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Large-scale magnetic fields thread through the electrically conducting matter of the
interplanetary and interstellar medium, stellar interiors and other astrophysical plasmas,
producing anisotropic flows with regions of high-Reynolds-number turbulence. It is
common to encounter turbulent flows structured by a magnetic field with a strength
approximately equal to the root-mean-square magnetic fluctuations. In this work,
direct numerical simulations of anisotropic magnetohydrodynamic (MHD) turbulence
influenced by such a magnetic field are conducted for a series of cases that have
identical resolution, and increasing grid sizes up to 20483. The result is a series of
closely comparable simulations at Reynolds numbers ranging from 1400 up to 21 000.
We investigate the influence of the Reynolds number from the Lagrangian viewpoint
by tracking fluid particles and calculating single-particle and two-particle statistics.
The influence of Alfvénic fluctuations and the fundamental anisotropy on the MHD
turbulence in these statistics is discussed. Single-particle diffusion curves exhibit mildly
superdiffusive behaviours that differ in the direction aligned with the magnetic field and
the direction perpendicular to it. Competing alignment processes affect the dispersion of
particle pairs, in particular at the beginning of the inertial subrange of time scales. Scalings
for relative dispersion, which become clearer in the inertial subrange for a larger Reynolds
number, can be observed that are steeper than indicated by the Richardson prediction.
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1. Introduction

Only relatively recently have Lagrangian statistics begun to be explored as a tool to
understand properties of turbulence in the electrically conducting fluids that are described
by magnetohydrodynamics (MHD) (Busse et al. 2007; Homann et al. 2007b; Busse &
Müller 2008; Busse, Müller & Gogoberidze 2010; Eyink et al. 2013; Pratt et al. 2017;
Pratt, Busse & Muller 2020a; Pratt, Busse & Müller 2020b). In contrast, the study of
neutral-fluid turbulence from a Lagrangian viewpoint has a long history (e.g. Taylor 1922;
Richardson 1926), with established scaling laws due to Batchelor and Richardson that
have been explored both theoretically and experimentally. In neutral fluids, comprehensive
studies have examined how Lagrangian statistics related to dispersion are dependent on
the Reynolds number of the flow (Yeung & Borgas 2004; Yeung, Pope & Sawford 2006;
Sawford, Yeung & Hackl 2008). In this work we explore these questions in the more
physically complex system of fully nonlinear incompressible MHD turbulence.

Turbulent mixing is investigated through the diffusion and relative dispersion of fluid
tracer particles. A full description of mixing in a plasma depends on the Reynolds number.
Relative dispersion in neutral fluids quantifies the mixing of smoke and pollutants in the
atmosphere, or of micro-plastics and debris in the oceans. In electrically conducting fluids,
diffusion, dispersion, and the mixing processes they represent, determine how fusion
products from the core of a star are mixed into the star’s outer layers, thereby changing the
course of stellar evolution. Relative dispersion also represents the spreading and mixing
of plasma in the interstellar or interplanetary medium, and affects how energetic particles
and cosmic rays are transported. In these contexts, Reynolds numbers are predicted that are
many orders higher than can be achieved presently by direct numerical simulations (DNS)
that fully resolve the turbulent motions. However, the features of diffusion and dispersion
captured by fluid particles in DNS of MHD turbulence provide information relevant to
turbulent mixing in these astrophysical applications (e.g. Zahn 1993; Heyer & Brunt 2004;
Utomo, Blitz & Falgarone 2019). The details of how these statistics change as the Reynolds
number increases allow us to make predictions for realistic mixing.

In astrophysical settings, the magnitude of the large-scale magnetic field is often
moderate. For example, in the solar wind, ion foreshock and magnetosheath, ranges
have been reported such that the magnetic field is between one and 2.5 times the
root-mean-square (r.m.s.) fluctuations, i.e. 1 ≤ B0/Brms ≤ 2.5 (see table 1 of Zimbardo
et al. 2010). In this work we examine a system with a weak anisotropy caused by such a
large-scale magnetic field, and select the situation where the magnetic field is equal to the
average r.m.s. magnetic field fluctuations, i.e. Brms ≈ B0.

This work is structured as follows. In § 2 we describe in detail the simulations
performed. In § 3 we introduce a new resolution criterion for anisotropic MHD turbulence
simulations, a necessity for producing a set of DNS that can be closely compared. In § 4
we present diffusion curves, a single-particle Lagrangian statistic. In § 5 we present several
statistics derived from pairs of tracer particles, focused on understanding the relative
dispersion. In § 6 we summarize our findings and draw broader conclusions from the
statistics presented.

2. Simulations

We investigate the effect of the Reynolds number on statistically stationary, forced,
homogeneous, incompressible MHD turbulence in the presence of a moderate static
magnetic field. This magnetic field has a constant value and direction throughout the
simulation. Locally the magnetic field also experiences time-dependent fluctuations which
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Reynolds number dependence of Lagrangian dispersion

possess zero mean. The strength of these fluctuations can be measured with respect to
the strength of the imposed magnetic field. A global average of the magnetic field would
return the value due to the imposed field and, therefore, the term mean magnetic field best
describes the type of field imposed. Such a magnetic field has alternatively been referred
to as an external magnetic field, or a guide field, although these terms are less specific to
the way that the field has been imposed.

In each DNS, we solve the non-dimensional equations

∂ω

∂t
− ∇ × (v × ω + j × B) = ν̂∇2ω + f ω, (2.1)

∂B
∂t

− ∇ × (v × B) = η̂∇2B + f b, (2.2)

∇ · B = 0, ∇ · v = 0, (2.3)

using a pseudospectral method in a simulation volume with periodic boundary conditions.
These equations include terms for the solenoidal velocity field v, vorticity ω = ∇ × v,
magnetic field B and current j = ∇ × B. Each of the quantities in (2.1)–(2.3) have been
non-dimensionalized using relevant time and length scales, commonly referred to as
Alfvénic units. Two dimensionless parameters, ν̂ and η̂, appear in the equations. They
derive from the kinematic viscosity ν and the magnetic diffusivity η. A fixed time step and
a low-storage third-order Runge–Kutta method (Williamson 1980) are used for the time
integration. The mean magnetic field is designated by B0, and points purely in the positive
z-direction. At any point in time it has a value close to unity with respect to the r.m.s. of
the magnetic field fluctuations; a long-time average produces B0 ≈ Brms. The Alfvén ratio
is approximately unity for all simulations discussed in this work; we calculate this ratio
as rA = 〈Ev/Eb〉 from the kinetic energy per unit mass Ev = v2/2 and the energy per unit
mass contained in the magnetic fluctuations Eb = B2

rms/2. In the Alfvén ratio, the brackets
indicate an average over time; this is the simulation time during which the dynamics of
Lagrangian tracer particles are examined. The implications of an Alfvén ratio of one are
that our simulations include the full nonlinear interaction of velocity and magnetic fields
that contribute with equal weight.

