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Abstract
Human activity monitoring is an exciting research area to assist independent living among disabled and elderly
population. Various techniques have been proposed to recognise human activities, such as exploiting sensors,
cameras, wearables, and contactless microwave sensing. Among these, the microwave sensing has recently gained
significant attention due to its merit to solve the privacy concerns of cameras and discomfort caused by wearables.
However, the existing microwave sensing techniques have a basic disadvantage of requiring controlled and ideal
settings for high-accuracy activity detections, which restricts its wide adoptions in non-line-of-sight (Non-LOS)
environments. Here, we propose a concept of intelligent wireless walls (IWW) to ensure high-precision activity
monitoring in complex environments wherein the conventional microwave sensing is invalid. The IWW is composed
of a reconfigurable intelligent surface (RIS) that can perform beam steering and beamforming, and machine learning
algorithms that can automatically detect the human activities with high accuracy. Two complex environments are
considered: one is a corridor junction scenario with transmitter and receiver in separate corridor sections and the other
is a multi-floor scenario wherein the transmitter and receiver are placed on two different floors of a building. In each of
the aforementioned environments, three distinct body movements are considered namely, sitting, standing, and
walking. Two subjects, one male and one female perform these activities in both environments. It is demonstrated that
IWW provide a maximum detection gain of 28% in multi-floor scenario and 25% in corridor junction scenario as
compared to traditional microwave sensing without RIS.

Introduction
Human activity and motion detection have gained sig-

nificant attraction from research community for their
applications in remote healthcare monitoring, intrusion
detection and independent living. Indeed, independent
living is included in the national agenda of the UK for 2030
under the policy of good health and sustainable commu-
nities1. Various human activity recognition systems have
been proposed in the literature exploiting ambient sensors,
cameras, and wearables. However, these techniques raise
either privacy concerns or discomfort of carrying wear-
ables all the time. These concerns can be addressed by

exploiting a contact-less human activity monitoring sys-
tem. In this regard, various contact-less solutions are
proposed in the literature, exploiting channel state infor-
mation (CSI) of microwave-based wireless systems, such as
WiFi2 and 5G3 or Doppler signatures of radar systems4.
The principle of microwave sensing is based on observing
the variations in the reflected signal due to movement of
the target. Useful information about the target can be
derived by processing the reflected signals.
However, current microwave-based activity monitoring

systems have some fundamental disadvantages that limit
their applicability in real-life environments. First, because
the target’s reflection signals are weaker than line-of-sight
(LOS) signals, the detection range is restricted to a few
metres only5. Secondly, for contactless activity monitor-
ing, interference from the environment is a problem.
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When the target’s reflection signal and an interfering
reflection signal are combined at the receiver, the sensing
performance is dramatically reduced. This limits the use
of microwave sensing in non-LOS scenarios where the
transmitter (Tx) and the receiver (Rx) do not have a direct
wireless link. Above all, most microwave sensing schemes
require controlled ideal settings where the movements are
pseudo-dynamic.
These limitations can be overcome by beamforming

towards the target to enhance the sensing range and avoid
interference6. To this aim, a concept of intelligent wireless
walls (IWW) is presented, which is based on reconfigurable
intelligent surfaces (RISs) and machine learning algorithms
to detect human activities with high resolution. RISs are
electromagnetic (EM) metasurfaces whose electrical and
optical properties (i.e. surface-averaged susceptibility) are
dynamically controlled, allowing incident EM waves to be
steered in the desired direction7,8. IWW push the limits of
microwave sensing by actively steering the ambient
microwave signals towards a specific area in space, enabling
high-precision sensing and activity monitoring.
Recent advances in artificial intelligence (AI) and

composite materials have given rise to intelligent com-
munication and imaging systems based on RIS. RISs are
typically composed of two layers, the first layer being a
metasurface structure composed of tunable, sub-
wavelength unit cell elements, usually metallodielectric in
nature, with subwavelength unit cell spacing, with a sec-
ond layer accommodating a control and biasing network.
The metasurface layer is of subwavelength thickness, is
transversally electrically large, and is globally passive in
nature. Compared to technologies such as phased arrays
and relays, a major advantage of employing RISs for EM
transformations is their low complexity and passive nat-
ure, thereby making the technology easily scalable to
cover large surface areas at low manufacturing cost, and
with minimal power consumption. With many elements
to configure comes the challenge of selecting an RIS
configuration from a vast number of possibilities to realise
a desired set of EM transformations.
The use of RIS for high-precision sensing has recently

