
R E S E A R CH AR T I C L E

Meta-analysis of dichotomous and ordinal tests with an
imperfect gold standard

Enzo Cerullo1,2 | Hayley E. Jones3 | Olivia Carter4 | Terry J. Quinn5 |

Nicola J. Cooper1,2 | Alex J. Sutton1,2

1Biostatistics Research Group,
Department of Health Sciences,
University of Leicester, Leicester,
Leicestershire, UK
2Complex Reviews Support Unit,
University of Leicester & University of
Glasgow, Glasgow, UK
3Population Health Sciences, Bristol
Medical School, University of Bristol,
Bristol, UK
4Independent Researcher, Leicester, UK
5Institute of Cardiovascular and Medical
Sciences, University of Glasgow, Glasgow,
Scotland, UK

Correspondence
Enzo Cerullo, Biostatistics Research
Group, Department of Health Sciences,
University of Leicester, Leicester, UK.
Email: enzo.cerullo@bath.edu

Funding information
National Institute for Health Research
(NIHR) Complex Reviews Support Unit,
Grant/Award Number: 14/178/29;
National Institute for Health Research
Systematic Review Fellowship, Grant/
Award Number: RM-SR-2017-09-023;
NIHR Applied Research Collaboration
East Midlands (ARC EM)

Abstract

Standard methods for the meta-analysis of medical tests, without assuming a

gold standard, are limited to dichotomous data. Multivariate probit models are

used to analyse correlated dichotomous data, and can be extended to model

ordinal data. Within the context of an imperfect gold standard, they have pre-

viously been used for the analysis of dichotomous and ordinal test data from a

single study, and for the meta-analysis of dichotomous tests. However, they

have not previously been used for the meta-analysis of ordinal tests. In this

article, we developed a Bayesian multivariate probit latent class model for the

simultaneous meta-analysis of ordinal and dichotomous tests without assum-

ing a gold standard, which also allows one to obtain summary estimates of

joint test accuracy. We fitted the models using the software Stan, which uses a

state-of-the-art Hamiltonian Monte Carlo algorithm, and we applied the

models to a dataset in which studies evaluated the accuracy of tests, and test

combinations, for deep vein thrombosis. We demonstrate the issues with

dichotomising ordinal test accuracy data in the presence of an imperfect gold

standard, before applying and comparing several variations of our proposed

model which do not require the data to be dichotomised. The models proposed

will allow researchers to more appropriately meta-analyse ordinal and dichoto-

mous tests without a gold standard, potentially leading to less biased estimates

of test accuracy. This may lead to a better understanding of which tests, and

test combinations, should be used for any given medical condition.
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Highlights

What is already known?
Standard, well-established methods exist for the synthesising estimates
(i.e., conducting a meta-analysis) of test accuracy. These methods estimate test
accuracy by comparing test results to some test which is assumed to be
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perfect—which is referred to as a ‘gold standard’ test. However, in clinical
practise, these tests are often imperfect, which can cause estimates of the tests
being evaluated to be biased and potentially lead to the wrong test being used
in clinical practise. Meta-analytic methods, which do not assume a gold stan-
dard, have previously been proposed, but only for dichotomous tests.

What is new?
We developed a model which allows one to simultaneously meta-analyse ordi-
nal and dichotomous tests without assuming a gold standard. The model also
allows one to obtain summary estimates of the accuracy of two tests used in
combination (i.e., joint test accuracy).

Potential impact for research synthesis methods readers outside the
authors field
The methods are widely applicable. For instance, psychometric measures and
radiologic tests are typically ordinal, and the studies assessing these tests often
do not use a gold standard; hence, applying standard models to these datasets
may lead to misleading conclusions. The methods we proposed may lead to
less biased accuracy estimates, and hence potentially a better understanding of
which tests, and test combinations, should be used for these conditions.

1 | INTRODUCTION

Medical tests are used to screen, monitor and diagnose
medical conditions. In order to evaluate their accuracy,
we can carry out test accuracy studies—studies which
estimate the accuracy of a test by comparing its results to
some existing test assumed to be perfect (i.e., 100% sensi-
tive and specific). The tests under evaluation, and those
assumed to be perfect, are referred to as index tests and
reference (or gold standard) tests, respectively. Index tests
often have a lower sensitivity and/or specificity than the
gold standard; however, they may be quicker, less inva-
sive, and/or less costly. Unfortunately, the fact that gold
standard tests are often imperfect is ignored in routinely
used methods1,2,3 to meta-analyse studies of test accu-
racy, which can lead to misleading results.4

The results between tests are usually conditionally
dependent–that is, they are correlated within each disease
class (diseased and non-diseased individuals). Models
which account for this dependency, in addition to an
imperfect gold standard have been proposed.5,6,7,8,9 These
models–which we will refer to as traditional latent class
models (TLCMs)–assume that all tests are measuring the
same latent disease, and each individual is modelled as
belonging in either disease class. Since they can model
imperfect gold standards, they also allow one to compare
the accuracy between gold standard and index tests.

Proposed models which can model an imperfect gold
standard based on TLCMs have some limitations, which
motivates the proposal of more flexible latent class

models.10,11,8,12,13,14,9 For instance, multivariate probit
latent class (MVP-LC) models,10,11,8,12,13,14,15 which are a
type of regression model. Unlike TLCMs, MVP-LC
models can be extended to model ordinal test accuracy
data12,16 without forcing the user to dichotomise it, whilst
simultaneously modelling conditional dependence. For
example, Xu et al.10 presented an MVP-LC model to ana-
lyse primary studies evaluating multiple dichotomous
tests without assuming a gold standard, which they later
extended11 to model ordinal tests with two cutpoints. The
latent trait model proposed by Qu et al.13 is a variation of
the MVP-LC model which is defined by specifying a
series of univariate regressions with a common subject-
specific latent variable. This model was later expanded
upon by Sadatsafavi et al.8 to the meta-analysis setting—
to analyse studies evaluating up to three dichotomous
tests using direct comparisons—whilst allowing the test
accuracy to vary between studies. However, it cannot
appropriately model ordinal tests, nor can it model
between-study variation for the conditional dependence
parameters.

In clinical practise, tests are rarely used in isolation.
The accuracy of two or more tests used in combination is
often referred to as the joint test accuracy. Few meta-
analytical methods have been proposed which can simul-
taneously calculate summary joint test accuracy and
incorporate ordinal tests, all of which assume a perfect
gold standard. For instance, Novielli et al.17 proposed a
model based on conditional probabilities, in which stud-
ies evaluated up to one ordinal test with two cutpoints
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and two dichotomous tests. This model can estimate
summary test accuracy at each cutpoint whilst modelling
conditional dependence.

To address the gaps in the literature discussed above,
we developed a Bayesian model for the meta-analysis of
studies evaluating both ordinal and dichotomous tests
without assuming a perfect gold standard. The model also
enables the estimation of summary joint test accuracy,
whilst allowing the conditional dependence parameters
to vary between studies. The proposed model is an exten-
sion of previous MVP-LC models which have been devel-
oped to analyse multiple tests in a single study.10,11 In
Section 2, we describe the case study dataset which will
serve to motivate our proposed model, which we will
describe in Section 3. Then, we apply several variations
of our proposed model to this dataset in Section 4.
Finally, in Section 5 we discuss the benefits and limita-
tions of the model, as well as possible extensions.

2 | MOTIVATING EXAMPLE

Deep vein thrombosis (DVT) is the formation of a blood
clot in a deep (i.e., not superficial) vein. DVT can occur in
the upper (proximal) or lower (distal) part of the leg, with
the former more likely to be life-threatening. A potential
complication of DVT occurring in up to a third of
patients18 is pulmonary embolism (PE). PE occurs when a
blood vessel in the lungs becomes blocked by a blood clot
(formed as a result of DVT) which has migrated from the
legs to the lungs. Contrast venography is generally consid-
ered to be a gold standard for DVT, as it is almost 100%
sensitive and specific.19,20 However, it is not commonly
used in clinical practice because it is time consuming and
invasive.19,20 Instead, ultrasound is often used to diagnose
DVT, since it is non-invasive and cost-effective.18,21,22,23

However, it is less accurate than contrast venography24,25

for both distal and proximal DVT, with its sensitivity being
lower for distal DVT.24 Furthermore, although ultrasound
is known to have a very high specificity, it is still nonethe-
less imperfect.24,25 A commonly used18 screening tool for
DVT is a questionnaire called the Wells score,26 which
groups patients into one of three risk categories—‘low,’
‘intermediate’ or ‘high.’ Another DVT test is the D-Dimer
assay: a blood test measuring the amount of a protein frag-
ment called D-Dimer, higher concentrations of which are
indicative of DVT. Despite being considered to be gener-
ally more accurate than the Wells,27 the D-Dimer assay is
intended to be used for screening as opposed to
diagnosis,27 since a number of other conditions can elevate
serum D-dimer concentrations.18

Investigating the joint test accuracy of the aforemen-
tioned tests for DVT is important for a variety of reasons.

The Wells and D-Dimer are both relatively cheap, quick
and non-invasive to carry out, particularly the Wells test.
A combined screening approach utilising the Wells and
D-Dimer may be more cost-effective and reduce test bur-
den for patients compared to using either alone. Further-
more, despite the fact that neither the Wells nor the
D-Dimer alone are generally considered to be diagnostic
tools for DVT, they may have diagnostic potential when
combined.17,24,28 An example of a potential screening
strategy is to use the Wells prior to the D-dimer in the
diagnostic pathway as a pre-screening tool to rule out
individuals at low risk for DVT. Following this, individ-
uals who scored as intermediate or high risk are subse-
quently screened using the D-Dimer assay, and only
patients who also test positive on the D-Dimer undertake
ultrasound. Another potential strategy is to refer patients
scoring as high risk on the Wells score directly to ultra-
sound. Both of the aforementioned joint testing strategies
are examples of ‘believe the negatives’ (BTN) strategies.17

This is a testing strategy where only those patients who
test positive on an initial test go on to receive a second
test, then only individuals who also test positive on the
second test are considered positive. Conversely, ‘Believe
the positives’ (BTP) is a testing strategy where only those
patients who test negative on the first test go on to
receive a second test, with only those patients who also
test negative on this test being considered negative. Joint
testing strategies are important across clinical areas
besides DVT, for example for depression screening and
for COVID-19–see discussion Section 5.1 for more details.