To maintain the turbulence in a statistically stationary steady state, the vorticity
and magnetic fields are forced on the largest scales of the simulation volume using a
deterministic forcing, applied in Fourier space, that also allows the largest-scale motions
of the system to evolve. Deterministic forcing has the advantage that no stochastic source
of fluctuations is introduced on large scales. We call the deterministic forcing method that
we use homogeneous forcing; it is distinct from forcing methods used in several earlier
works on Lagrangian MHD turbulence (Busse et al. 2007; Homann et al. 2007b; Busse
& Müller 2008; Busse et al. 2010) but identical to the forcing method used in Pratt et al.
(2020b). Homogeneous forcing establishes a constant injection of energy at large scales.
In (2.1) and (2.2) forcing terms f ω and f b are introduced which are non-zero only for the
wavevector shells 1 ≤ |k| ≤ 2.5. The forcing terms are defined as

f̂
ω
(k, t) = γf ,ω

ω̂(k, t)
|ω̂(k, t)|2 , (2.4)

f̂
b
(k, t) = γf ,b

B̂(k, t)

|B̂(k, t)|2 . (2.5)

Variables with hats are used to describe the forcing because it is applied in Fourier space.
The constants γf ,ω and γf ,b regulate the energy injection. These two forcing constants are
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set equal in our simulations, and are identical across all of the simulations presented in this
work. By forcing both fields equally, we achieve approximate equipartition of kinetic and
magnetic energy at all scales, and study the regime of MHD turbulence defined by the full
nonlinear interaction of the velocity and magnetic fields. This is in contrast to studies that
force only the velocity field, oriented toward understanding the dynamo (e.g. McKay et al.
2017; Brandenburg et al. 2018). In natural settings such as molecular clouds (Hennebelle
& Falgarone 2012; Heiles & Troland 2005), and the solar wind (Müller & Grappin 2005;
Boldyrev, Perez & Zhdankin 2012) kinetic and magnetic energies are commonly observed
to be close to equipartition, so this choice is a physically realistic one.

To inhibit the emergence of states dominated by Elsässer (Elsässer 1950) positive (z+)
or negative (z−) interactions, the cross helicity of the forced modes is set to zero. This
is accomplished as part of the forcing scheme by enforcing orthogonality between the
magnetic field vector and the velocity field vector (see, e.g. Müller, Malapaka & Busse
2012). The magnitude of the total cross helicity, normalized by

√
Ev

√
Eb, never rises

above 0.095 in the simulations examined in this work. This prevents the MHD turbulent
system from becoming imbalanced, which can lead to a breakdown of the nonlinear energy
cascade (as discussed in Biskamp 2003). In addition, the level of total magnetic helicity,
normalized by E2

b/kforcing, never rises above 5 × 10−4. For a system in a quasi-stationary
state, homogeneous forcing is expected to disturb the natural turbulent flow only mildly;
this forcing method has been examined in Ghosal et al. (1995) and Vorobev et al. (2005).
Based on the forcing, our simulations are consistent with strong turbulence as described
by Perez & Boldyrev (2007) and Verdini & Grappin (2012). Large-scale Alfvén waves are
permitted and are observed when homogeneous forcing is used.

2.1. Lagrangian tracer particles
The positions of Lagrangian tracer particles are initialized in a homogeneous random
distribution at a time when the turbulent flow has attained a statistically stationary state.
The approximate number of tracer particles deployed in each simulation, in millions, is
given in table 1. The particle numbers we use are comparable to earlier MHD turbulence
studies (Busse et al. 2007; Homann et al. 2007b; Busse & Müller 2008; Pratt et al. 2020b),
and are larger than those used in Yeung et al. (2006) and Sawford et al. (2008) to study
homogeneous isotropic hydrodynamic turbulence. The consequence is that the Lagrangian
statistics that we produce in this work are well resolved in space. At each time step the
particle velocities are interpolated from the instantaneous Eulerian velocity field using a
tricubic polynomial interpolation scheme (Lekien & Marsden 2005; Homann, Dreher &
Grauer 2007a). Particle positions are calculated by numerical integration of the equation
of motion using a low-storage third-order Runge–Kutta method that matches the one used
for the Eulerian field integration. We record particle information every four time steps, at
approximate time intervals of 0.1τη, so that the Lagrangian statistics produced are also
well resolved in time. The hydrodynamic simulation that we perform for comparison,
simulation 3H, uses a slightly larger time interval of 0.2τη. Particles are initially arranged
in tetrads with a reference particle at the vertex and three other particles aligned along each
Cartesian direction at fixed separations from the reference particle. Each dispersion result
is defined by this initial separation distance. The smallest initial separation distances that
we deploy are well resolved by the grids used in each simulation; this will be quantified
in the section on the resolution. Each simulation is run for at least 400 of the Kolmogorov
time scale τη. At large times, the particles that make up a pair can reach a separation that
is on the scale of the simulation volume. For pairs of particles that have separated that far,
the probability is low for a statistically significant number to reapproach each other again.
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Reynolds number dependence of Lagrangian dispersion

sim. no. grid size N3 Np (millions) Brms τη(10−2) LE TE kmax,⊥ηkol,⊥ kmax,‖ηkol,‖ Re

1 2563 1 0.90 12.59 3.32 5.00 1.61 1.99 1400
2 5123 8 0.98 8.21 3.49 5.16 1.70 2.11 3200
3 10243 8 1.03 5.28 3.67 5.32 1.77 2.18 7600
3H 10243 8 0.0 4.78 3.56 4.88 1.77 1.77 10 400
4 20483 8 1.07 3.17 3.35 5.00 1.64 2.04 21 000

Table 1. Simulation parameters: the simulation number, the Eulerian grid size N3 and the number of tracer
particles Np is provided for each simulation. The Kolmogorov time scale τη, large-eddy length scale LE,
the large-eddy turnover time TE and the time-averaged r.m.s. of magnetic fluctuations Brms are given. The
magnitude of the mean magnetic field is B0 = 1 for case 1, 2, 3, 4. The resolution in the perpendicular direction
kmax,⊥ηkol,⊥ and in the parallel direction kmax,‖ηkol,‖ are provided. The Reynolds number is calculated as
described in (3.13) using the perpendicular Kolmogorov microscale ηkol,⊥. All simulations take place in a
cubic simulation volume, and flow statistics are gathered for at least 400τη. The simulation 3H is a purely
hydrodynamic simulation performed for comparison with simulation 3.

Although the forcing is applied on length scales comparable to the simulation volume, the
velocity field experienced by pairs of Lagrangian tracer particles separated by the size of
the simulation volume is generally decorrelated, and the two particles move approximately
independently from each other.