gained attention. Li et al.9 have demonstrated the use of
RIS in recognising the objects and gestures in the sur-
roundings with low latency. The authors introduced the
concept of learned sensing in recognising gestures and
constructing microwave imaging. Similarly, a machine
learning-enabled RIS is proposed in ref. 10 as electro-
nically controlled metasurface imager. Further, a smart
metasurface imager and recogniser in conjunction with a
network of artificial neural networks to manage data flow
in an adaptive manner is proposed11. The authors propose
an intelligent interface between humans and devices that
allows gadgets to detect and recognise more complex
human actions.

A worth mentioning related research area here is the
imaging and/or tracking of objects in non-line-of-sight
(Non-LOS) environments. Various different technologies
have been utilised in the literature to achieve Non-LOS
imaging. For instance, the authors in ref. 12 propose a
Non-LOS acoustic imaging for the corner objects. A pair
of speaker and microphone is utilised for sound waves
emission and recording after reflection. However, to
reconstruct a 3D image reflection, measurements are
captured from a range speaker and microphone position,
which limits its wide adoption in real-time applications.
Likewise, a long-wave infra-red (IR) based Non-LOS
imaging framework is presented in ref. 13. The authors
demonstrated 2D shape reconstruction of hidden object
to estimate the pose. Further, the work presented in ref. 14

achieve tracking occluded objects outside direct LOS
using a standard 2D camera and a laser pointer. However,
these approaches13,14 require recording objects using
either an IR camera13 or a standard 2D camera14, which
may raise privacy issues for some users. Similarly, a pas-
sive sensing approach15 using spatial coherence of the
reflected light from a defusing wall can be used to retrieve
geometric information of objects hidden in the Non-LOS
locations. Nevertheless, the practicality of such an
approach15 can be challenged in poor or no lightening.
Furthermore, a radar-based Non-LOS target detection
and localisation is presented16, where reflections and/or
diffractions on the surrounding surfaces are utilised along
with the scene geometry.
Empowered with AI, this work aims to offer a paradigm

shift in contactless in-home activity monitoring by
introducing an RIS to extend the coverage region of an
activity monitoring system. The sensing capabilities of the
RIS-aided activity monitoring system are then demon-
strated in complex wireless propagation environments
where conventional microwave sensing does not perform
well. Namely, sensing around a corner in a corridor
junction and sensing across multiple floors.
A related work to see around the corner using RIS is

presented by ref. 17. The authors17 considered the use of
RISs to extend radar surveillance to NLoS scenarios. The
work derived a system model for monostatic radar aided
by a RIS. The authors determined an approximation for
the SNR and expressions for signal-to-clutter ratio (SCR)
accounting for surface or volume clutter. Numerical
analysis involving the detection of a micro unmanned
aerial vehicle revealed, for an ideal RIS with full phase
tuneability, produced a significant improvement in SNR
and SCR with increased RIS size. While Aubry et al.
consider a numerical example of the monostatic case, we
can consider our experimental contribution as a bistatic
case. The authors consider conventional radar signal
processing in their formulations, whereas we consider the
range extension of an ambient sensing-based activity
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monitoring system where the transmitter and receiver are
located at opposing sides of a blockage.
To manipulate the wireless channel, we have utilised in

this work an RIS testbed with high resolution beam-
steering capability in the azimuthal plane. This device was
recently shown to offer significant indoor coverage
enhancement performance when deployed in Non-LOS
communication scenarios18. This RIS consists of many
connected columns of sub-wavelength unit cells, with a
near-3 bit phase resolution provided by integration of 3
PIN diodes within each unit cell. The RIS is controllable
remotely over a WiFi link, such that it can be easily
integrated into existing network infrastructure.
In this work, a novel concept of IWW is presented