Novielli et al.17 proposed a statistical model in order
to conduct a meta-analysis of studies investigating the D-
dimer, Wells score and ultrasound for DVT. The pro-
posed model allowed them to model the Wells score
without dichotomising the data whilst modelling the con-
ditional dependence between tests, enabling them to esti-
mate summary-level joint test accuracy. However, their
model assumes that ultrasound is a perfect gold standard,
which could have led to biased estimates of the perfor-
mance of other tests under evaluation. Novielli et al.17

carried out several analyses based on different datasets—
for instance, one based on the 11 studies which directly
compared the D-dimer, Wells' score via the gold standard
(ultrasound), and another which also included studies
which only analysed one of Wells or D-dimer tests, and
utilised indirect comparisons. In Section 4 of this article,
we re-analyse the direct comparisons data (see Table 1)
from Novielli et al.17 without assuming a perfect gold
standard, using a variety of models we propose in
Section 3; namely, models which dichotomised the Wells
score and those which modelled it as an ordinal test,
those which assumed conditional independence (CI) and
conditional dependence (CD) between tests, as well as
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models which assumed ultrasonography was perfect or
imperfect. This dataset consisted of 11 studies, with a
total of 4096 individuals and 12,288 observations, with all
11 studies evaluating all three tests.

3 | METHODS

Before describing our proposed Bayesian MVP-LC model,
we will first define some terminology and notation in
Section 3.1. For a formal model specification, please refer
to the full technical model specification (supplementary
material 1).

3.1 | Terminology and notation

The model is for a meta-analysis dataset with a total of S
studies, with each study having a total of Ns individuals,
where s is an index for study–so s can be used to denote
anything between the first (s¼ 1) and the last (s¼ S)
study. Each study is assessing the same number of tests,
T. Will we use t as an index for test, which can be
between 1 and T, and n as an index for individual, which
can be between 1 and Ns for study s.

For the nth individual from study s, we will denote
the vector of observed test responses as ys,n ¼
ys,n,1, ,ys,n,T
� �0

. Each test is either dichotomous or ordinal.
For dichotomous tests, each observed test response, ys,n,t,
is coded as 0 and 1 for negative and positive results,
respectively. For ordinal tests, each test t has Kt catego-
ries (hence Kt�1 cutpoints). We will use k as an index to
refer to any given cutpoint, which can be between 1 and
Kt�1. Ordinal test responses are coded according to the
category that the individuals' test result falls in: in other
words, ys,n,t ¼ k if the test result falls in the kth category
for test t. Since we are assuming an imperfect gold stan-
dard, the true disease status of each individual, ds,n is not

defined by the results of the gold standard. Instead, it is
modelled as an unknown (i.e., latent) variable, and
belongs to one of two classes–‘diseased’ (ds,n ¼ 1) or
‘non-diseased’ (ds,n ¼ 0).

3.2 | Within-study model

We will now define the MVP-LC model within each
study. For dichotomous data, MVP-LC models work by
transforming the observed, discrete test result data into
a continuous variable–a statistical technique known as
‘data augmentation.’15 This augmented continuous
data, which we will denote as Zs,n, is an unobserved
latent variable, similarly to the disease status, ds,n. This
data augmentation process allows us to assume that, con-
ditional on ds,n, the unobserved test accuracy data, Zs,n,
can be modelled by a multivariate normal (MVN) distri-
bution with mean vector ν d½ �

s and variance–covariance
matrix Ψ d½ �

s .
More specifically, Zs,n �MVN ν d½ �

s ,Ψ d½ �
s

� �
, where:

Zs,n ¼

Zs,n,1

..

.

Zs,n,T

0
BBBB@

1
CCCCA,ν d½ �

s ¼

ν d½ �
s,1

..

.

ν d½ �
s,T

0
BBBBB@

1
CCCCCA,Ψ d½ �

s

¼
τ d½ �
s,1

� �2
� � � ϵ d½ �

s,T,1 � τ d½ �
s,1 � τ d½ �

s,T

..

. . .
. ..

.

ϵ d½ �
s,T,1 � τ d½ �

s,T � τ d½ �
s,1 � � � τ d½ �

s,T

� �2

0
BBBB@

1
CCCCA, ð1Þ

where ν d½ �
s,t and τ d½ �

s,t , denote the study-specific means and
standard deviations, respectively. Each ϵ d½ �

s,1,t denotes the
study-specific correlations between each test-pair (or
‘test-pair’–denoted as ‘t and t0’) for the augmented data

TABLE 1 Sample of case study

dataset

Study

Ultrasound –'ve Ultrasound +'ve

D-Dimer –'ve D-Dimer +'ve D-Dimer –'ve D-Dimer +'ve

Wells scorea Wells scorea

L M H L M H L M H L M H

1 32 20 5 8 18 2 0 0 2 1 6 8

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

.

11 243 16 3 233 104 29 1 0 0 28 117 109

Note: All test results are modelled at the individual level. We show the aggregate data in this table for ease of

presentation.
aThe Wells score is classified as L = Low, M = Moderate, H = High.
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(Zs,n,t and Zs,n,t0)–the polychoric correlation16,29–which is
not the same as the correlation between the observed
data ys,n,t and ys,n,t0 . Each ϵ d½ �

s,1,t models the conditional
dependence between each test-pair. However, we can
assume CI by setting ϵ d½ �

s,1,t ¼ 0 and ϵ d½ �
s,1,t0 ¼ 0. We must to

ensure that the number of parameters being estimated
from our model is not greater than what is possible for
the given dataset; otherwise it may be non-identifiable–
which means that the model will give misleading results.
For example, it may estimate the sensitivity for a test to
be equal to both 0.20 and 0.80. To ensure that our model
is identifiable,12,16 as in Xu et al.,11 we set each τ d½ �

s,t ¼ 1
(i.e., set all Ψ d½ �

s to be correlation matrices). Please see
supplementary material 6.

For dichotomous tests, the augmented data (Zs,n,t)
will be less than 0 for negative results (ys,n,t ¼ 0)
or greater than 0 for positive results (ys,n,t ¼ 1), and
the measures of test accuracy for a given study s are given
by,

Ses,t ¼Φ ν 1½ �
s,t

� �
Sps,t ¼ 1�Φ ν 0½ �

s,t

� � , ð2Þ

where Φ �ð Þ denotes the cumulative density function
(CDF) of the standard normal distribution–that is, a nor-
mal distribution with mean 0 and SD 1. For ordinal tests,
the augmented data (Zs,n,t) will belong to an interval
defined by strictly increasing latent cutpoint parameters
( C d½ �

1,s,t,…,C
d½ �
Kt�1,s,t

n o
, where C d½ �

k�1,s,t <C d½ �
k,s,t, and k between

2 and Kt�1). This interval will depend on the observed
test result as follows–if the test result is below the first
cutpoint (i.e., in the first category), then the augmented
data will be less than the first cutpoint parameter; if it is
above the last cutpoint (i.e., in the last category), then the
augmented data will be greater than the last cutpoint
parameter; otherwise, if the test result falls between two
cutpoints (i.e., the test result belongs to any other cate-
gory), then the augmented data will fall between the
corresponding cutpoint parameters. The measures of test
accuracy are given by,

Ses,t,k ¼ 1�Φ ν 1½ �
s,t �C 1½ �

k,s,t

� �
Sps,t,k ¼Φ ν 0½ �

s,t �C 0½ �
k,s,t

� � : ð3Þ

3.3 | Between-study model

Now we will explain how we will model the variation in
test accuracy between studies–called the between-study

heterogeneity, as well as the correlation between the sen-
sitivities and specificity between studies–called the
between-study correlation. It is important to bear in mind
the distinction from the within-study correlations
(defined in Section 3.2), which model the conditional
dependence between tests. For each test t, we will assume
that the study-specific means (ν d½ �

s,t –defined in Equation (1)
in Section 3.2) arise from a bivariate normal (BVM) dis-
tribution with means μ d½ �

t , between-study SDs σ d½ �
t , and

between-study correlations ρt .
More specifically, νs,t �BVN μt,Σtð Þ, where,

μt ¼
μ 1½ �
t

μ 0½ �
t

 !
,Σt ¼

σ 1½ �
t

� �2
ρt �σ 1½ �

t �σ 0½ �
t

ρt �σ 1½ �
t �σ 0½ �

t σ 0½ �
t

� �2
0
BB@

1
CCA: ð4Þ

The model described in Equation (4) is known as a
partial pooling model (using the terminology from
Gelman & Hill30–otherwise known as ‘random-effects’).
These models allow the study-specific accuracy parameters
across studies to inform one another, without assuming
full homogeneity like a full pooling (i.e., ‘fixed-effects’)
would—which would allow no between-study variation
in the means ν d½ �

s,t . The disease prevalence's in each study,
ps, are modelled independently of each other, known as a
no pooling model. There are several differences between
partial pooling and no pooling models.31 For example,
the former uses less parameters than no pooling, which
means that there is less likelihood of encountering
parameter identifiability issues. An advantage of our
partial pooling model is that allows us to summarise the
results using the parameters which are shared across
studies (see Section 3.3), allowing us to more easily sum-
marise test accuracy as well as the heterogeneity in accu-
racy between studies and correlation between sensitivities
and specificities. We can incorporate meta-regression
covariates into the model by extending the partial pooling
model defined in Equation (4) above–see supplementary
material 1, meta-regression section (Section 1.2.1) for
details. We can assume that a given test is a perfect gold
standard by setting μ 0½ �

t ¼�5 and μ 1½ �
t ¼ 5, which corre-

spond to approximately 100% sensitivity and specificity,
respectively, and, by assuming a complete pooling model
(i.e., setting σ d½ �

t ¼ 0).

