to
new data

1. Bias related to data quality and curation

Sampling bias Systematic error due to non-random sampling of subgroups. + +++
Measurement bias Systematic error due to invalid or unreliable tools to quantify a

particular feature.

+++ +

Omitted feature bias Systematic error due to absence of important features +++ +
Representation bias Systematic error due to lack of diversity in measured features. + +++
Aggregation bias Systematic error due to analysing heterogenous subgroups

together.

+++ +

Longitudinal data

fallacy

Systematic error due analysing temporally diverse cohorts into a

single time point.

+++ +

2. Modelling bias

Algorithmic bias Systematic error introduced by algorithm design choices. +++ +++
Presentation bias Systematic error due to how information is presented. +++ +
Evaluation bias Systematic error due to using inappropriate benchmarks during

model design and selection.

+++ +++

3. Model deployment bias

Historical bias Systematic error due to learning implicit bias in data itself (e.g.

clinician annotation behaviour).

++ ++

Population bias Systematic error due to mismatch between training data and

target population (i.e. intent of use).

+ +++

Temporal bias Systematic error due changes in practice over time. + +++
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Table 7 A checklist for Ruling Out Bias Using Standard Tools in Machine Learning

Quality items Important red flags to observe

1. General design considerations

1.1. Was the study design and data collection methods appropriate? Poorly designed case–control study, over-represented outcome class, etc.

1.2. Was there any evidence for sampling bias? Misrepresentation of features; using dependent or duplicate samples, etc.

1.3. Is the experiment reproducible? Insufficient details on data provenance of ML processes; paper does not follow

reporting guidelines; failure to adhere to code or data availability policies, etc.

2. Data quality considerations

2.1. Was the dataset size commensurate with the learning task and

model complexity?

Large number of features relative to dataset size, large number of prediction classes

relative to dataset size, ,5 positive labels per input feature, DL on only few

hundred examples, etc.

2.2. Was data of high quality? Data missingness, incompleteness, inconsistency, inaccuracy, duplication, outliers,

noise, crowdsourcing, etc.

2.3. Was missingness in the data characterized and properly handled? .5% missing data, data not missing at random, excessive data imputation, etc.

2.4. Were data properly visualized and exploratory analyses performed? Lack of exploratory data analysis (tables or visual graphs of important features), data

representation bias, etc.

2.5. Were raw data collected as per accepted clinical standards,

protocols, and techniques (valid and reliable measurement tools)?

Erroneous raw data, high interrater variability, inaccurate feature computation, etc.

2.6. Were criteria and procedures that were used to assign the labels

robust and acceptable?

Using only a single reviewer, lack of consensus, high interrater reliability, using

surrogate outcomes or ‘soft’ silver labels, etc.

3. Feature engineering considerations

3.1. Was the number of features commensurate to size of dataset? Features to sample size ratio is �1:1 (without dimensionality reduction), etc.

3.2. Were features selection techniques implemented? Inclusion of all features without exploring feature selection, inclusion of features not

typically available to algorithm in the intended target use, no feature ranking, or

review by domain experts, etc.

3.3. Was there any feature omission bias? Important predictors missing, relevant confounders not controlled, etc.

3.4. Was there any consultation with clinical domain experts on feature

selection appropriateness?

Data-driven features not reviewed by domain experts, unintentional removal of

features essential in clinical decision making, etc.

3.5. Were irrelevant features removed? Inadequate feature selection in highly dimensional datasets, etc.

4. Model development considerations

4.1. Was dataset partitioning appropriate? Inadequate training samples, duplicate observation in training and testing sets, etc.

4.2. Was cross-validation (CV) done properly? Cross-validation not used, mismatch between number of folds and sample size, using

k-fold CV instead of LOOCVwith very small sample sizes, not reporting confidence

interval for the performance of CV, etc.

4.3. Were parametric assumptions satisfied whenever indicated? Skewed data with no transformations, high data collinearity, etc.

4.4. Was there any data leakage (information from outside the training

dataset is used to create the model)?

Scaling features before dataset partitioning, unblinding of labels, duplicate samples in

both training and testing subsets, etc.

4.5. Was special attention paid when assessing models with imbalanced

classes?

Improper evaluation metrics when positive labels are rare, balancing the test subset

(prevalence higher than expected), etc.

4.6. Was the selection of best fitting algorithm appropriate? Using complex models to simple tasks, comparing ,3–4 predictive models, poor

optimization techniques, etc.

4.7. Was bias-variance tradeoff adequately assessed (underfitting vs.

overfitting)?

Only results on testing set are presented, omitting confidence intervals, etc.

4.8. Was there any evaluation bias (systematic error in predictions)? Using only a single performance assessment metric, lack of adequate benchmarks, no

interrogation of sources of error in false positives, and false negatives etc.

4.9. Was there any algorithmic bias (underperformance in population

subgroups like females or minorities)?

No post hoc sensitivity analyses, no AI fairness assessment, etc.

4.10. Were there any unexpected results? Very heterogenous samples (aggregation bias), analysing repeated measures

cross-sectionally (longitudinal data fallacy), data based on old practices (temporal

bias)

5. Considerations for clinical utility

5.1. Did the dataset match the target clinical setting in which the model

will be used?

Inappropriate use of an open-source dataset, data based on outdated practices

(temporal bias), population bias, etc.

Continued
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currently numerous reporting guidelines and user guides for design-
ing such ML models.1,8,33,45,47–52 However, evaluating the quality of a
published ML paper requires a comprehensive understanding of the
available ML techniques and approaches; the main building blocks of a
functional ML pipeline; and potential design flaws and methodological
biases involved. Table 7 provides a summary checklist for systematic-
ally evaluating published ML studies. This checklist can guide clinicians
while evaluating the rigour of a published ML study by asking the
most relevant questions and searching for potential pitfalls and red
flags.

Summary
Developing functional ML-based models to address unmet clinical needs
requires unique considerations to reach the stage of potential clinical util-
ity. This review summarized the main ML building blocks and identified
important red flags clinicians should observe while critically appraising
ML applications in healthcare. Bridging the gap between clinicians, health-
care scientists, and ML engineers can address many shortcomings and
pitfalls of ML-based solutions and their potential deployment at the bed-
side. It is important for clinical ML studies to be reviewed by clinicians,
and a checklist such as the one provided herein may serve as an aid. It
is worth noting, though, that this checklist requires subsequent revisions
using a formal Delphi consensus process so that it can be listed on the
EQUATOR Network as a formal quality assessment tool.
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Table 7 Continued

Quality items Important red flags to observe

5.2. Were results interpretable? Lack of results on model explainability, false predictions are not interrogated, no

actual case studies presented to demonstrate true or false predictions/

classification, etc.

5.3. Was the model assessed for gender- and racial bias? No use of AI fairness assessment tools, historical bias, no subgroup sensitivity analyses,

etc.

5.4. Was model compared with a clinical benchmark to establish

incremental gain?

No comparison against a reference standard (no comparison against existing

algorithms that are in use today or comparison with experts with no significance

testing), unacceptable reference standard, etc.

5.5. Was the model externally validated on data from a different setting? No independent validation set or test set from a different hospital or region, etc.

5.6. Was technology acceptability empirically assessed? Inadequate domain expertise, no collaborating clinicians, etc.
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Callaway C, Sejdić E. Machine learning-based prediction of acute coronary syndrome
using only the pre-hospital 12-lead electrocardiogram. Nat Commun 2020;11:1–10.

32. Bouzid Z, Faramand Z, Gregg Richard E, Frisch Stephanie O, Martin-Gill C, Saba S,
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