wherein the limitations of Non-LOS microwave sensing
are overcome by utilising RIS and AI. Two complex
environments are considered wherein transmitter and
receiver are either in separate corridors or placed on dif-
ferent floors of a building. In each scenario, three different
body postures are considered, namely sitting, standing,
and walking. Different machine learning algorithms are
investigated to correctly classify the considered body
postures in RIS and without RIS settings. To the best of
authors’ knowledge, RIS has not been considered to
monitor activities of a target elsewhere in the literature in
corridor junction and multi-floor scenarios. Moreover, the
ultimate goal of this study is to investigate the capabilities
of RIS in extending the useful range of real-time activity
monitoring systems for facilitating independent living.

Results
This section highlights the performance of considered

machine learning algorithms in both scenarios (corridor

junction and multi-floor) with and without RIS. The
performance of both evaluation techniques (RS) k-fold
cross validations and train-test split is presented in this
section.

Corridor junction scenario
First of all, the evaluation of three machine learning

algorithm, i.e. Random Forest (RF), Extra Trees (ET) and
Multilayer Perceptrons (MLP) in corridor junction sce-
nario is presented in Tables 1 and 2. In particular, Table 1
depicts the results of test-train evaluation technique. It
can be observed from the table that the accuracy of
individual participants (i.e. S1 and S2) reaches 100% while
RIS is on and Tx and Rx are forming a virtual commu-
nication link via RIS. Turning on RIS gives 25% accuracy
gain with MLP algorithm on S2, which gives only 75%
accuracy while RIS is off. The combined accuracy of both
participants (S1+S2) is 100% using RF algorithm when
RIS is on, while the classification accuracy of this algo-
rithm is only 75% when RIS is turned off.
Similarly, Table 2 presents the classification accuracy of

the same machine learning algorithms in corridor junc-
tion scenario considering (RS) k-fold cross-validation.
Again here, RIS gives significant performance improve-
ment over conventional microwave sensing (RIS-off). The
accuracy of individual participants is 100% for RF and ET
algorithms, while combined dataset generates 91.47%
classification accuracy using ET algorithm. The maximum
accuracy gain in the cross validation method over con-
ventional microwave sensing (RIS-off) is around 20% on
S1 dataset using MLP algorithm.
Further, Fig. 1 illustrates the confusion matrix of ET

algorithm in classifying all seven classes, i.e. sitting,

Table 1 Classification accuracy of machine learning algorithms in corridor junction scenario using test-train evaluation
method.

S.No Algorithms RIS-off (S1) RIS-on (S1) RIS-off (S2) RIS-on (S2) RIS-off (S1+S2) RIS-on (S1+S2)

1 RF 93.75 100 93.75 100 75.00 100

2 ET 93.75 100 95.47 100 71.87 96.87

3 MLP 93.75 100 75.00 100 75.00 87.50

Table 2 Classification accuracy of machine learning algorithms in corridor junction scenario using repeated stratified k-
fold validation.

S.No Algorithms RIS-off (S1) RIS-on (S1) RIS-off (S2) RIS-on (S2) RIS-off (S1+S2) RIS-on (S1+S2)

1 RF 85.66 100 91.10 100 81.80 89.58

2 ET 90.81 100 94.27 100 83.53 91.47

3 MLP 80.23 99.58 86.01 97.38 75.04 89.95
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standing, and walking of both participants and empty.
Figure 1a represents the normalised confusion matrix
while RIS is off and Fig. 1b represents the normalised
confusion matrix while RIS is on. It can be noted from the
confusion matrix that while RIS is off only a few classes
are rightly classified. Further, walking activities of both
participants are mostly wrongly classified. On the other
hand, once Tx and Rx create a virtual LOS link via RIS,
the classification accuracy increases for all classes
(Fig. 1a). The maximum wrongly classified accuracy is for
sitting activity of S1, which has only 20% incorrect clas-
sification. Rest all classes shown 100% classification
accuracy with RIS-on.