3.3.1 | Within-study correlations

We will model the within-study correlation matrices
(Ψ d½ �

s ) defined in Equation (1) in Section 3.2 using a par-
tial pooling model. As suggested by Goodrich,32 this can
be achieved by specifying each Ψ d½ �

s as a weighted linear
combination of a global ‘average’ correlation matrix

CERULLO ET AL. 599
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across studies (Ψ d½ �
G ), and a matrix of study-level devia-

tions from this global matrix (Ψ d½ �Δ
s ), with weight β d½ �

which is between 0 and 1. More specifically,
Ψ d½ �

s ¼ 1�β d½ �� � �Ψ d½ �
G þβ d½ � �Ψ d½ �Δ

s . Note that we can also
model the conditional dependence between only certain
pairs of tests by setting the relevant terms for the other
tests in Ψ d½ �

G and Ψ d½ �Δ
s to zero.

3.3.2 | Cutpoints

The cutpoint parameters can be modelled using an
induced Dirichlet model, an approach which has been
proposed by Betancourt33 By taking advantage of the
properties of a type of statistical distribution called a
Dirichlet distribution, this model is able to map the latent
cutpoint parameters in each study ( C d½ �

1,s,t, ,C
d½ �
Kt�1,s,t

n o
)

defined in Section 3.2 to a simplex (i.e., a vector whose
elements sum to 1) of ordinal probabilities (P d½ �

1,s,t, ,P
d½ �
Kt ,s,t).

Each probability P d½ �
k,s,t corresponds to the probability that

an individuals' test result for test t falls in category k for
study s. In this article, we used a partial pooling model
for the cutpoints accross studies, enabling us to model
the between-study heterogeneity in the cutpoints. We can
also obtain ‘average’ cutpoints, (C d½ �

t ) by using the poste-
rior distribution of the induced Dirichlet partial pooling
model, enabling us to obtain summary accuracy mea-
sures for ordinal tests. For the full details of this model,
see supplementary material 1 and supplementary
material 4.

3.3.3 | Test accuracy summaries

For dichotomous tests, the summary sensitivity and spec-
ificity estimates for test t are given by evaluating
Equation (2) at the means of the between-study model
(see Equation (1)). More specifically, SeG,t ¼Φ μ 1½ �

t

� �
, and

SpG,t ¼ 1�Φ μ 0½ �
t

� �
. Similarly, for ordinal tests, the sum-

mary measures for test t at cutpoint k are given by evalu-
ating Equation (3) evaluated at the means of the partial
pooling model (see Equation (1)), and at the global (sum-

mary) cutpoints (C 1½ �
k,t). That is, SeG,t,k ¼ 1�Φ C 1½ �

k,t�μ 1½ �
t

� �
,

and SpG,t,k ¼Φ C 0½ �
k,t�μ 0½ �

t

� �
. We can generate predictions

for a ‘new’ (Sþ1)-th study by simulating a draw (at each

iteration of the parameter sampler) from the posterior

predictive distributions of the between-study normal

hierarchical model, (see Equation (4)), νSþ1,t, and a new

vector of cutpoints from the between-study cutpoint

model (for more details, see Section 1.2.4 in supplemen-

tary material 1). C d½ �
Sþ1,tÞ. Then, the predicted sensitivities

and specificities for an (Sþ1)-th study are given by

SeSþ1,t ¼Φ ν 1½ �
Sþ1,t

� �
, SpSþ1,t ¼ 1�Φ ν 0½ �

Sþ1,t

� �
for dichoto-

mous tests, and SeSþ1,t,k ¼ 1�Φ C 1½ �
Sþ1,k,t�ν 1½ �

Sþ1,t

� �
,

SpSþ1,t,k ¼Φ C 0½ �
Sþ1,k,t�ν 0½ �

Sþ1,t

� �
for ordinal tests.

3.3.4 | Joint test accuracy summaries

The summary estimates for the joint test accuracy of tests
t and t0 at cutpoints k and k0 are given by:

SeBTNG,tt0,kk0 ¼ SeG,t,k �SeG,t0,k0 þ cov 1½ �
G,tt0,kk0

SpBTNG,tt0,kk0 ¼ 1� 1�SpG,t,k
� �� 1�SpG,t0,k0

� �þ cov 0½ �
G,tt0,kk0

� �
SeBTPG,tt0,kk0 ¼ 1� 1�SeG,t,kð Þ � 1�SeG,t0,k0

� �þ cov 1½ �
G,tt0,kk0

� �
SpBTPG,tt0,kk0 ¼ SpG,t,k �SpG,t0,k0 þ cov 0½ �

G,tt0,kk0

:

ð5Þ

With BTN and BTP as defined in Section 2. Note that
for ordinal tests, the order of the tests can affect joint test
accuracy estimates.28 However, for dichotomous tests it
does not,28 although this is often still important for clini-
cal practise. For example, the first test may be cheaper to
carry out. The parameter cov d½ �

G,tt0,kk0 is the global condi-
tional covariance between all possible test-pairs.
Obtaining these covariances requires us to calculate the
global conditional correlations between each test-pair,
which we will denote as ρ 0½ �

G,tt0,kk0 ; this assumes that the
test results are the same form as the observed data. How-
ever, our model is parameterised in terms of the pol-
ychoric correlations (ϵ d½ �

G,tt0,kk0–see equation [Equation (1)]
in Section 3.2). Therefore, in order to be able to estimate
the joint test accuracy estimates in Equation (5), we will
need to convert from ϵ d½ �

G,tt0,kk0 to ρ d½ �
G,tt0,kk0 . For details on

how this is achieved, please refer to Section 1.2.4 of sup-
plementary material 1.

3.4 | Assessing model fit and model
comparison

For our MVP-LC model, we can check how well our
model predicts the data by using a technique called poste-
rior predictive checking–where we generate data from our
model, and compare it to the observed data. For example,
we can plot the model-predicted test results against the
observed test results for each test-pair.5,4,6 We also
assessed model fit by plotting the model-predicted
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within-study correlations against the observed within-
study correlations, using the correlation residual plot pro-
posed by Qu et al.13 For model comparison, we used
leave-one-out (LOO) cross-validation34–an iterative pro-
cedure which removes part of the data and re-fits the
model, and sees how well the model predicts the missing
data. For more details on model comparison and poste-
rior predictive checking, including relevant formulae,
please refer to Section 1.3 in supplementary material 1.

3.5 | Model implementation

We implemented the models in R35 using the probabilis-
tic programming language Stan36,37 via the R package
CmDStanR38 using a PC with 32GB of RAM and an
AMD Ryzen 3900X 12-core CPU with Linux Mint OS. To
code the model in Stan, we extended the code for a stan-
dard binary multivariate probit model.32 This is described
in detail in Goodrich 201739 and is summarised in supple-
mentary material 5. We implemented the between-study
partial pooling model for the within-study correlations
described in Section 3.3.1 in Stan by using the function
provided by Stephen Martin and Ben Goodrich.40 For the
cutpoint between-study model, we used Betancourt's
induced Dirichlet model33 described in Section 3.3.2; this
is described in more detail in supplementary material 4,
and this was implemented using code by Betancourt.33

We ran all models using four chains until the split R-
hat statistic was less than 1.05 for all parameters and the
number of effective samples was satisfactory for all
parameters.41 We only reported results when we obtained
no warnings for divergent transitions or energy fraction
of missing information (E-FMI), important diagnostics
for geometric ergodicity.38 We used the CmDStanR diag-
nostic utility to check all of the aforementioned model
diagnostics CmDStanR. We also inspected trace plots and
plotted the posterior distributions to check they were not
bimodal. Rather than using Φ �ð Þ, which is prone to
numerical instability, we can use the closely resembling
logistic function, Φ0 xð Þ¼ 1

1þe�1:702 � x, which has an absolute
maximum deviation from Φ �ð Þ of 0.0095. This is the
same probit approximation used for the meta-analysis of
dichotomous tuberculosis tests using latent trait models
in Sadatsafavi et al.8 The data, Stan model code and R
code to reproduce the results and figures for the case
study application in Section 4 is provided at https://
github.com/CerulloE1996/dta-ma-mvp-1.

4 | APPLICATION TO CASE STUDY

Since our model is Bayesian, we must formulate a prior
model–that is, specify prior distributions for the model

parameters defined in Section 3. We describe this prior
model in Section 4.1. When faced with the task of ana-
lysing a dataset with an imperfect gold standard which
contains test accuracy data from an ordinal test, in order
to be able to apply proposed methods for meta-analysis
without assuming a gold standar,5,7 one must first
dichotomise the data at each cutpoint and conduct a
series of stratified analyses. We applied a priori dic-
hotomisation technique using our proposed MVP-model
in Section 4.2. Finally, in Section 4.3, we applied the
models proposed in Section 3, but without dichotomising
the Well's score.

In Section 4.1, we will index the gold standard (ultra-
sound), the D-Dimer, and the Wells' score by t¼ 1, t¼ 2,
and t¼ 3, respectively. In Sections 4.2 and 4.3 we will
denote summary estimates as ‘X [Y, Z]’, where X is the
posterior median and [Y, Z] is the 95% posterior interval.