3. Resolution of anisotropic MHD turbulence

In anisotropic MHD turbulence, attention must be given both to the shape of the simulation
volume and the ability to resolve the smallest relevant scales of the turbulent dynamics.
At both large scales and small scales, differences exist between the energy spectra in
the directions parallel and perpendicular to the mean magnetic field (see figure 1).
The asymptotic spectral scaling exponents of the one-dimensional energy spectra are
approximately -1.5 (perpendicular) and −1.6 (parallel). These spectra are defined as
E(k) = ∫

d3k′E(k′)δ(|k′ · êk| − k), where the wavenumber k runs along the direction
given by the appropriately chosen and fixed unit vector êk. These scalings are consistent
with the current understanding of inertial-range dynamics of incompressible MHD
turbulence, which is based on the concepts of critical balance of characteristic time scales
parallel and perpendicular to the local magnetic field (Goldreich & Sridhar 1995b; Mallet,
Schekochihin & Chandran 2015) and dynamical alignment of fluctuations of velocity and
magnetic field (Boldyrev 2006), in combination with specific log-Poisson intermittency
corrections (Chandran, Schekochihin & Mallet 2015; Mallet & Schekochihin 2017). We
provide these scalings purely for the sake of completeness; they should be viewed with
care. The main caveat is the limited width of the inertial scaling range, a consequence of
the well-resolved dissipation region required for Lagrangian small-scale statistics. Another
relevant issue is that anisotropic MHD energy transfer for systems with moderate mean
magnetic fields should be analysed in a local frame of reference aligned with the local
mean magnetic field, which includes contributions from magnetic fluctuations, instead of
the global mean field B0. Such an analysis of spectral transfer is outside the scope of this
Lagrangian investigation. For the present work, the following simple observations of MHD
spectral dynamics seem sufficient to characterize the system investigated. As the energy
cascade proceeds to smaller scales, the eddies become more elongated in the direction
parallel to the magnetic field; the amount of elongation is dependent on the length scale of
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Figure 1. Time-averaged kinetic energy spectra for the four MHD simulations described in table 1. The spectra
are calculated for a one-dimensional wavevector k taken in the (a) x-direction (perpendicular to the mean
magnetic field), and (b) z-direction (parallel to the mean magnetic field). Grey lines indicate theoretical scaling
laws relevant to the inertial range for MHD turbulence.

motions in that direction, which in turn is dependent on the strength of the magnetic field
(e.g. as discussed in Cho & Vishniac 2000; Schekochihin, Cowley & Yousef 2008; Verdini
et al. 2015). We explored the corresponding time-scale dependence of this anisotropy from
the Lagrangian point of view in Pratt et al. (2020b). Due to the elongation of eddies in the
direction aligned with the magnetic field, the smallest length scales relevant for the study
of turbulence are different from those in the perpendicular direction. At the largest scales,
correlation lengths are also longer in the direction aligned with the mean magnetic field
than in the perpendicular direction.

3.1. Resolution of the largest scales of anisotropic MHD turbulence
Corresponding to these correlation lengths, velocity structures have different characteristic
scales in the directions parallel and perpendicular to the mean magnetic field. To assure
that these velocity structures are both resolved, we consider how the periodic simulation
volume should be shaped. We solve the MHD equations (2.1)–(2.3) in a simulation
volume with sides of length 2π in the x and y directions, that are perpendicular to the
mean magnetic field. Using a simulation volume that is elongated in the z-direction is
common for simulations of anisotropic MHD that examine a strong mean magnetic field.
To determine the necessary length in the z-direction, we consider the correlation length of
the velocity field in each direction. In test simulations with a stronger mean magnetic field,
we measure a correlation length of the velocity field Lc,‖ in the direction parallel to B0 that
is significantly larger than in the perpendicular direction. This measurement agrees with
previous results (e.g. Cho, Lazarian & Vishniac 2002; Boldyrev 2005; Chandran 2008).
For the strong turbulence regime, a relative change in length scales can be predicted from
the premise of critical balance (Goldreich & Sridhar 1995a). Using this premise, the ratio
of the largest-scale wavenumbers (k ∼ 2π/L) in the perpendicular and parallel directions
grows linearly with the magnitude of the mean magnetic field B0,

k‖B0 ∼ k⊥Brms. (3.1)

Thus, for the largest scales of the flow, critical balance predicts that the ratio of parallel
and perpendicular length scales should grow linearly with B0. The critical balance relation
in (3.1) implies that the nonlinear eddy turnover time is of the order of the Alfvén time
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τNL ∼ τA. For the B0 = 1 simulations examined in this work, the box length in the parallel
direction is much larger than the parallel correlation length, Lz � 10Lc,‖. We therefore are
able to use a cubic simulation volume with no elongation for all simulations in table 1.

3.2. Resolution of the smallest scales of anisotropic MHD turbulence
We revisit the resolution criterion commonly used to measure whether isotropic turbulence
is sufficiently resolved, and we extend this criterion to the anisotropic case. The smallest
length and time scales that characterize Navier–Stokes turbulence are defined in terms
of the kinetic energy dissipation rate εv and the kinematic viscosity. These are the
Kolmogorov microscale ηkol = (ν3/εv)

1/4 and the Kolmogorov time scale τη = (ν/εv)
1/2.

To test whether a DNS adequately resolves the smallest physically relevant spatial scales
of turbulence, the Kolmogorov microscale ηkol is typically multiplied by the highest
wavenumber resolved in a simulation kmax. This provides a non-dimensional number
that indicates how well the grid spacing resolves this smallest physical length scale.
The ‘standard’ criterion for adequate spatial resolution for a simulation in the case of
homogeneous isotropic turbulence (Yeung & Pope 1989; Pope 2000; Donzis, Yeung &
Sreenivasan 2008; Yeung, Sreenivasan & Pope 2018) is then

kmaxηkol � 1.5. (3.2)

The presence of a mean magnetic field makes the gradients of the turbulent fields higher
in the perpendicular directions compared with the gradients in the parallel direction.
Therefore, we need to extend the criterion in (3.2) to ensure that the smallest eddies are
well resolved both for the mean field parallel and perpendicular directions.

To extend this resolution criterion, we examine the definition of the kinetic energy
dissipation rate, which is related to gradients in the velocity field

εv = 1
2

∑
i,j

ν

〈(
∂vi

∂xj

)2
〉

. (3.3)

In Fourier space this is expressed as

εv =
∑

k

ν|k|2
3∑

i=1

〈v̂∗
i (k, t)v̂i(k, t)〉. (3.4)

By separating the modulus of the wavevector in (3.4) into components parallel k‖ = k ·
(B0ẑ)/B0 and perpendicular k⊥ = k × (B0ẑ)/B0 to the direction of anisotropy, the kinetic
energy dissipation rate can be split into contributions that arise from gradients parallel and
perpendicular to the mean magnetic field. We define these components as

εv = 2
3
εv,⊥ + 1

3
εv,‖, (3.5)

εv,⊥ = 3
2

∑
k

ν|k⊥|2
3∑

i=1

〈v̂∗
i (k, t)v̂i(k, t)〉, (3.6)

εv,‖ = 3
∑

k

νk2
‖

3∑
i=1

〈v̂∗
i (k, t)v̂i(k, t)〉. (3.7)

In the case of homogeneous isotropic turbulence, these definitions recover εv,⊥ =
εv,‖ = εv . In the case of a finite mean magnetic field, gradients perpendicular to the mean
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magnetic field will be larger than gradients parallel to the mean magnetic field, leading to
εv,⊥ > εv and εv,‖ < εv .