Multi-floor scenario
The evaluation results of the same three machine

learning algorithms in multi-floor scenario are presented

in Tables 3 and 4. While Table 3 depicts the classification
accuracy of test-train evaluation method, Table 4 does
the same for (RS) k-fold cross validation technique. It can
be noted from both tables that while RIS is off, i.e. there is
no LOS link between Tx and Rx, the classification
accuracy is poor for individual participants and on the
combined dataset. For instance, the classification of as
low as 51.42% is observed on combined dataset with RF
algorithm and test-train evaluation model. While an
accuracy of only 51.38% is observed for the same algo-
rithm on the same dataset with (RS) k-fold cross valida-
tion model. When optimised, the RIS significantly
increases the classification accuracy in all cases. For
instance, the maximum classification accuracy of 86.52%
is observed on S2 dataset with an accuracy gain of more
than 11%. This verifies the idea of detection resolution
increase with RIS in both cases.
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Fig. 1 Normalised confusion matrix of combined data samples in corridor junction scenario using train test evaluation method. a RIS-off
scenario, where many classes are wrongly classified. b RIS-on scenario, where majority of the classes are correctly classified.

Table 3 Classification accuracy of machine learning algorithms in multi-floor scenario using test-train evaluation
method.

S.No Algorithms RIS-off (S1) RIS-on (S1) RIS-off (S2) RIS-on (S2) RIS-off (S1+S2) RIS-on (S1+S2)

1 RF 63.00 82.50 70.00 79.5 51.42 72.14

2 ET 70 92.50 80.00 85.00 54.28 81.42

3 MLP 62.50 57.50 77.50 91.66 52.85 54.28

Table 4 Classification accuracy of machine learning algorithms in multi-floor scenario using repeated stratified k-fold
validation.

S.No Algorithms RIS-off (S1) RIS-on (S1) RIS-off (S2) RIS-on (S2) RIS-off (S1+S2) RIS-on (S1+S2)

1 RF 57.79 78.51 73.74 84.86 51.38 69.25

2 ET 64.01 84.28 75.39 86.52 55.67 85.71

3 MLP 62.63 65.54 73.89 79.92 52.25 49.59
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Similarly, Fig. 2 illustrates confusion matrix of ET
algorithm in classifying the same seven classes. Figure 2a
represents the normalised confusion matrix while RIS is
off and Fig. 2b represents the normalised confusion
matrix while RIS is on. It can be noted from the confusion
matrix that while RIS is off only few classes are rightly
classified. Further, walking and standing activities of S2
are mostly wrongly classified. On the other hand, once
RIS is turned on, the classification accuracy increases for
all classes (Fig. 2b). In this case, the maximum wrongly
classified accuracy is for sitting activity of S2, which has
26% incorrect classification.
Figure 3 represents the accuracy difference among all

considered algorithms on both multi-floor and corridor
junction scenarios with RIS-off and RIS-on. The differ-
ence is calculated on the combined dataset. The difference
is calculated by subtracting the accuracy of RIS-off from
the accuracy of RIS-on. It can be noted that the values of
all bars are positive, which verifies that the RIS always
increases the detection accuracy in both considered
environments, i.e. corridor junction and multi-floor. The
maximum difference is for ET algorithm in multi-floor
scenario, which shows that exploiting RIS in multi-floor
scenario increases the classification accuracy by more
than 25%. This accuracy increase is due to the beam-
forming capabilities of RIS, which results in getting more
reflection from the body of the participant and increases
the detection accuracy.

Discussion
The RIS utilised in this work is based on the unit cell

recently published by ref. 19 and is depicted in Fig. 4. The
unit cell dimensions can be found in Table 5. The unit
cells consist of five copper patches connected by three
PIN diodes and a capacitor. The patches are etched onto a
grounded F4BM-2 dielectric substrate with relative

permittivity ϵ= 2.65 and loss tangent tanδ= 0.001.
Referring to Fig. 4, the patches are connected to neigh-
bouring unit cells at the top and bottom in order to
reduce the configuration network complexity at the cost
of reflection control in elevation.
The local reflection response for each unit cell can be