4.1 | Prior distributions

For the summary-level accuracy parameter for the gold
standard test (ultrasound–i.e., μ d½ �

t¼1), we constructed infor-
mative priors using subject-matter knowledge for ultra-
sound, based on meta-analyses from the literature24,25

(see supplementary material 2 for more details). These
priors correspond to 95% prior intervals of 0:49,0:94ð Þ
and 0:82,0:99ð Þ for the sensitivity and specificity, respec-
tively. On the other hand, for the summary-level accu-
racy parameters for the D-Dimer and the Wells score
(i.e., μ d½ �

t¼2 and μ d½ �
t¼3), we specified priors conveying very lit-

tle information–equivalent to assuming a 95% prior inter-
val of 0:04,0:96ð Þ for the sensitivities and specificities.

For the between study deviation parameters for all
three tests (i.e., for σ d½ �

t for t¼ 1,2,3f g–see Equation (4) in
Section 3.3), we used weakly informative priors
corresponding to a 95% prior interval of 0:02,1:09ð Þ. The
priors are weakly informative since they weakly pull the
study-specific sensitivities and specificities towards each
other, whilst allowing for large between-study heteroge-
neity if the data demands. For example, if 0:8 is the value
found for the summary sensitivity, and the data suggests
a standard deviation equal to 2 (corresponding to a high
degree of between-study heterogeneity), then these priors
would allow the study-specific sensitivities and specific-
ities to be in the interval 0:44,0:97ð Þ with 95% probability.
We also used weak priors for the between-study correla-
tion parameters for all tests (i.e., ρt for t¼ 1,2,3f g–see
Equation (4) in Section 3.3), corresponding 95% prior
probability interval of (�0.82, 0.82). Finally, for condi-
tional dependence models, for the within-study correla-
tion parameters (see Section 3.2 and Equation (1)), we
used priors which correspond to 95% prior intervals of
�0:65,0:65ð Þ for both the global ‘average’ correlation
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matrices (Ω d½ �
G ) and the study-specific deviation matrices

(Ω d½ �Δ
s ), respectively. These are weakly informative and

allow a moderately large between-study deviation in the
strength of the conditional dependence between tests.
For more detail on these prior distributions, please see
supplementary material 2.

4.2 | The pitfalls of a priori
dichotomisation in the presence of an
imperfect gold standard

We consider two dichotomisations of the Wells score. For
the first, we dichotomised the Wells' score by grouping
together those patients who obtain a score of ‘low’ or
‘moderate’ as a negative result and those who scored
‘high’ as positive. On the other hand, for the second dic-
hotomisation, we grouped together patients who scored
‘moderate’ or ‘high’ and considered this as a positive
result, and those who scored ‘low’ as a negative result.
We will refer to the former dichtomisation as ‘low +-

moderate versus high’ and the latter as ‘low versus
moderate + high.’ We applied this technique to this
dataset, to allow comparison with our ‘full’ model, using
the models proposed in Section 3, fitting both CI and CD
models, the results of which are shown in Figure 1.

When assuming CI between all three tests, we see
that (Figure 1) some of the estimates of the accuracy of
the other two tests change substantially depending on
whether we dichotomise the Wells score as
low + moderate versus high, or as low versus
moderate + high. For the former dichotomisation, the
sensitivity of ultrasound was estimated as 0.80 (0.70,
0.88) whereas for the latter it was 0.69 (0.56, 0.82). The
specificity of ultrasound and the sensitivity of the D-
Dimer were similar between both dichotomisations.
However, there was a notable difference in the specific-
ities of the D-Dimer test, where we obtained specificities
of 0.69 (0.57, 0.78) and 0.76 (0.65, 0.85) for the
low + moderate versus high and low versus
moderate + high dichotomisations, respectively.

The differences in the results were similar when
modelling conditional dependence between the three
tests (see Figure 1). In the low + moderate versus high
dichotomisation, for the ultrasound sensitivity we
obtained 0.83 (0.67, 0.92) and for the low versus
moderate + high dichotomisation 0.74 (0.57, 0.89). For
the D-Dimer specificities, we obtained 0.67 (0.54, 0.78)
and 0.71 (0.58, 0.83) for the low + moderate versus high
and low versus moderate + high dichotomisations,
respectively. As with CI, the specificity of the ultrasound
and the sensitivity of the D-Dimer were similar between

FIGURE 1 Posterior medians and 95% posterior intervals for models dichotomising the Well's score. CD, conditional dependence; CI,

conditional independence [Colour figure can be viewed at wileyonlinelibrary.com]
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the two dichotomisations. We can also see the estimates
of disease prevalence increase for most studies for the
low versus moderate + high dichotomisation relative to
the low + moderate versus high dichotomisation, for
both CI (left panel of Figure 2) and dependence models
(right panel of Figure 2).

Overall, regardless of whether we assume CI or CD,
some of the accuracy estimates change notably
depending on how we dichotomise the Wells score. This
is not surprising, since imperfect gold standard models
based on latent class analysis utilise the full distribution
of test responses from all tests to estimate accuracy and
disease prevalence.4 This simple example demonstrates
the importance of modelling all the available data for
ordinal non-dichotomous tests, such as the Wells score,

in the presence of an imperfect gold standard, as opposed
to simply conducting multiple stratified analyses at each
cutpoint of the ordinal test using simpler methods. This
observation serves to motivate the implementation of
ordinal regression into the models to appropriately model
the ordinal nature of the Wells score.

4.3 | Modelling the Wells score as an
ordinal test

Now we fit the models without dichotomising the Wells
score, by simultaneously modelling all three categories.
For these models, we used weakly informative priors of
μ3 �N 0,1ð Þ for the mean parameters for the Wells test.

FIGURE 2 Posterior density plots for disease prevalence parameters. CD, conditional dependence; CI, conditional independence

[Colour figure can be viewed at wileyonlinelibrary.com]
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We used the partial pooling model on the Wells score
cutpoint parameters (see Section 3.2, Equation (3)). For
the Dirichlet population parameters, we used a weakly
informative prior κ d½ � �N≥ 0 0,50ð Þ. This allows consider-
able asymmetry in the Dirichlet population vector αk, as
can be seen from the prior predictive check (see Figure 1
in Section 1.3 in supplementary material 1). The rest of
the priors were the same as those discussed in
Section 4.1.

We fit the following models: one assuming that ultra-
sound is a perfect gold standard and CI between all three
tests (M1); the same model but modelling the conditional
dependence between the Well's score and D-Dimer (M2);
a model assuming ultrasound to be an imperfect gold
standard and CI between all three tests (M3); and a varia-
tion of M3 which modelled the conditional dependence
between all three tests (M4).

The results for the summary sensitivity and specificity
estimates for the four models are shown in Figure 3, and
the results for each of the Wells score strata are shown in
Figure 4. The estimates for the two models assuming a

perfect gold standard (M1 and M2) are within 2% of those
obtained from Novielli et al.17 The similarity of the
results is not surprising, since despite using different
models and different link functions (logit vs. approximate
probit), both models assume that ultrasound is perfect.

For both the CI (M1) and CD (M2) models which
assumed that ultrasound is a perfect reference test, the
results we obtained for the accuracy of the BTP and BTN
testing strategies for the Wells & D-Dimer tests were sim-
ilar to those obtained by Novielli et al.17 More specifi-
cally, for the BTP testing strategy, we found that the
summary specificity estimates for M1 (33 [25, 41]) were
around 8% lower than M2 (41 [32, 50]). For the BTN
strategy, we found that the estimates for M1 (74 [65, 82])
were around 9% higher (83 [76, 88]) than M2.

When we modelled ultrasound as an imperfect test,
the summary estimate for the sensitivity of the Wells test
for the model assuming CI (M3–88 [81, 93]) was around
4% higher than the model which modelled conditional
dependence (M4–84 [74, 92]), and around 5% higher for
the sensitivity of the Wells & D-Dimer BTN testing

FIGURE 3 Posterior medians and 95% posterior intervals for summary sensitivities and specificities, for models 1–4. The Wells score

summary estimates are dichotomised as low versus moderate + high. CD, conditional dependence; CI, conditional independence; GS, gold

standard [Colour figure can be viewed at wileyonlinelibrary.com]
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strategy (89 [83, 94] and 84 [75, 92] for M3 and M4,
respectively). The other differences between M3 and M4
were 3% or less (see Figure 3).

Whilst assuming conditional dependence, the model
assuming ultrasound is perfect estimated the specificity
of the Wells score to be around 6% lower than the condi-
tional dependence model (52 [42, 63] and 58 [44, 72] for
M2 and M4, respectively). We also found that the speci-
ficity of the D-Dimer was around 9% lower (63 [51, 73]
and 72 [59, 83] for M2 and M4, respectively), that the
specificity was around 5% lower for the Wells & D-Dimer
BTP testing strategy (41 [32, 50] and 46 [34, 58] for M2
and M4, respectively), and that the specificity of the BTN
testing strategy was around 10% lower (74 [65, 82] and
84 [75, 92] for M2 and M4, respectively).

The summary receiver operating characteristic plot
for M4 is shown in Figure 5. The prediction regions sug-
gest that there is substantial between-study heterogeneity
for the sensitivity and specificity for most estimates.
However, we found relatively narrow prediction regions
for the specificity of ultrasound and for the Wells and D-
Dimer BTP testing strategy, so we can be more confident
in generalising our inferences for these estimates.