Two different length scales, for the direction perpendicular and parallel to the mean
magnetic field, can be defined from εv,⊥ and εv,‖. These are

ηkol,⊥ =
(
ν̂3/εv,⊥

)1/4
, (3.8)

ηkol,‖ =
(
ν̂3/εv,‖

)1/4
. (3.9)

In the isotropic case, these length scales are equal to the Kolmogorov length scale. Using
ηkol,⊥ and ηkol,‖ a generalized version of the small-scale resolution criterion in (3.2) can
be defined for homogeneous anisotropic turbulence. This combined criterion for adequate
resolution of the smallest scales both parallel and perpendicular to the mean magnetic field
direction is

kmax,⊥ηkol,⊥ � 1.5, (3.10)

kmax,‖ηkol,‖ � 1.5. (3.11)

These two criteria are fulfilled in all simulations discussed in this work, and their values
are listed in table 1. When we use these criteria to set-up our simulations, the smallest
scales of anisotropic MHD turbulence appear to be well resolved in both directions. For
example, Perez et al. (2014) notes that the numerical effects of insufficient small-scale
resolution are a steepening of the spectrum at intermediate scales and a flattening closer to
the grid scale. Those effects are not observed in the spectra of our simulations in figure 1.
The smallest of initial separation distances for pairs of Lagrangian tracer particles are set
to 2ηkol,⊥. Because the Kolmogorov length scale in this direction is well resolved, so are
these particle separations.

3.3. Reynolds number for anisotropic MHD turbulence
For a homogeneous isotropic system, the Reynolds number is standardly defined from the
kinetic energy, the viscosity and a characteristic length scale

Re = 〈E1/2
v LE〉/ν. (3.12)

The characteristic length scale LE is defined as a dimensional estimate of the size of the
largest eddies, LE = E3/2

v /εv . This length scale is summarized in table 1 for each of our
simulations.

To calculate the Reynolds number for anisotropic flows, we use the more general
definition of the Reynolds number (see Chapter 6.1.2 of Pope 2000)

Re = c(ηkol,⊥/LF)−4/3, (3.13)

where LF is a forcing length scale and c is a constant that must be determined. Our method
of homogeneous forcing affects a minimum length scale

LF = 2π/kF,max = 0.8π. (3.14)

We determine the constant c by comparing the definitions of the Reynolds number in
(3.12) with that in (3.14) for an isotropic B0 = 0 simulation; this produces a value of
the constant c ≈ 1.16. The Reynolds number calculated using (3.13) is summarized in
table 1 for each of our simulations. For an isotropic flow, the standard Reynolds number
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based on the Kolmogorov microscale, Re, and the Taylor-scale Reynolds number, Reλ,
provide equivalent information (see, for example, Pope 2000; Sawford et al. 2008), and
are related by

15Re = Re2
λ. (3.15)

Thus, the Reynolds numbers in table 1 can be translated to Taylor-scale Reynolds numbers;
for simulation 4, we find that Reλ ≈ 560. The magnetic Reynolds number is defined
from the Reynolds number and the magnetic Prandtl number, i.e. Rem = PrmRe. In all
simulations in this work, the magnetic Prandtl number Prm = 1 so that the magnetic
Reynolds number is equal to the Reynolds number.

Table 1 provides an overview of the Reynolds number and other fundamental
parameters. Among the fundamental parameters in this table are also two time scales:
the Kolmogorov time scale τη, which is associated with the smallest scales of motion, and
a time scale associated with the largest scales of motion, called the large-eddy turnover
time TE = Ev/εv . Our measurements for the ratio of these time scales, τη/TE, decrease
as Re−1/2, as expected for isotropic hydrodynamic turbulence (see Chapter 6.1.2 of Pope
2000).

4. Single-particle Lagrangian Diffusion

The examination of single-particle diffusion curves, the average square distance that a
particle has moved from its initial position, is common in Lagrangian studies of turbulence.
We designate this quantity by 〈
2(t)〉, where the brackets indicate an average over all
Lagrangian tracer particles. In anisotropic MHD turbulence, such diffusion curves were
first studied by Busse & Müller (2008), who examined the influence of mean magnetic
fields of magnitude B0 = 2 and 5 in units of Brms. Our present results are physically distinct
from that work in three ways: (1) we examine a significantly weaker mean magnetic field,
(2) we use a different forcing method, and (3) our simulations extend to a higher Reynolds
number.

If diffusion curves are calculated from a single initial time, they can be influenced by
idiosyncrasies of the flow at that time. We produce our diffusion curves by averaging
the results for several independent initial times using the conventional averaging methods
described in Dubbeldam et al. (2009), so that they are not dependent on any single initial
state of the flow. Diffusion, as a single-particle statistic, is also notoriously sensitive to
large-scale flow features because each particle’s separation is measured relative to a fixed
point in space. Large-scale flows are able to sweep along large numbers of Lagrangian
particles, affecting the outcome of diffusion curves. Because of this large-scale sweeping,
diffusion statistics cannot be formulated to provide information about a specific length
scale and the related time scale.

Since diffusion is dominated by the largest-scale fluctuations of the system that carry
most of the kinetic energy, the natural time scale to normalize the time is the large-eddy
turnover time TE. For a fixed integral scale of turbulence, the Kolmogorov time decreases
as the extension of the inertial range increases. In a statistically isotropic Navier–Stokes
setting, dimensional analysis relates this large-scale quantity to the Kolmogorov time scale
TE ∼ τηRe1/2 (Pope 2000; Ishihara, Gotoh & Kaneda 2009). This relation is responsible
for the later arrival of particles in the diffusive regime with increasing Reynolds number
reported in Sawford (1991). In the MHD case, we reproduce this later arrival of particles
in the diffusive regime with increasing Reynolds number when we normalize time by
τη. However, due to the dependence of τη on Reynolds number, normalizing by the
Kolmogorov time confuses a physical interpretation of the diffusion curves. Using TE
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Figure 2. Average square separation of particles from their initial position 〈
2(t)〉, for (a) separations
perpendicular to the mean magnetic field and (b) separations aligned with the mean magnetic field. Each
curve represents an average over at least three independent initial times. Distance is measured in units of the
large-eddy length scale LE and time is measured in units of the large-eddy turnover time TE. The straight black
lines indicate the scaling laws that are theoretically predicted, with the scaling exponent labelled.

instead allows for a close comparison of the diffusion curves, which collapse to show
a universal trend (see figure 2). At short times, our single-particle diffusion curves
demonstrate the expected ballistic scaling with time to the power of two. At long times, a
diffusive regime is expected; for homogeneous isotropic turbulence, the curves scale as a
power of one in this regime.