changed by varying the respective PIN diode biasing
states. Between adjacent patches, a forward-biased PIN
diode acts as a small series resistance, whereas a reverse-
biased PIN diode acts as a series capacitor. With the three
PIN diodes, eight biasing combinations are available,
denoted as binary values 000 to 111 in Fig. 4d. The
reverse-biased state in this design is achieved as a 0V
control voltage, whereas the forward-biased state is
~0.85 V with a 3 mA forward current. The capacitor,
operating at its self-resonant frequency, provides a near-
short circuit at the operating frequency of 3.75 GHz whilst
isolating the DC bias signal paths. The patch dimensions
were optimised to maximise the phase resolution of the
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set of reflection responses. For this design, seven distinct
reflection phase states are available, with two of the eight
biasing combinations exhibiting a similar response (i.e.
011 and 111).
The fabricated prototype is shown in Fig. 5b and con-

sists of an arrangement of 48 × 48 unit cell elements,
connected in columns of 12 (i.e. 4 rows, 48 columns long).

The RIS dimensions are 1.08 m in width and 0.72 m in
height or 13.5λ × 9λ at 3.75 GHz. The PIN diodes on the
unit cells receive bias voltages from a network of shift
registers on the back of the RIS. An RIS control link is
facilitated by a WiFi link to a Raspberry Pi single-board
computer. Configurations from a PC are sent over a
socket connection, converted into a binary stream, and
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Table 5 Dimensions for multi-bit unit cell design.

Parameter Periodicity, PxPy Patch width, W1 to W5 Patch spacing, g1 to g4 Substrate thickness, h

Dimension (mm) 22.5, 15.0 6.0, 0.9, 0.5, 6.0, 2.9 0.9, 0.4, 1.0, 0.4 5.0
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parallelised to the RIS shift registers via an FPGA. Alter-
natively, to reduce configuration time, RIS configurations
can be pre-loaded into the FPGA’s flash memory.

RIS configuration algorithm
The physical behaviour of an RIS can be explained by

Huygen’s principle20. In response to an incident EM wave,
each unit cell element can be treated as a source of a
spherical wave, whose phase relationship to adjacent
sources is determined by the reradiation properties of the
RIS unit cells. The received power at a point in space, as
thoroughly outlined by ref. 21, is proportional to the
superposition of the reradiated wave components from
the set of N ×M unit cells each with lateral dimensions dx
by dy, satisfying the relationship:

Pr / Pt
GtGrdxdyλ

2

64π3
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Γn;m
rtn;mr

r
n;m

exp �j
2π
λ
½rtn;m þ rrn;m�

� �������

������

2

ð1Þ
with Gr, Gt, Pt, and λ the Rx antenna gain, Tx antenna
gain, transmit power, and free-space wavelength, respec-
tively. rtn;m and rrn;m are the respective distances between
unit cell (n,m) and the Tx and Rx antennas. The local
reflection coefficients, Γn;m 2 ½ρ1ejϕ1 ; :::; ρ8e

jϕ8 �, account
for the complex reflection responses of the constituent
unit cells, each of which if set to one of the eight available
biasing states. Equation (1) should contain a term
accounting for the Tx and Rx antenna beam patterns, as
well as the unit cell reception and reradiation patterns
proportional to the unit cell area21.
To maximise the power intercepted by the Rx, it can be

seen from eq. (1) that the phases of the many paths via the
set of RIS unit cells should add coherently at the Rx
antenna. However, due to the phase-dependent magni-
tude of the unit cell reflection behaviour, it may not
always be the optimal choice to select the reflection states

which provide this phase coherence alone22. In this work,
we employ an adaptive optics-based RIS optimisation
algorithm in a similar fashion to ref. 23. During the opti-
misation stage, all unit cell are initially set to an unbiased
state. The bias states of the top-left column of the RIS are
iterated through and the power at Rx is sampled for each
one. This is followed by setting the first column grouping
(i.e. the first grouping of 12 unit cells in the top row) to
the state which resulted in the highest received power.
This is repeated for the remaining columns, holding the
subsequent columns fixed at the states which resulted in
the highest power. Although very basic and likely much
more computationally expensive than many of the pro-
posed RIS optimisation techniques24, this algorithm is
easy to employ and is guaranteed to converge25.