The LOO-CV results for all of the models are shown in
Table 2. The results suggested that M1 has the poorest fit.
Modelling the dependency between the D-Dimer and Wells
tests (M2) improved the fit (LOO-IC = 16038.6 and 15819.0
for M1 and M2, respectively). Out of the two models not
assuming a perfect gold standard, the CI model gave a
worse fit than the CD model (difference in ELPD between
M3 and M4 = �31.4, se = 6.4). The two CD models were
the two best fitting models, with the conditional depen-
dence model giving the best fit (difference in ELPD between

M2 and M4 = �20.8, se = 6.2). The posterior predictive
checks for this model are shown in Figure 6 (correlation
residual plot) and Figure 2 in supplementary material 3
(2 � 2 table count residual plot). Both plots show that the
model fits the data well.

5 | DISCUSSION

5.1 | Summary

Our proposed MVP-LC model addresses the novel prob-
lem of carrying out meta-analysis of two or more condi-
tionally dependent tests when there is no perfect gold
standard, for the case where there are both ordinal and
dichotomous test(s) under evaluation, and estimation of
joint test accuracy is of interest.

Using the case study as a demonstrative aid for the
model (see Section 4), we showed why treating ordinal
tests as dichotomous in the context of an imperfect gold
standard is suboptimal (see Section 4.2). When we mod-
elled the Wells test as ordinal and treated ultrasound as a
perfect gold standard (see section 4.3), the summary esti-
mates from Novielli et al.17 are replicated in our findings.
However, we found that the most complex model—which
treated ultrasound as an imperfect gold standard in addi-
tion to modelling the conditional dependence between
tests—had the best fit to the data. For this model, our esti-
mates of test accuracy differed considerably compared to
other models we fit (which gave worse fit to the data) and
compared to the results obtained in the analysis conducted
by Novielli et al.17 In particular, we obtained considerably
different estimates of specificity for both the D-Dimer and

FIGURE 4 Posterior medians and 95% posterior intervals for the Well's score stratum, for models 1–4. CD, conditional dependence; CI,
conditional independence; GS, gold standard [Colour figure can be viewed at wileyonlinelibrary.com]
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the Wells score tests when used alone, and for the joint
specificity of the Wells and D-Dimer BTN testing strategy.
However, the large between-study heterogeneity limited
the generalisability of our results.

5.2 | Potential applications

The methods we have developed in this article have a
wide scope of applicability in clinical practise, further

FIGURE 5 Summary receiver

operating characteristic (sROC) plot for

M4. Shaded regions represent 95%

posterior regions and regions

surrounded by dashed lines represent

95% prediction regions. The Wells score

summary estimates are dichotomised as

low versus moderate + high [Colour

figure can be viewed at

wileyonlinelibrary.com]

TABLE 2 Leave-one-out cross validation (LOO-CV) for comparison of model fit for case study 1 dataset

Modela LOO-ICb ELPDM4�ELPDMi
c,d se ELPDM4�ELPDMið Þd

4 (Imperfect ultrasound + CD) 15,777.4 0 0

2 (Perfect ultrasound + CD) 15,819.0 �20.8 6.2

3 (Imperfect ultrasound + CI) 15,840.1 �31.4 6.4

1 (Perfect ultrasound + CI) 16,038.6 �130.6 15.4

aModels are ordered from best to worst fitting.
bLOO-IC = Leave-one-out information criterion; note that LOO-IC is on the deviance scale.
cELPD = Estimated log pointwise predictive density for a new dataset.
dMi denotes the ith model. CI = conditional independence; CD = conditional dependence.

FIGURE 6 Posterior predictive check for model 4; correlation residual plot [Colour figure can be viewed at wileyonlinelibrary.com]
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than just DVT. For instance, Hamza et al.42 re-analysed a
meta-analysis,43 which assessed the accuracy of the
CAGE questionnaire44–a four-category ordinal test used
as a screening tool to detect individuals who may be suf-
fering from alcoholism. However, their model assumed a
perfect gold standard.1 Our proposed MVP-LC model
could be used to more appropriately estimate the accu-
racy of the CAGE questionnaire, since we would not
need to assume that the reference test in each study is
perfect.

The methods could also be used to more appropri-
ately assess joint testing strategies. For instance, current
UK Health Security Agency guidance45 states that indi-
viduals who have symptoms suggestive of the severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
and test positive using Lateral flow tests (LFTs) should be
considered as positive and require no subsequent testing.
On the other hand, it states that individuals with negative
LFTs should be assessed with a polymerase chain reac-
tion (PCR), with only those who also test negative on
PCR being considered negative. Our methods could be
used to investigate this joint test accuracy strategy with-
out modelling PCR as an imperfect gold standard, partic-
ularly with respect to its sensitivity. For depression
screening, one potential BTN testing strategy is one in
which individuals undertake a very brief 2-item version
of the Patient Health Questionnaire (PHQ-246) followed
by the 9-item version (PHQ-947). This was investigated
recently by Levis et al.;48 however, they assumed perfect
gold standards, and they only used around half of the
available studies, since they discarded those studies
which used inferior gold standards. Our MVP-LC model
could be used to analyse these data without assuming a
perfect gold standard whilst accounting for differences
between reference tests with meta-regression, and using
all of the available data. Furthermore, we would be able
to model the differences in gold standards between stud-
ies using meta-regression (see Section 3.3).

5.3 | Advantages

Our proposed Bayesian MVP-LC model addresses some
important limitations which are present in models based
on TLCMs.4,49,5,6,7 For example, although TLCMs have
fast run times due to being computationally inexpensive,
and they can model the conditional dependence between
tests,50 an important limitation is that, unlike our pro-
posed MVP-LC model, they cannot appropriately model
ordinal tests. For example, if one wishes to simulta-
neously model ordinal tests whilst modelling conditional
dependence, they would first need to dichotomise the
data a priori. As we showed in Section 4.2, this is

suboptimal in the context of an imperfect gold standard,
since the test accuracy and disease prevalence estimates
were varied depending on which cutpoint we dicho-
tomise the data at. A limitation of TLCMs which have
been proposed for meta-analysis5,6,7 is that, unless one
assumes a complete pooling model between studies, it is
not possible estimate summary correlation parameters–
parameters which are required to estimate summary-
level joint test accuracy. This is due to the fact that, in
contrast to our MVP-LC model (which uses the within-
study correlations), TLCMs model the conditional depen-
dence using the within-study covariances, making it
difficult to construct a partial pooling model for the
within-study conditional dependence parameters. These
covariances have bounds based on the sensitivity and
specificity parameters in each study.49,51 Therefore, any
summary-level covariance parameters obtained would be
questionable. Our MVP-LC model also has advantages
over more advanced models for meta-analysis of test
accuracy, such as the model proposed by Sadatsafavi
et al,8 which is also based on multivariate probit regres-
sion and is an extension of the latent trait model.13 Two
important limitations of this model–not present in our
MVP-LC model–is that it can only model dichotomous
data, and it assumes that the within-study correlations
are fixed across studies. Furthermore, since our proposed
MVP-LC model is an extension of the model for single
studies proposed by11, another benefit over the model by
Sadatsafavi et al.8 is that it can also be used to specify
more general correlation structures (by setting certain
correlations to zero–see Section 3.2). The fact that our
model is Bayesian means that one can incorporate
subject-matter knowledge into the model, as we did for
our case study. Furthermore, the Induced Dirichlet par-
tial pooling model37 (see Section 3.3.2 and supplementary
material 4) for the ordinal tests makes it possible to spec-
ify priors for ordinal tests and obtain summary estimates.

5.4 | Limitations

When applying the model to our case study dataset (see
Section 2), we used available subject-matter knowledge24

to construct informative prior distributions for the gold
standard test (ultrasound), and weakly informative priors
for other parameters (see Section 4.1 and supplementary
material 1). Attempts to conduct sensitivity analysis using
more diffuse priors led to diagnostic errors. This is likely
due to the fact that Stan is quite sensitive at detecting
non-identifiabilities in the posterior distributions,36 and
non-identifiability is more likely to occur with less infor-
mative priors, particularly for latent class models due to
the large number of parameters relative to the data.
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Another limitation of our case study analysis is that,
although our model can easily incorporate meta-
regression coefficients (see supplementary material 1),
the case study dataset did not contain any study-level
covariates, since primary studies did not report sufficient
data. In an ideal world where such data were available, a
more principled analysis could be carried out by using a
meta-regression covariate for the proportion of patients
who have proximal versus distal DVT, which would have
enabled us to model the variation of ultrasound sensitiv-
ity that exists between the two DVT groups in Novielli
et al.'s17 data.

A limitation of our model, which is present across all
imperfect gold standard methods based on latent class
models (including TLCMs), is that full cross-classification
tables (i.e., the full distribution of test results) are required
for each study. This is a potential barrier to the uptake of
our proposed MVP-LC model, as this data is frequently
not reported for studies evaluating 3 or more tests and/or
studies assessing ordinal tests. One way in which we could
have assessed the general performance of our MVP-LC
model is by running a simulation study.52 A simulation
study comparing our proposed MVP-LC model to other
models would also be very useful. However, it is important
to note that, at the time of writing, no other models have
been proposed to simultaneously meta-analyse both
dichotomous and ordinal tests without assuming a perfect
gold standard. That being said, a simulation study would
still be useful, since we could compare the performance of
our model to other proposed models which do assume a
perfect gold standard (e.g., Novielli et al.17) under a variety
of different scenarios.

Although our proposed MVP-LC model offers consid-
erable benefits in comparison to the more commonly used
TLCM models5,6,7,50 (see Section 5.3), we found that our
proposed model was considerably less time efficient than
TLCM models. Although this was not prohibitive for the
case study used in this article, our MVP-LC model may be
intractable for larger sample sizes. Speeding up models
based on augmented continuous data, such as our MVP-
LC model, is an active area of research.53,54,55,56,57,58,59,60

An important area for future research would be to apply
the models developed in this article using these more
efficient algorithms, which would make our proposed
MVP-LC model more suitable for general use with larger
meta-analyses, and it would also make it easier to conduct
more meaningful simulation studies.