A close examination of the diffusive scaling in our simulations (see figure 3) reveals
oscillations in the log derivative curves in the diffusive regime. This derivative is
calculated using a simple forward Euler method. Fluctuations are present in homogeneous
isotropic turbulence; however, the oscillations that we observe in anisotropic MHD
turbulence tend to be more regular and noisier. In the perpendicular direction a scaling
with an average value close to unity has been established. In the parallel direction, this
is also true for the lower Reynolds number simulations. The highest Reynolds number
simulation continues to have an average slope that is clearly steeper than one throughout
the simulation time; at no point is this slope as low as one. This measurement of parallel
diffusion is calculated parallel to B0 rather than parallel to the local mean field; particularly
in the present case where B0 is approximately equal to the fluctuations in magnetic
field, that difference may be significant, so that a deeper interpretation of this anisotropy
becomes difficult.

5. Lagrangian statistics for particle pairs

Large-scale flow features, in the present case Alfvénic fluctuations (e.g. Howes 2015), can
dominate Lagrangian statistics based on single particles. We therefore focus our attention
on diagnostics based on pairs of Lagrangian tracer particles to expose characteristics of
the smaller scales of turbulence.

5.1. Lagrangian two-particle dispersion
The most commonly examined pair statistic is two-particle dispersion. Two-particle
dispersion is the separation of a pair of particles relative to each other, and is usually
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Figure 3. Derivative of the log of 〈
2(t)〉 as in figure 2 for (a) separation perpendicular to the mean magnetic
field and (b) separation aligned with the mean magnetic field. Each diffusion curve represents an average over
at least three independent initial times. Distance is measured in units of the Kolmogorov length scale ηkol,⊥
and time is measured in units of the Kolmogorov time scale τη. A grey line indicates the theoretical prediction
that the diffusion curve scales linearly with time.

expressed as a mean-square displacement. The separation of a pair of Lagrangian tracer
particles, labelled i and j, is simply ξ = ri(t) − rj(t), where ri is the vector position of
particle i in three-dimensional space. Dispersion is typically calculated as 〈(ξ − ξ0)

2〉,
where the angular brackets denote an average over all particle pairs that have an initial
separation ξ0. At time t = t0, the quantity 〈(ξ − ξ0)

2〉 is identically zero. Three subranges
are theoretically predicted to exist for isotropic hydrodynamic turbulence,

〈(ξ − ξ0)
2〉 ∼

⎧⎪⎨
⎪⎩

t2, ballistic regime,
t3, Richardson regime,
t, diffusive regime.

(5.1)

These three predictions are relevant to short separation times, intermediate separation
times and long separation times, respectively. The ballistic regime and diffusive regime
have been theoretically motivated, and confirmed by simulations and experiments for
hydrodynamic turbulence; simulations have also confirmed that these two regimes exist
for isotropic MHD turbulence. The Richardson scaling is a plausible prediction for
high-Reynolds-number hydrodynamic turbulence (for example, see figure 5 of Bourgoin
2015), and assumes that the initial separation of the pair of particles is arbitrarily small.
For details of the derivations of these scaling laws and further work to improve them, we
refer to the reviews of Salazar & Collins (2009) and Sawford (2001).

We examine dispersion curves for pairs of particles that are initially separated in
either the direction perpendicular or parallel to the mean magnetic field; we call these
‘perpendicular pairs’ and ‘parallel pairs’, respectively. We also calculate the distances that
the particle pairs separate in the perpendicular direction and the parallel direction. Because
a pair of particles has an initial separation that is small compared with the large-scale
flow features, two-particle statistics avoid the influence of large-scale sweeping. The most
relevant time scale for measuring two-particle dispersion is therefore the Kolmogorov time
scale τη rather than the large-eddy turnover time TE. Dispersion curves for pairs initially
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Figure 4. Average square separation of particle pairs initially separated by ξ0 = 2ηkol,⊥ for (a) perpendicular
pairs and separation measure perpendicular to the mean magnetic field, and (b) parallel pairs and separation
measured in the direction aligned with the mean magnetic field. Reference scalings for the ballistic regime,
Richardson regime and diffusive regime are included as straight black lines, with the scaling exponent labelled.

separated by 2ηkol,⊥ are displayed in figure 4. This is the closest initial separation for the
particle pairs that we have followed; larger initial separations and directions also display a
scaling regime with a clear slope but the transitions are less sharp. The dispersion curves
of our four simulations appear nearly identical at short times until approximately 10τη,
a range in time corresponding roughly to the ballistic regime; the length of this range
appears similar in parallel and perpendicular directions. During the ballistic regime, faster
relative dispersion is observed in the perpendicular direction shown in figure 4(a) than in
the parallel direction shown in figure 4(b). At long times approaching 400τη, the scaling
of the dispersion curves is steeper than one. For the three simulations with the lowest
Reynolds number (sim. no. 1–3), the single-particle diffusion curves have established a
clear diffusive scaling at these late times, characterized by a mildly superdiffusive trend.

Following Salazar & Collins (2009), we refer to the middle range of scales, between
approximately 20τη and 100τη, as the inertial subrange without implying that the
Richardson scaling or any other scaling with time is a correct prediction for anisotropic
MHD turbulence. For simulations 1 and 2 in table 1, which have lower Reynolds numbers,
the dispersion curves display a mild curvature that prevents the clear definition of a scaling
during the inertial subrange of time scales. For the higher Reynolds number simulations
numbered 3 and 4, the dispersion curves flatten during the inertial subrange and approach
a scaling prediction that is clearer. In the perpendicular direction, for the pairs with initial
separation ξ0 = 2ηkol,⊥ shown in figure 4, this scaling approaches 3, a number reminiscent
of the Richardson prediction. In the parallel direction the equivalent scaling appears to be
steeper than 3.

We examine the log derivative, to quantitatively analyse these scalings (see figure 5).
Here the derivative of the log is calculated using a simple forward Euler method, because
such a two-point method allows the very early behaviour to be seen most clearly. The log
derivative shows an initial slope of 2 during the ballistic regime for both perpendicular
and parallel results. The inertial subrange and diffusive regime are both characterized by
chatter in the log derivative. During the inertial subrange, between roughly 20τη and 100τη,
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Figure 5. Derivative of the log of the average square separation of particle pairs for (a) perpendicular pairs and
separation measured perpendicular to the mean magnetic field, and (b) parallel pairs and separation measured
in the direction aligned with the mean magnetic field, as in figure 4. The initial separation of particle pairs is
ξ0 = 2ηkol,⊥. A grey line indicates the theoretical prediction that the dispersion curve scale with the square of
time at early times.

the log derivative of the perpendicular dispersion curve for perpendicularly separated
pairs ranges between 2.3 and 3.7, while the parallel dispersion of pairs separated in the
parallel direction ranges between approximately 3.0 and 4.0. The range over which these
derivatives chatter provides an estimate of the uncertainty for the scaling of the dispersion
curves. Some of the noisiness here results from the fact that our two-particle statistics are
constructed from a single initial time. During the diffusive regime both perpendicular and
parallel dispersion curves decay to values between approximately 1.0 and 2.0. Simulations
1 and 2 have an average scaling greater than 1 and less than 1.5 between 300τη and 400τη,
corresponding to a slightly superdiffusive separation.