Materials and methods
This section explains the considered experimental sce-

narios and the hardware and software details of the
complete experimental setup used in these scenarios.

Experiment setup
Two Non-LOS environments are considered where

conventional microwave sensing does not perform well.
One is at a right-angled corridor junction, where Tx and
Rx do not have any direct communication link. The sec-
ond scenario involved propagation across multiple floors,
where the Tx was placed on the third floor of an office
building, whilst the Rx was situated on the first floor.

Corridor junction scenario
The corridor junction experiment was carried out in a

corridor junction, as depicted in Fig. 6, where Tx and Rx are
located in adjacent corridors. The Tx consisted of a Uni-
versal Software Radio Peripheral (USRP) X300 connected to
a standard gain horn antenna with 10 dB gain. The Rx
consisted of a USRP X310 connected to a monopole

RIS

RIS

668 669 670 671

RIS
Rx

Tx

Tx
RIS

Rx

10
 m

Activity
zone

Activity zone

y

x

20 m

Fig. 6 Corridor junction experiment setup. Transmitter and receiver form a virtual line of sight link via the RIS placed at the corridor junction.
Dashed lines indicate the activity zone in which the experiments were performed.
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antenna with 2 dB gain. To ensure maximum interaction
with the horizontally-polarised RIS, both antennas were
arranged in a horizontally polarised configuration. Laptop
PCs were utilised at the Tx and Rx sides to perform signal
processing on the baseband USRP signals via GNURadio
Companion (GRC). These were connected to the respective
USRPs via an ethernet connection.
The activities (sitting, standing, and walking) were

performed between Tx and RIS, as indicated by Activity
Zone in Fig. 6. Network equipment arranged in this
manner results in a Non-LOS channel whose channel
characteristics are highly dependent on the Rx position
and frequency of operation26. If an RIS is strategically
placed at the junction, such that a line of sight to the RIS
is achievable for the Rx and Tx, then a reliable wireless
communication link can be established by optimising the
anomalous reflection characteristics of the RIS25. The Tx-
RIS and RIS-Rx distances were 20m and 10m, respec-
tively. Activity zone consists of a 5 m by 1m area situated
halfway between the Tx and RIS in a corridor of width
3.3 m.

Multi-floor scenario
The multi-floor experiment was carried out at the

University of Glasgow’s Engineering building. The Tx was
placed on the third floor and the RIS and Rx were placed
on the first floor as depicted in Fig. 7. Similar to the
corridor junction scenario, Tx consisted of a USRP X300
connected to a standard gain horn antenna with 10 dB
gain. However, due to the large channel loss, the Rx
consisted of a USRP X310 connected instead to an iden-
tical horn antenna to the Tx. Both antennas were

arranged in a horizontal polarisation to ensure matching
with horizontally-polarised RIS.
In this scenario, activities were performed at first floor

in the activity zone between RIS and Rx as indicated in
Fig. 7. Firstly, a reliable communication link was estab-
lished between Tx and Rx through RIS. The RIS was
placed on the first floor with a LoS to the Rx. The Tx to
RIS path is via two windows from a mezzanine on the 3rd
floor to the area labelled common room on the first floor.
Activities were performed between the RIS and the Rx in a
5m by 1 m area situated 8m from the Rx.
Each laptop is equipped with Intel(R) Core (TM)

i7−7700 3.60 GHz processor with 16 GB RAM. The
operating system was Ubuntu 16.04, which was installed
as a virtual machine in each laptop. GRC was used to
communicate with the USRPs on Ubuntu virtual
machines, which creates flow diagrams for the USRP
function. After that, the flow diagrams were turned into
Python scripts, which were used to send data on Tx USRP
and receive data on Rx USRP. The Tx uses orthogonal
frequency division multiplexing (OFDM) to send random
numbers between 0 and 255. The transmitting signal from
the Tx USRP is received by the Rx after getting relayed
through RIS. RIS is used to direct the beam towards Rx.
The python script running on the Rx side outputs CSI as
complex numbers. The amplitude values from the CSI
complex numbers are then extracted from this output.
Table 6 lists the system’s key configuration parameters.