5.5 | Future work

Models for the meta-analysis of test accuracy which can
incorporate patient-level covariates–otherwise known as

individual patient data (IPD)–have been proposed,61 but
only for dichotomous data and they assume a perfect gold
standard.61 Modelling IPD can lead to results which are
more applicable to clinical practise as they can more eas-
ily be applied to patients when there is between-study
heterogeneity, rather than only providing summary esti-
mates which relate to some ‘average’ patient. Extending
our model to incorporate IPD would be relatively
straightforward, since our model uses the patient-level
data (as reconstructed from the reported contingency
tables) as opposed to aggregated data for each study. It is
straightforward to extend our model to the case where
not all studies are assessing the same number of tests,
using direct comparisons only. This could be further
extended to allow indirect comparisons (network meta-
analysis [NMA]), by assuming tests are missing at ran-
dom (MAR),62 and extending the between-study model
described in Section 3.3 to an arm-based network-meta-
analysis model.63,64 Another straightforward modelling
extension would be to incorporate data from ordinal tests
which have missing data for some categories.

Our model could also be extended to synthesise data
from ordinal tests for the case where some (or all) studies
do not report data for every cutpoint–which is common
in research. One could formulate such a ‘missing
cutpoint’ version of our MVP-LC model by extending the
partial pooling between-study cutpoint model (see
Section 3.3.2 and supplementary material 4), and viewing
the cutpoints as MAR. Another possible ‘missing
cutpoint’ model could be constructed by modelling the
cutpoint parameters as the same in the diseased and non-
diseased classes, and assume that they are fixed between
studies by using a no pooling model. Then, as opposed to
our MVP-LC model, in which the within-study variances
are set to 1 to ensure parameter identifiability (see
Section 3.2), the no pooling cutpoint model would allow
us to introduce within-study variance parameters and
model them using a partial pooling model without
encountering significant identifiability issues. These
within-study parameters could be set to vary between the
two latent classes, which would result in a smooth, non-
symmetric receiver operating characteristic (ROC) curve.
Another possible ‘missing cutpoint’ approach would be
one based on the model proposed by Dukic et al.,65 which
assumes a perfect gold standard. This model also results
in a smooth, non-symmetric ROC curve, since it assumes
that the cutpoints vary between studies and are the same
in the diseased and non-diseased class. However, it would
be more parsimonious since it assumes that the sensitiv-
ity is some location-scale change of the false positive rate.

For the case where studies report thresholds at
explicit numerical cutpoints (as is sometimes reported for
continuous tests, such as biomarkers), some ‘missing
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threshold’ methods which assume a perfect gold standard
have been proposed.66,67 Rather than modelling the
cutpoints as parameters, these methods assume that the
cutpoints are constants, equal to the value of the numeri-
cal cutpoint, and they estimate separate location and
scale parameters in each study and disease class. Our
MVP-LC model could be extended to achieve this without
assuming a gold standard. An important area for future
research would be to construct other models which can
be used for the same purposes as our proposed MVP-LC
model. For instance, a multivariate logistic regression
model could be constructed by using the Bayesian mul-
tivariate logistic distribution proposed by O0 Brien
et al.68 Such a model would use logistic link functions as
opposed to probit (or approximate probit) links like our
MVP-LC model, which are more numerically stable
than probit and may give better fit to some datasets.
Another multivariate regression approach would be to
use copulas.69,70,71 Besides multivariate regression based
on augmented data, another approach to modelling con-
ditionally dependent ordinal diagnostic tests without
assuming a perfect gold standard is log-linear models.11

These models can account for higher-order correla-
tions.11 However, this requires estimation of additional
parameters, so it is likely to introduce identifiability
issues. Similarly, to the multivariate probit models
utilised in this article, it may be possible to extend these
models to meta-analyse multiple, imperfect diagnostic
tests with multiple cutpoints.

ACKNOWLEDGMENTS
The authors would like to thank Elpida Vounzoulaki for
proofreading the manuscript. The authors would also like
to thank various members of the Stan community forums
(see https://discourse.mc-stan.org/) including Ben Good-
rich, Michael Betancourt, Stephen Martin, Staffan Betnér,
Martin Modr�ak, Niko Huurre, Bob Carpenter and Aki
Vehtari and for providing functions which were utilised
in the models and for useful discussions.

FUNDING INFORMATION
The work was carried out whilst EC was funded by a
National Institute for Health Research (NIHR) Com-
plex Reviews Support Unit (project number 14/178/29)
and by a National Institute for Health Research Sys-
tematic Review Fellowship (project number RM-SR-
2017-09-023). The views and opinions expressed herein
are those of the authors and do not necessarily reflect
those of the NIHR, NHS or the Department of Health.
The NIHR had no role in the design of the study and
collection, analysis, and interpretation of data and in
writing the manuscript. This project is funded by the
NIHR Applied Research Collaboration East Midlands

(ARC EM). The views expressed are those of the
authors and not necessarily those of the NIHR or the
Department of Health and Social Care.

AUTHOR CONTRIBUTIONS
EZ, HEJ, TJQ, NJC & AJS jointly concieved the work. EZ
conducted the data analysis with advice and guidance
from HEJ and AJS. EC and OC drafted the article. All
authors read and critically commented on previous ver-
sions of the manuscript. All authors approved the final
version of the manuscript.

CONFLICT OF INTEREST
None of the authors have any conflicts of interest.

DATA AVAILABILITY STATEMENT
The Data, R and Stan code to reproduce the results and
figures from Section 4 is available on Github at: https://
github.com/CerulloE1996/dta-ma-mvp-1.

ORCID
Enzo Cerullo https://orcid.org/0000-0001-5036-4564
Nicola J. Cooper https://orcid.org/0000-0002-4486-2791

REFERENCES
1. Reitsma JB, Glas AS, Rutjes AWS, et al. Bivariate analysis of

sensitivity and specificity produces informative summary mea-
sures in diagnostic reviews. J Clin Epidemiol. 2005;10:982-990.
08954356. doi:10.1016/j.jclinepi.2005.02.022

2. Rutter CM, Gatsonis CA. A hierarchicaal regression approach
to metaanalysis of diagnostic test accuracy evaluations. Stat
Med. 2001;20:2865-2884. doi:10.1002/sim.942

3. Harbord RM, Deeks JJ, Egger M, Whiting P, Sterne JAC. A uni-
fication of models for meta-analysis of diagnostic accuracy
studies. Biostatistics. 2007;8:239-51. doi:10.1093/biostatistics/
kxl004

4. Hui SL, Walter SD. Estimating the error rates of diagnostic
tests. Biometrics. 1980;36:167-171. doi:10.2307/2530508

5. Chu H, Chen S, Louis TA. Random effects models in a meta-
analysis of the accuracy of two diagnostic tests without a gold
standard. J Am Stat Assoc. 2009;104:512-523. doi:10.1198/jasa.
2009.0017

6. Menten J, Boelaert M, Lesaffre E. Bayesian meta-analysis of
diagnostic tests allowing for imperfect reference standards. Stat
Med. 2013;32:5398-5413. doi:10.1002/sim.5959

7. Dendukuri N, Schiller I, Joseph L, Pai M. Bayesian meta-
analysis of the accuracy of a test for tuberculous Pleuritis in the
absence of a gold standard reference. Biometrics. 2012;68:1285-
1293. doi:10.1111/j.1541-0420.2012.01773.x

8. Sadatsafavi M, Shahidi N, Marra F, et al. A statistical method
was used for the meta-analysis of tests for latent TB in the
absence of a gold standard, combining random-effect and
latent-class methods to estimate test accuracy. J Clin Epidemiol.
2010;63:257-269. doi:10.1016/j.jclinepi.2009.04.008

9. Kang J, Brant R, Ghali WA. Statistical methods for the meta-
analysis of diagnostic tests must take into account the use of

CERULLO ET AL. 609

 17592887, 2022, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jrsm

.1567 by U
niversity O

f G
lasgow

, W
iley O

nline L
ibrary on [09/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://discourse.mc-stan.org/
https://github.com/CerulloE1996/dta-ma-mvp-1
https://github.com/CerulloE1996/dta-ma-mvp-1
https://orcid.org/0000-0001-5036-4564
https://orcid.org/0000-0001-5036-4564
https://orcid.org/0000-0002-4486-2791
https://orcid.org/0000-0002-4486-2791
info:doi/10.1016/j.jclinepi.2005.02.022
info:doi/10.1002/sim.942
info:doi/10.1093/biostatistics/kxl004
info:doi/10.1093/biostatistics/kxl004
info:doi/10.2307/2530508
info:doi/10.1198/jasa.2009.0017
info:doi/10.1198/jasa.2009.0017
info:doi/10.1002/sim.5959
info:doi/10.1111/j.1541-0420.2012.01773.x
info:doi/10.1016/j.jclinepi.2009.04.008


surrogate standards. J Clin Epidemiol. 2013;66:566-557. doi:10.
1016/j.jclinepi.2012.12.008

10. Huiping X, Craig BA. A probit latent class model with general
correlation structures for evaluating accuracy of diagnostic
tests. Biometrics. 2009;65:1145-55. doi:10.1111/j.1541-0420.2008.
01194.x

11. Huiping X, Black MA, Craig BA. Evaluating accuracy of diag-
nostic tests with intermediate results in the absence of a gold
standard. Stat Med. 2013;32:2571-2584. doi:10.1002/sim.5695

12. Uebersax JS. Probit latent class analysis with dichotomous or
ordered category measures: conditional Independence/dependence
models. Appl Psychol Meas. 1999;23:283-297. doi:10.1177/
01466219922031400