As we have discussed, for particle pairs that are initially separated by ξ0 = 2ηkol,⊥,
the separation in the perpendicular direction appears close to the Richardson prediction
of a scaling of 3. Calculating the log derivative for particle pairs with different initial
separations ξ0 in simulation 4 (see figure 6) clarifies that this scaling is indeed dependent
on ξ0 (as discussed by Biferale et al. 2005). This figure also provides a comparison to the
hydrodynamic simulation 3H. For anisotropic MHD turbulence, the log derivative reveals
larger changes between the ballistic and the inertial subranges than in the hydrodynamic
case. For each group of particle pairs with the same initial separation, there is first a
dip before or near τη indicating a temporary slowing down of dispersion. This dip is
followed by a series of peaks as the pair separation enters the inertial subrange; since
the hydrodynamic simulation has a single smooth peak, the multiple peaks and the chatter
during this period are likely to result from Alfvénic fluctuations. The maximum value of
the log derivative for anisotropic MHD turbulence is a higher value than the hydrodynamic
case. Thus, although the dispersion curves for simulation 4 point toward a Richardson-like
scaling regime for the perpendicular dispersion, they do not clearly confirm Richardson
scaling for anisotropic MHD turbulence. The log derivative curves indicate a larger slope
is achieved during the inertial subrange for a smaller initial separation ξ0. Therefore, in the
limit where ξ0 becomes arbitrarily small, we expect that the slope of the dispersion curves
will be greater than 3 in both the perpendicular and parallel directions. We thus also expect
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Figure 6. Log derivative of the average square separation of particle pairs in the direction perpendicular to the
mean magnetic field for (a) perpendicular pairs and separation measured perpendicular to the mean magnetic
field, and (b) parallel pairs and separation measured in the direction aligned with the mean magnetic field.
Each line is labelled by the initial separation distance of the particle pairs. Data from simulation 4, described
in table 1. Equivalent curves from simulation 3H are shown as dashed lines in the background for comparison.
A grey line indicates the theoretical prediction that the dispersion curve scale with the square of time at early
times.

that corrections to a Richarson-like prediction are needed for the case of anisotropic MHD
turbulence.

It has been shown (e.g. Yeung & Borgas 2004) that the intermittency of particle-pair
dispersion is larger in higher Reynolds number simulations of isotropic hydrodynamic
turbulence. In hydrodynamic turbulence, increasing the Reynolds number leads to a
stronger intermittency at the small scales; the separation of particle pairs provides a
convenient measure for this, since they sample the velocity field on a length scale
comparable to their separation distance. The skewness, a normalized third moment,
indicates the asymmetry of the wings of a distribution; it is therefore one indicator of
intermittency, which can also be observed in other high-order moments. A larger skewness
of the distribution of particle-pair separations indicates the importance of the extremes
of dispersion, and the relative importance of pairs of particles that separate much faster
than the average. In our simulations of anisotropic MHD turbulence, the skewness of the
separation distance provides a particularly clear result that demonstrates the Reynolds
number dependence (see figure 7). In the figure the particle pairs are initially separated
by 4ηkol,⊥, so that this diagnostic can be compared with figure 13 of Yeung & Borgas
(2004). We also include the results from our simulation 3H in this figure to provide a
direct comparison with the isotropic hydrodynamic case. We find that anisotropic MHD
turbulence develops a larger skewness of the particle-pair separations than isotropic
hydrodynamic turbulence, even for similar Reynolds number simulations.

At early times, the values of the skewness of particle-pair separations are small and
negative, but quickly become positive. The skewness rises more rapidly at earlier times for
perpendicular pairs than for parallel pairs. This difference may be due to the presence
of Alfvénic fluctuations, oscillations on large-scale temporal and spatial scales, which
become elongated in the direction of the mean magnetic field. The initialization of particle
pairs allows some pairs to reside entirely inside such flow structures. Other particle pairs

944 A36-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

43
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.434


Reynolds number dependence of Lagrangian dispersion
Sk

ew
ne

ss
 (s

qr
t(
ξ2 /

η
2 ko

l))

0

1

2

3

4

0

1

2

3

4 5

(t − t0)/τη

10010–1 101 102

(t − t0)/τη

10010–1 101 102

2563, Re = 1400
5123, Re = 3200
10243, Re = 7600
20483, Re = 21 000
HD 10243, Re = 10 400

(b)(a)

Figure 7. Skewness of the particle-pair separations for (a) perpendicular pairs with separation measured in
the perpendicular direction, and (b) parallel pairs with separation measured in the aligned direction. For
comparison with isotropic hydrodynamic turbulence, we provide the blue line from simulation 3H. The initial
separation of the particle pairs is 4ηkol,⊥ in each simulation.

saddle the boundary of a flow structure, with one particle inside and another particle
outside; those pairs tend to separate more rapidly than the average. Because of the
elongation of flow structures, pairs that saddle such boundaries are more likely to have
an initial separation in the perpendicular direction.

As the pairs of particles move further apart in space, they experience a decorrelation
between their local velocities. Eventually the rate of separation of these early
fast-separating pairs slows, and the skewness reaches a peak. The peaks in skewness for our
anisotropic MHD simulations occur at a time of approximately 10τη, a later time than for
our isotropic hydrodynamic turbulence simulation. This peak is positioned near the point
of transition between the ballistic regime and the inertial subrange. We observe no clear
difference in the placement of this peak with Reynolds number, or between the anisotropic
directions. The peak in skewness is higher for a larger Reynolds number, and is also higher
for parallel pairs than for perpendicular pairs. The difference in the height of the peak
indicates that intermittency is more intense along the direction of the mean magnetic field,
as well as more intense for a higher Reynolds number. This difference between the parallel
and perpendicular directions suggests that the current sheets that define anisotropic MHD
turbulence could be responsible for more frequent large particle separations in this setting.

5.2. Two-particle velocity statistics
To expose further differences between homogeneous isotropic hydrodynamic turbulence
and MHD turbulence, we examine the separation speed, i.e. the projection of the velocity
difference experienced by a pair of Lagrangian tracer particles onto the line connecting
the particles. The separation speed has been used to construct stochastic models and
other Lagrangian statistics (e.g. Sokolov 1999; Boffetta & Sokolov 2002), and to examine
intermittency and alignment in isotropic hydrodynamic flows (Biferale et al. 2005;
Yeung & Borgas 2004). From early times until the end of the inertial subrange, the
separation speed is significantly higher for perpendicular pairs than for parallel pairs.
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Figure 8. Average separation speed for (a) perpendicular pairs, and (b) parallel pairs. Time is given in units
of the Kolmogorov time scale τη. These pairs of particles are initially separated by 2ηkol,⊥.