Data collection
The data was collected for both scenarios with two

participants (one male and one female) performing three
different activities, sitting, standing, and walking, in
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Fig. 7 Multi-floor experiment setup. Transmitter is placed on third floor while RIS and Rx are on first floor. A LOS link is established between Tx-RIS
and RIS-Rx. The activity zone is situated in a corridor section between the receiver and the RIS.
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experiment settings shown in Figs. 6 and 7. An empty
class was introduced, which represents the reflection from
the environment only in the absence of any subject in the
activity zone. The ethical approval to conduct these
experiments was obtained by the University of Glasgow’s
Research Ethics Committee (approval no.: 300200232,
300190109).
It is important to note that the activities “Sitting” and

“Standing” depict the process of conducting these activ-
ities rather than the posture or position of the individual
in the sitting or standing state. Furthermore, both sitting
and standing activity data included slight fluctuations in
upper body, as the participants were not forced to
maintain their upper bodies still and static.
For each scenario, the data were collected in two steps.

In the first step, both participants performed all activities
while RIS was on and then repeated the activities while
RIS was off. A total of 320 data samples were collected for
the corridor junction scenario, where each participant
contributed equally to the data collection that is each
participant collected 20 samples in each activity class for
RIS-on and RIS-off. The reason to include two partici-
pants was to include maximum variation in the dataset.
For similar reason, one male and one female participants
were selected. Each instance of data represents the CSI
data, where 1600 packets were transmitted in 4 s. That is
to say that each activity was finished within 4 s and the Rx
collected around 1600 CSI samples during this time.
The same data collection strategy was applied in multi-

floor scenario, where a total number of 800 data samples
were collected, with 50 data samples in each activity class.
Similarly, each activity was performed for 4 s collecting 1600
CSI samples in each activity. The details of the collected
dataset are highlighted in Table 7, where S1 represents
subject 1 and S2 is subject 2. It is worth mentioning that the
collected CSI values are in complex number format com-
promising both the amplitude and the phase information. A

python script is used to extract amplitude information from
those values and stored in comma-separated values (CSV)
files. These CSV files are then used to train and test different
machine learning algorithms after data preprocessing.
The classification of various activities is accomplished

by the degree of variation in the received signal, which
includes amplitude and phase variations. The received
signal ’y’ at the receiver can be expressed using y=Hx,
where H is the channel matrix and x is the transmitted
signal. The channel H can be further expressed as27,

H ¼ hd þ h1ΦhT2 ð2Þ

where hd is the channel from the transmitter to receiver,
h1 is the channel from the transmitter to RIS, h2 is the
channel from RIS to the receiver and T represents the
transpose. Furthermore, Φ is a tuning matrix containing
the values of phase and amplitude coefficients of
individual RIS elements. As the activity monitoring in
the proposed work is performed using an Non-LOS
scenario eliminating the direct path hd, Eq. (2) could be
summarised as follows:

H ¼ h1ΦhT2 ð3Þ

In this work, we considered the signal amplitudes only,
which are presented in Figs. 8 and 9 for RIS-on and RIS-
off, respectively, represent the CSI patterns (amplitude) of
different body movements, i.e. sitting, standing, and
walking in the corridor junction scenario. Different col-
ours in each figure represents the 64 subcarriers of the
OFDM signal. Y-axis of each sub-figure represents the
amplitude of the subcarriers while number of received
packets are displayed on x-axis. Note that the received
signal amplitude in the case of RIS-off is too low to cor-
rectly distinguish different activities. On the other hand,
turning on RIS gives significant changes in the received
signal patterns, which are unique for different activities

Table 6 Configuration parameters of USRP software and
hardware.

S.No Parameters Values

1 OFDM Subcarrier 64 carriers

2 Bit per symbol 2 bits

3 Pilot subcarrier 4

4 Devices used USRP X300/X310

5 Channel Mapping 1 Tx, 2 Rx

5 Central Frequency 3.75 GHz

7 Data type Int16

8 Gain(dB) Tx 10, Rx 2

Table 7 Collected Dataset: number of scenarios, subjects
and performed activities.