13. Yinsheng Q, Tan M, Kutner MH. Random effects models in
latent class analysis for evaluating accuracy of diagnostic tests.
Biometrics. 1996;52:797-810. doi:10.2307/2533043

14. Yinsheng Q, Hadgu A. A model for evaluating sensitivity and
specificity for correlated diagnostic tests in efficacy studies with
an imperfect reference test. J Am Stat Assoc. 1998;93:920-928.
doi:10.1080/01621459.1998.10473748

15. Albert JH, Chib S. Bayesian analysis of binary and polychoto-
mous response data. J Am Stat Assoc. 1993;88:669-679. doi:10.
2307/2290350

16. William WH, Greene H. Econometric Analysis. 7th ed.; Pearson;
2012.

17. Novielli N, Sutton AJ, Cooper NJ. Meta-analysis of the accu-
racy of two diagnostic tests used in combination: application to
the ddimer test and the wells score for the diagnosis of deep
vein thrombosis. In: Value Health. 2013;16:619-28. doi:10.1016/
j.jval.2013.02.007

18. Stone J, Hangge P, Albadawi H, et al. Deep vein thrombosis: path-
ogenesis, diagnosis, and medical management. Cardiovasc Diagn
Ther. 2017;7(Suppl 3):S276-S284. doi:10.21037/cdt.2017.09.01

19. Tovey C, Wyatt S. Diagnosis, investigation, and management of
deep vein thrombosis. BMJ. 2003;326(7400):1180-1184. doi:10.
1136/bmj.326.7400.1180

20. Kyrle PA, Eichinger S. Deep vein thrombosis. The Lancet. 2005;
365(9465):1163-1174. doi:10.1016/S0140-6736(05)71880-8

21. Kearon C, Julian JA, Newman TE, Ginsberg JS. Noninvasive
diagnosis of deep venous thrombosis. McMaster diagnostic
imaging practice guidelines initiative. Ann Intern Med. 1998;
128(8):663-677. doi:10.7326/0003-4819-128-8-199804150-00011

22. Ho VB, van Geertruyden PH, Yucel EK, et al. ACR appropriate-
ness criteria(®) on suspected lower extremity deep vein throm-
bosis. J Am College Radiol: JACR. 2011;8(6):383-387. doi:10.
1016/j.jacr.2011.02.016

23. Min S-K, Kim YH, Joh JH, et al. Diagnosis and treatment of
lower extremity deep vein thrombosis: Korean practice guide-
lines. Vasc Spec Int. 2016;32(3):77-104. doi:10.5758/vsi.2016.32.
3.77

24. Goodacre S, Sampson F, Thomas S, van Beek E, Sutton A. Sys-
tematic review and meta-analysis of the diagnostic accuracy of
ultrasonography for deep vein thrombosis. BMC Med Imaging.
2005. doi:10.1186/1471-2342-5-6

25. Di Nisio M, van Sluis GL, Bossuyt PMM, et al. Accuracy of
diagnostic tests for clinically suspected upper extremity deep
vein thrombosis: a systematic review. J Thromb Haemost. 2010;
8:684-92. doi:10.1111/j.1538-7836.2010.03771.x

26. Wells PS, Anderson DR, Bormanis J, et al. Value of assessment
of pretest probability of deep-vein thrombosis in clinical

management. Lancet (London, England). 1997;350(9094):1795-
1798. doi:10.1016/S0140-6736(97)08140-3

27. Khan F, Tritschler T, Kahn SR, Rodger MA. Venous thrombo-
embolism. The Lancet. 2021;398(10294):64-77. doi:10.1016/
S0140-6736(20)32658-1

28. Novielli N, Cooper NJ, Sutton AJ. Evaluating the cost-effectiveness
of diagnostic tests in combination: is it important to allow for per-
formance dependency? Value Health. 2013;16(4):536-541.

29. Ekström, Joakim. A generalized definition of the polychoric
correlation coefficient. Department of Statistics, UCLA (2011).

30. Gelman A, Hill J. Data Analysis Using Regression and
Multilevel/Hierarchical Models; Cambridge University Press;
2006. doi:10.1017/cbo9780511790942

31. Betancourt, Michael. Hierarchical modeling. https://github.com/
betanalpha/knitr_case_studies/tree/master/hierarchical_modeling.
commit27c1d260e9ceca710465dc3b02f59f59b729ca43.2020.

32. Goodrich, Ben. A better parameterization of the multivariate
probit model. https://github.com/stan-dev/example-models/
commit/d6f0282d64382b627dfddca6b7f9a551bda3f537. 2016.

33. Betancourt, Michael. Ordinal regression. https://github.com/
betanalpha/knitr_case_studies/tree/master/ordinal_regression.
commit23eb263be4cfb44278d0dfb8ddbd593a4b142506. 2019.

34. Vehtari A, Gelman A, Gabry J. Practical Bayesian model evalu-
ation using leave-one-out cross-validation and WAIC. Stat
Comput. 2017;27:1413-1432. doi:10.1007/s11222-016-9696-4

35. R Core Team. “R: a language and environment for statistical
computing. R foundation for statistical computing”: (2021).
https://www.R-project.org.

36. Carpenter B, Gelman A, Hoffman MD, et al. Stan: a probabilis-
tic programming language. J Stat Softw. 2017;76:1-32. doi:10.
18637/jss.v076.i01

37. Michael Betancourt A. Conceptual Introduction to Hamilto-
nian Monte Carlo. https://arxiv.org/abs/1701.02434. arXiv.
2018;1701:2434.

38. Gabry, Jonah. Češnovar, Author Rok et al. CmDStanR: a light-
weight interface to Stan for R users. R Package Version 030
2021. https://mc-stan.org/cmdstanr/.

39. Goodrich, Ben. Truncated multivariate normal variates in stan.
https://groups.google.com/g/stan-users/c/GuWUJogum1o/m/
LvxjlUBnBwAJ?pli=1. 2017.

40. Martin, Stephen. Hierarchical prior for partial pooling on cor-
relation matrices. https://discourse.mc-stan.org/t/hierarchical-
prior-for-partial-pooling-on-correlation-matrices/4852/27 2018.

41. Stan modeling language users guide and reference manual.
https://mc-stan.org/docs/2_25/reference-manual/. 2020.

42. Hamza TH, Arends LR, van Houwelingen HC, Stijnen T. Mul-
tivariate random effects meta-analysis of diagnostic tests with
multiple thresholds. BMC Med Res Methodol. 2009. doi:10.
1186/1471-2288-9-73

43. Aertgeerts B, Buntinx F, Kester A. The value of the CAGE in
screening for alcohol abuse and alcohol dependence in general
clinical populations: a diagnostic meta-analysis. J Clin Epidemiol.
2004;57(1):30-39. doi:10.1016/S0895-4356(03)00254-3

44. Ewing JA. Detecting alcoholism. The CAGE questionnaire.
JAMA. 1984;252(14):1905-1907. doi:10.1001/jama.252.14.1905

45. Wilkinson-Brice, Em et al. Updated UK Health Security
Agency Guidance – Confirmatory PCR tests to be temporarily
suspended for positive lateral flow test results. 2021. https://
wwww.gov.uk/government/news/confirmatory-pcr-tests-to-be-
temporarily-suspended-for-positive-lateral-flow-test-results

610 CERULLO ET AL.

 17592887, 2022, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jrsm

.1567 by U
niversity O

f G
lasgow

, W
iley O

nline L
ibrary on [09/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

info:doi/10.1016/j.jclinepi.2012.12.008
info:doi/10.1016/j.jclinepi.2012.12.008
info:doi/10.1111/j.1541-0420.2008.01194.x
info:doi/10.1111/j.1541-0420.2008.01194.x
info:doi/10.1002/sim.5695
info:doi/10.1177/01466219922031400
info:doi/10.1177/01466219922031400
info:doi/10.2307/2533043
info:doi/10.1080/01621459.1998.10473748
info:doi/10.2307/2290350
info:doi/10.2307/2290350
info:doi/10.1016/j.jval.2013.02.007
info:doi/10.1016/j.jval.2013.02.007
info:doi/10.21037/cdt.2017.09.01
info:doi/10.1136/bmj.326.7400.1180
info:doi/10.1136/bmj.326.7400.1180
info:doi/10.1016/S0140-6736(05)71880-8
info:doi/10.7326/0003-4819-128-8-199804150-00011
info:doi/10.1016/j.jacr.2011.02.016
info:doi/10.1016/j.jacr.2011.02.016
info:doi/10.5758/vsi.2016.32.3.77
info:doi/10.5758/vsi.2016.32.3.77
info:doi/10.1186/1471-2342-5-6
info:doi/10.1111/j.1538-7836.2010.03771.x
info:doi/10.1016/S0140-6736(97)08140-3
info:doi/10.1016/S0140-6736(20)32658-1
info:doi/10.1016/S0140-6736(20)32658-1
info:doi/10.1017/cbo9780511790942
https://github.com/betanalpha/knitr_case_studies/tree/master/hierarchical_modeling.commit27c1d260e9ceca710465dc3b02f59f59b729ca43.2020
https://github.com/betanalpha/knitr_case_studies/tree/master/hierarchical_modeling.commit27c1d260e9ceca710465dc3b02f59f59b729ca43.2020
https://github.com/betanalpha/knitr_case_studies/tree/master/hierarchical_modeling.commit27c1d260e9ceca710465dc3b02f59f59b729ca43.2020
https://github.com/stan-dev/example-models/commit/d6f0282d64382b627dfddca6b7f9a551bda3f537
https://github.com/stan-dev/example-models/commit/d6f0282d64382b627dfddca6b7f9a551bda3f537
https://github.com/betanalpha/knitr_case_studies/tree/master/ordinal_regression.commit%2023eb263be4cfb44278d0dfb8ddbd593a4b142506
https://github.com/betanalpha/knitr_case_studies/tree/master/ordinal_regression.commit%2023eb263be4cfb44278d0dfb8ddbd593a4b142506
https://github.com/betanalpha/knitr_case_studies/tree/master/ordinal_regression.commit%2023eb263be4cfb44278d0dfb8ddbd593a4b142506
info:doi/10.1007/s11222-016-9696-4
https://www.r-project.org
info:doi/10.18637/jss.v076.i01
info:doi/10.18637/jss.v076.i01
https://arxiv.org/abs/1701.02434
https://mc-stan.org/cmdstanr/
https://groups.google.com/g/stan-users/c/GuWUJogum1o/m/LvxjlUBnBwAJ?pli=1
https://groups.google.com/g/stan-users/c/GuWUJogum1o/m/LvxjlUBnBwAJ?pli=1
https://discourse.mc-stan.org/t/hierarchical-prior-for-partial-pooling-on-correlation-matrices/4852/27
https://discourse.mc-stan.org/t/hierarchical-prior-for-partial-pooling-on-correlation-matrices/4852/27
https://mc-stan.org/docs/2_25/reference-manual/
info:doi/10.1186/1471-2288-9-73
info:doi/10.1186/1471-2288-9-73
info:doi/10.1016/S0895-4356(03)00254-3
info:doi/10.1001/jama.252.14.1905
https://www.gov.uk/government/news/confirmatory-pcr-tests-to-be-temporarily-suspended-for-positive-lateral-flow-test-results
https://www.gov.uk/government/news/confirmatory-pcr-tests-to-be-temporarily-suspended-for-positive-lateral-flow-test-results
https://www.gov.uk/government/news/confirmatory-pcr-tests-to-be-temporarily-suspended-for-positive-lateral-flow-test-results