In our simulations, the average separation speed displays a characteristic dip, first
identified by Müller & Busse (2007), near the beginning of the inertial subrange of time
scales for MHD turbulence (see figure 8). The isotropic hydrodynamic simulation 3H is
provided on the plot for comparison; it does not experience a similar dip. This dip occurs
between approximately 2τη and 10τη, a period where pairs of particles have separated
sufficiently to sense temporal fluctuations of the velocity field. At the same time, the slope
of the average dispersion curve is changing between the ballistic regime and the inertial
subrange; the skewness of the pair separation distance is increasing to a peak. We find that
this characteristic dip in the separation speed is deeper and lasts longer for higher Reynolds
number simulations.

Following the dip, the separation speed rises again as the particle pairs probe ever
larger and more energetic fluctuations. This comes to an end as the pairs reach separation
distances comparable to the size of the largest fluctuations in the system. We find that
the separation speed ultimately reaches a higher value for higher Reynolds number
simulations.

As an increasing number of particle pairs reaches the diffusion regime, the average
separation velocity begins a period of fluctuating decay. At this point the large-scale
velocities experienced by the separating particles tend to become decorrelated, resulting
in slower, asymptotically diffusive separation dynamics. The separation speed is expected
to level off at a quasi-stationary diffusive separation velocity once most pairs have left
the superdiffusive region of pair dispersion. The fluctuations during this decay period are
more noisy for anisotropic MHD turbulence, where Alfvénic fluctuations are present at all
scales, than for isotropic hydrodynamic turbulence.

We calculate the log derivative to determine whether a scaling exists with Reynolds
number for the separation speed (see figure 9). The log derivative of the separation speed
shows that the dip deepens, and is not simply shifted for higher Reynolds number. Instead,
a higher Reynolds number causes a milder upward slope at the end of the ballistic regime,
and this persists throughout the inertial subrange. For example, at 10τη the slope is clearly
different for different Reynolds number simulations. This is a consequence of the longer
duration of the alignment process for the separation velocity that occurs at higher Reynolds
number, as well as the stronger slowing down resulting from it.
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Figure 9. Derivative of the log of the average separation speed for (a) perpendicular pairs, and (b) parallel
pairs. These curves correspond to figure 8.

5.3. Alignment statistics
Yeung & Borgas (2004) explain the behaviour of the average separation speed in isotropic
hydrodynamic turbulence through an examination of the alignment statistics using the
angle between the relative velocity and separation vector of pairs of particles. Concepts
of alignment also prove useful in explaining differences between isotropic hydrodynamic
and MHD turbulence, an idea first explored by Müller & Busse (2007). Here we expand
on those ideas of alignment statistics; we extend the arguments of Müller & Busse (2007)
to examine the relationship between alignment and Reynolds number in the distinct case
of B0 = 1 anisotropic MHD turbulence.

To quantify how the separation of pairs of particles differs in the anisotropic MHD case,
we examine the average of the cosine of the angle between the relative velocity of pairs of
Lagrangian tracer particles and their separation vector. Following Yeung (1994) and Yeung
& Borgas (2004), we describe this angle as the ‘alignment angle’, and designate it with
β. Examining the cosine of the alignment angle is particularly useful because it should
be larger when the relative velocity and separation are better aligned. Recently Malik &
Hussain (2021) have defined a pair diffusion coefficient K(t) to be the average value of the
scalar product of the separation vector and the relative velocity, a quantity strongly related
to the alignment angle. Their work demonstrates that the alignment angle is integral to
scaling laws that can be constructed for the inertial subrange.

The average cosine of the alignment angle is clearly different for particles initially
separated in the directions parallel and perpendicular to the mean magnetic field. These
diagnostics also display a trend with Reynolds number. In figure 10 the average cosine of
the alignment angle grows from approximately zero to a peak at approximately 2τη. This
measure reveals that during these early times, the separation vector of a particle pair tends
toward a state in which it is better aligned with the separation velocity. The growth phase
takes place during the ballistic regime of dispersion, as the particles follow the initial
velocity of the fluid. For perpendicular pairs, the amplitude of the peak is approximately
0.4, which is slightly lower, but comparable to, the hydrodynamic case; for parallel pairs,
the amplitude of the peak is approximately 0.28. The effect of the particle separations
aligning with the relative velocity is larger in the perpendicular direction. This can be
related to the higher separation speed that we observed for perpendicular pairs.

944 A36-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

43
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.434


J. Pratt, A. Busse and W.-C. Müller

〈co
s(

β
)〉

0

0.1

0.2

0.3

0.4

0

0.1

0.2

0.3

0.4

(t − t0)/τη

10010–1 101 102

(t − t0)/τη

10010–1 101 102

2563, Re = 1400
5123, Re = 3200
10243, Re = 7600
20483, Re = 21 000
HD 10243, Re = 10 400

(b)(a)

Figure 10. Average cosine of the alignment angle β. This average is shown for (a) perpendicular pairs, and
(b) parallel pairs. These pairs of particles are initially separated by 2 ηkol,⊥. Time is given in units of the
Kolmogorov time scale τη.

As particle pairs separate further in the flow, they begin to probe the lower end of
the inertial subrange of time scales. The signature of this in the average cosine of the
alignment angle is a drop-off between 2τη and 10τη, after which the average cosine enters
a plateau and exhibits noisy behaviour. The time for the first drop-off, which signifies
the loss of initial strong alignment of the particle pairs, correlates with the slow down
in separation velocity noted in figure 8. For a higher Reynolds number, the drop-off is
larger, suggesting a link between the loss of alignment and the magnitude of the slow
down in separation speed. The isotropic hydrodynamic case is provided in figure 8 for
comparison; in this case the alignment experiences a small and brief dip, then regains and
maintains its initial high alignment throughout the inertial subrange of time scales. For
particle pairs in anisotropic MHD, regardless of their initial separation direction, the value
of the average cosine of the alignment angle during the plateau is between 0.2 and 0.3;
for isotropic hydrodynamic turbulence, the magnitude is nearly twice as large. Finally, at
long times corresponding to the diffusive range, the average cosine of the alignment angle
again decreases. For anisotropic MHD turbulence, it ultimately drops to approximately
0.1; for isotropic hydrodynamic turbulence, this value is higher, approximately 0.2. In
both the inertial subrange and the diffusive regime, the relative dispersion is slower for
MHD turbulence, when compared with hydrodynamic turbulence, because of the weaker
alignment between the relative velocity and the separation vector.