Activity Corridor Junction Multi-floor

RIS-on RIS-off RIS-on RIS-off

S1 S2 S1 S2 S1 S2 S1 S2

Empty 20 20 20 20 50 50 50 50

Sitting 20 20 20 20 50 50 50 50

Standing 20 20 20 20 50 50 50 50

Walking 20 20 20 20 50 50 50 50
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but similar for different subjects. A clear resemblance
between sitting, standing, and walking activities of S1 and
S2 can be observed in Fig. 8, which encourages the gen-
eralisation of the proposed scheme to a broad range of
users.

Data preprocessing
Once the data are collected and stored in CSV files, it is

not unusual that it has some missing data due to loss of
received packets, which requires data equalisation. We
use Scikit, a commonly used data analysis toolkit in
Python28, for data preprocessing and applying machine
learning algorithms. Furthermore, Pandas, a python
package, is used to interpret CSV files. It transforms CSV
files into python dataframes, which are subsequently
analysed with SciKit29. The labels are added in the first
column of dataframes. Due to data length miss match, not
a number (NaN) values are produced in the dataset
obtained by merging the data frames of each sample.
These NaN values are replaced with the mean of each row
by using a built in function of SciKit, called Sim-
pleImputer. It is worth mentioning that this kind of data
equalisation did not affect the overall pattern of the data.
This data after equalisation was fed to different machine
learning algorithms, namely RF, ET and MLP. These
algorithms were chosen after extensive study of various
machine learning algorithm on the dataset. The data flow
diagram of the whole process is shown in Fig. 10.

Machine learning
The proposed IWW-enabled human activity monitoring

system is evaluated using three different machine learning
algorithms. The evaluation parameter considered in our
experiment is the accuracy of successfully identifying
different body movements. The accuracy of each algo-
rithm was evaluated on individual participants’ dataset
separately and on the combined dataset. In order to have a
thorough investigation, the accuracy was measured into
two different ways, (i) k-fold cross validation and (ii) test-
train split. k-fold cross-validation is a popular method for
evaluating the performance of a machine learning algo-
rithm, where k refers to the number of groups that a given
data sample is to be split into. In our experiments, we
used a variant of k-fold cross validation that is repeated
stratified (RS) k-fold cross-validation, using scikit-learn
python ML library’s RepeatedStratifiedKFold class. In
particular, we consider (3) 10-fold cross validation, which
means that the repetition cycle is selected as 3 and cross
validation as 10.
The other evaluation approach considered in this work

is test-train split that makes predictions based on data
that has not been used to train the model. This approach
divides the dataset into two parts. The training dataset is
the first part of data to which the machine learning model
is applied. The test dataset is the second part of the
dataset that is used to evaluate the performance. In this
work, 80% of the data is used for training and 20% for
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testing. The parameters used to train the classifiers are
listed in Table 8.

System generalisation
The activity monitoring problem can be classified into

two types: macro activities and micro activities, where
macro activities contain significant movements resulting
in distinct variations in the received signal. This includes
sitting, standing, walking, running and any other day-to-
day activities. On the other hand, the micro activities
induce variation on an exceedingly small scale and the
proposed model would require some changes such as
using mm-wave frequency to obtain higher resolution,
which can be obtained by scalability of current system.
Micro activities might include sign language with various
finger movements, lip movements, etc. The existing
model is based on the classification of macro activities and
is not tailored to be used for micro activities monitoring.
Further, the daily-life macro-activities, where the whole
body is participating in the activity, are generally limited
in number (sitting, standing, running, walking, fall, pick
up item, etc.) and are commonly distinct. Hence the
proposed system can be easily generalised to include any
macro-movements.
Further, the problem of muti-person activity monitoring

with RF sensing has been addressed in one of our previous
works3, which was the first 5G-enabled multi-person
activity monitoring system with 4 subjects in 16 unique
activity combinations. The proposed system combined
the subject count and activities performed in different
classes together, resulting in simultaneous identification
of the occupancy count and activities performed. The
proposed system3 worked in the LOS environment.
However, the generalisation of such a system in the Non-
LOS environment using RIS is possible, and is left for the
future work.
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