46. Kroenke K, Spitzer RL, Williams JBW. The patient health
questionnaire-2: validity of a two-item depression screener.
Med Care. 2003;41(11):1284-1292.

47. Kroenke K, Spitzer RL, Williams JB. The PHQ-9: validity of a
brief depression severity measure. J General Intern Med. 2001;
16(9):606-613.

48. Levis B, Sun Y, He C, et al. Accuracy of the PHQ-2 alone and
in combination with the PHQ-9 for screening to detect major
depression: systematic review and meta-analysis. JAMA. 2020;
323(22):2290-2300. doi:10.1001/jama.2020.6504

49. Vacek PM. The effect of conditional dependence on the evalua-
tion of diagnostic tests. Biometrics. 1985;41:959-968. doi:10.
2307/2530967

50. Wang Z, Dendukuri N, Zar HJ, Joseph L. Modeling conditional
dependence among multiple diagnostic tests. Stat Med. 2017;
36:4843-4859. doi:10.1002/sim.7449

51. Dendukuri N, Joseph L. Bayesian approaches to modeling
the conditional dependence between multiple diagnostic
tests. Biometrics. 2001;57(1):158-167. 10.1111/j.0006-341X.
2001.00158.x

52. Morris TP, White IR, Crowther MJ. Using simulation studies to
evaluate statistical methods. Stat Med. 2019;38(11):2074-2102.
doi:10.1002/sim.8086

53. Blei DM, Kucukelbir A, McAuliffe JD. Variational inference: a
review for statisticians. J Am Stat Assoc. 2017;112(518):859-877.
doi:10.1080/01621459.2017.1285773

54. Duan LL, Johndrow JE, Dunson DB. Scaling up data augmen-
tation MCMC via calibration. J Mach Learn Res. 2018;19(1):
2575-2608.

55. Duan LL. Transport Monte Carlo. arXiv. 2020;1907:10448.
56. Margossian CC, Vehtari A, Simpson D, Agrawal R. Hamiltonian

Monte Carlo using an adjoint-differentiated Laplace approxima-
tion: Bayesian inference for latent Gaussian models and beyond.
arXiv. 2020;2004:12550.

57. Dinh L, Sohl-Dickstein J, Bengio S. Density estimation using
real NVP. arXiv. 2017;1605:8803.

58. Papamakarios G, Pavlakou T, Murray I. Masked autoregressive
flow for density estimation. arXiv. 2018;1705:7057.

59. Rezende DJ, Mohamed S. Variational inference with normaliz-
ing flows. arXiv. 2016;1505:5770.

60. Dhaka AK, Catalina A, Andersen MR, et al. Robust, accurate
stochastic optimization for variational inference. arXiv. 2020;
2009:1-15.

61. Riley RD, Dodd SR, Craig JV, Thompson JR, Williamson PR.
Meta-analysis of diagnostic test studies using individual patient

data and aggregate data. Stat Med. 2008;27:6111-6136. 10.1002/
sim.3441

62. Rubin DB. Inference and missing data. Biometrika. 1976;63:
581-592. doi:10.2307/2335739

63. Ma X, Lian Q, Chu H, Ibrahim JG, Chen Y. A Bayesian hierarchi-
cal model for network meta-analysis of multiple diagnostic tests.
Biostatistics. 2018;19:87-102. doi:10.1093/biostatistics/kxx025

64. Nyaga VN, Aerts M, Arbyn M. ANOVA model for network
meta-analysis of diagnostic test accuracy data. Stat Methods
Med Res. 2018;1604:2018. doi:10.1177/0962280216669182

65. Dukic V, Gatsonis C. Meta-analysis of diagnostic test accuracy
assessment studies with varying number of thresholds. Biomet-
rics. 2003;59(4):936-946. 10.1111/j.0006-341X.2003.00108.x

66. Jones HE, Gatsonsis CA, Trikalinos TA, Welton NJ, Ades AE.
Quantifying how diagnostic test accuracy depends on threshold
in a meta-analysis. Stat Med. 2019;38:4789-4803. doi:10.1002/
sim.8301

67. Steinhauser S, Schumacher M, Rücker G. Modelling multiple
thresholds in meta-analysis of diagnostic test accuracy studies. BMC
Med Res Methodol. 2016;16(1):97. doi:10.1186/s12874-016-0196-1

68. O'Brien SM, Dunson DB. Bayesian multivariate logistic regres-
sion. Biometrics. 2004;60(3):739-746. 10.1111/j.0006-341X.2004.
00224.x

69. Winkelmann R. Copula bivariate PROBIT models: with an
application to medical expenditures. Health Economics. 2012;
21(12):1444-1455. doi:10.1002/hec.1801

70. Eichler, Michael, Manner, Hans, and Turk, Dennis. Dynamic
copula based multivariate discrete choice models with applica-
tions. https://wisostat.uni-koeln.de/sites/statistik/user_upload/
DCMDC.pdf. 2017.

71. Meyer C. The bivariate normal copula. Commun Stat - Theory
Methods. 2013;42(13):2402-2422. doi:10.1080/03610926.2011.611316

SUPPORTING INFORMATION
Additional supporting information may be found in the
online version of the article at the publisher's website.

How to cite this article: Cerullo E, Jones HE,
Carter O, Quinn TJ, Cooper NJ, Sutton AJ. Meta-
analysis of dichotomous and ordinal tests with an
imperfect gold standard. Res Syn Meth. 2022;13(5):
595‐611. doi:10.1002/jrsm.1567

CERULLO ET AL. 611

 17592887, 2022, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jrsm

.1567 by U
niversity O

f G
lasgow

, W
iley O

nline L
ibrary on [09/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

info:doi/10.1001/jama.2020.6504
info:doi/10.2307/2530967
info:doi/10.2307/2530967
info:doi/10.1002/sim.7449
info:doi/10.1111/j.0006-341X.2001.00158.x
info:doi/10.1111/j.0006-341X.2001.00158.x
info:doi/10.1002/sim.8086
info:doi/10.1080/01621459.2017.1285773
info:doi/10.1002/sim.3441
info:doi/10.1002/sim.3441
info:doi/10.2307/2335739
info:doi/10.1093/biostatistics/kxx025
info:doi/10.1177/0962280216669182
info:doi/10.1111/j.0006-341X.2003.00108.x
info:doi/10.1002/sim.8301
info:doi/10.1002/sim.8301
info:doi/10.1186/s12874-016-0196-1
info:doi/10.1111/j.0006-341X.2004.00224.x
info:doi/10.1111/j.0006-341X.2004.00224.x
info:doi/10.1002/hec.1801
https://wisostat.uni-koeln.de/sites/statistik/user_upload/DCMDC.pdf
https://wisostat.uni-koeln.de/sites/statistik/user_upload/DCMDC.pdf
info:doi/10.1080/03610926.2011.611316
info:doi/10.1002/jrsm.1567

	Meta-analysis of dichotomous and ordinal tests with an imperfect gold standard
	1  INTRODUCTION
	2  MOTIVATING EXAMPLE
	3  METHODS
	3.1  Terminology and notation
	3.2  Within-study model
	3.3  Between-study model
	3.3.1  Within-study correlations
	3.3.2  Cutpoints
	3.3.3  Test accuracy summaries
	3.3.4  Joint test accuracy summaries

	3.4  Assessing model fit and model comparison
	3.5  Model implementation

	4  APPLICATION TO CASE STUDY
	4.1  Prior distributions
	4.2  The pitfalls of a priori dichotomisation in the presence of an imperfect gold standard
	4.3  Modelling the Wells score as an ordinal test

	5  DISCUSSION
	5.1  Summary
	5.2  Potential applications
	5.3  Advantages
	5.4  Limitations
	5.5  Future work

	ACKNOWLEDGMENTS
	FUNDING INFORMATION
	AUTHOR CONTRIBUTIONS
	CONFLICT OF INTEREST
	DATA AVAILABILITY STATEMENT

	REFERENCES