For MHD turbulence, Müller & Busse (2007) demonstrated that the angle between the
separation vector and the local mean magnetic field needs to be considered. We call this
the ‘magnetic alignment angle’ and designate it with γ . The local mean magnetic field is
simply the average of the total magnetic field experienced by the pair of Lagrangian tracer
particles at their positions at each point in time, which includes contributions of both
the fluctuating field and mean field. The average values of cos γ should approach zero
for a perfectly isotropic turbulent flow. In an anisotropic flow, where the initial magnetic
alignment angle needs to be taken into account, this is not the case. For perpendicular
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Figure 11. Standard deviation of the cosine of the magnetic alignment angle γ , for (a) perpendicular pairs
and (b) parallel pairs. These pairs of particles are initially separated by 2 ηkol,⊥. Time is given in units of the
Kolmogorov time scale τη. The grey line indicates the value for an isotropic distribution of magnetic alignment
angles.

pairs, alignments perpendicular to the local magnetic field have an increased probability
because the local magnetic field tends to be dominated by the mean magnetic field. Thus,
the initial value for 〈cos γ 〉 is close to zero. For parallel pairs, the initial value for 〈cos γ 〉 is
finite because the separation vector between particles consistently points in the direction
antiparallel to the mean magnetic field. Regardless of the initial separation direction, as
the pairs of particles evolve in time, 〈cos γ 〉 approaches zero because the dependency on
the initial alignment state disappears. The average thus does not display a clear Reynolds
number dependence in our simulations.

We find that higher-order statistics, such as the standard deviation σ [cos γ ] do exhibit
clear trends for our simulations (see figure 11). If no magnetic alignment angles are
preferred then the distribution of cos γ is uniform on [−1, 1] and its standard deviation
is

√
1/3, a point that is marked by a horizontal grey line in the figure. For perpendicular

pairs, at early times the distribution of magnetic alignment angles is concentrated around
cos γ = 0 to a higher degree than for an isotropic case. A rise in σ [cos γ ] proceeds
between roughly 2τη and 20τη, suggesting that as a pair of particles leaves the ballistic
regime, the particles achieve a wider range of alignments with the local mean magnetic
field, which also results in a lower alignment of pair separation with the relative velocity
vector. A more uniform distribution develops in this transient phase; the standard deviation
passes through the point

√
1/3 at 3τη and continues to rise. Near the beginning of the

inertial subrange, the σ [cos γ ] reaches a peak, at a state where the separation vector
is preferentially aligned parallel or antiparallel to the local mean magnetic field. For
higher Reynolds number simulations, the peak in the standard deviation of cos γ is higher,
corresponding to particle pairs that align more thoroughly with the local mean magnetic
field. Throughout the inertial subrange and diffusive regime, this alignment decreases,
indicating that there is a progressive decorrelation; the value attained for long times
is close, but does not reach, the reference value of

√
1/3 for an isotropic distribution.

Parallel pairs are initialized so that their separation vectors are preferentially oriented to
be antiparallel to the mean magnetic field. As this distribution becomes more uniform,
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σ [cos γ ] grows. Eventually, the parallel pairs attain a mix of antiparallel and parallel
alignments, and exhibit similar trends to the perpendicular pairs at longer times.

A comparison between the different alignment statistics in figures 11 and 10 shows
interesting similarities. Parallel pairs reach the peak in 〈cos β〉 slightly later than the
perpendicular pairs, and the peak in σ [cos γ ] also occurs at a slightly later time. Although
there is a lower level of alignment achieved for these parallel pairs, as measured by 〈cos β〉,
both types of pairs reach similar values of σ [cos γ ]. These observations point to two
competing alignment processes at work, stemming from the physical differences in the
parallel and perpendicular directions. Parallel pairs are initially strongly aligned with B0,
and they do not achieve a strong alignment between the separation vector and the relative
velocity. For perpendicular pairs, a strong alignment between the separation vector and
relative velocity is readily developed at early times. Then an increasing alignment with
the local mean magnetic field reduces the alignment between the separation vector and
relative velocity. This ultimately slows the relative dispersion for both groups of particle
pairs.

6. Discussion and conclusions

We have produced Lagrangian statistics for incompressible homogeneous anisotropic
MHD turbulence and examined how those statistics change as a function of the Reynolds
number. Several of these diagnostics were investigated in earlier studies (Yeung &
Borgas 2004; Yeung et al. 2006; Sawford et al. 2008) of incompressible homogeneous
isotropic hydrodynamic turbulence at different Reynolds numbers. From among the many
diagnostics in these earlier works, we have selected those that are most significant to the
physical complexities of anisotropic MHD turbulence. Additional diagnostics have also
been evaluated to further clarify the Reynolds number dependence in this new physical
setting.

Anisotropic MHD turbulence is distinct from isotropic hydrodynamic turbulence in
that the presence of a magnetic field interacts with the velocity of the flow, and a mean
magnetic field introduces a global anisotropy in the dynamics. That anisotropy necessitates
the use of a more restrictive resolution criterion, which we have introduced to assure that
the energy spectra in the direction perpendicular to the magnetic field are resolved at the
same level as the spectra in the direction aligned with the magnetic field. Our examination
of single-particle diffusion confirms that ballistic and diffusive scaling regimes apply in
each of these physically distinct directions. Two-particle dispersion also produces clear
ballistic and diffusive regimes. The diffusive regime exhibits a mildly superdiffusive
scaling in both parallel and perpendicular directions. During the inertial subrange, a
scaling emerges as we examine larger Reynolds number simulations. We quantify this
scaling by examining the log derivatives of the dispersion curves. In the perpendicular
direction, for particles with separation 2ηkol,⊥, this scaling is close to 3; in the direction
aligned with the magnetic field, this scaling is clearly larger than 3. The skewness of the
pair separation diagnostic reveals a higher level of intermittency with larger Reynolds
number, and that intermittency is more pronounced in the direction aligned with the mean
magnetic field.

The presence of a mean magnetic field also introduces large-scale Alfvénic fluctuations
to the system, which interact with the turbulent dynamics. We observe oscillations in the
average square separation of particle pairs, clearly visible in the log-derivatives, which
can be attributed to Alfvénic fluctuations. Further work would be necessary to attempt to
separate the effect of waves from the fundamental anisotropy.
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To explore the anisotropy more deeply with a view toward theoretical modelling, we
have examined the separation velocity of particle pairs. The average separation velocity of
particle pairs shows a dip following the ballistic range and preceding the beginning of the
inertial subrange, between 2τη and 10τη. This dip deepens for a larger Reynolds number,
and provides a transition to the inertial subrange that is characteristically different from
that of isotropic hydrodynamic turbulence. We probe these results further by examining
alignment statistics: the cosine of the alignment angle and the cosine of the magnetic
alignment angle. Slightly preceding the dip, an increase in the standard deviation of the
cosine of the magnetic alignment angle begins, and this increase continues throughout the
dip period. The dip period also correlates with a sharp drop in the average cosine of the
alignment angle. This indicates that there are two competing alignment processes at work,
namely the alignment between the separation vector of a pair of particles and the relative
velocity, and the alignment between the separation vector and local mean magnetic field.
The balance between these alignment processes is affected by the Reynolds number and by
the anisotropy of the system. These alignment statistics show clear trends with increasing
Reynolds number. A detailed evaluation of the strength of the mean magnetic field on
alignment processes should be evaluated in future studies.
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