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Abstract—Smart building technologies transform buildings
into agile, sustainable, and health-conscious ecosystems by lever-
aging IoT platforms. In this regard, we have developed a
Persuasive Energy Conscious Network (PECN) at the University
of Glasgow to understand the user-centric energy consumption
patterns in an agile workspace. PECN consists of desk-level
energy monitoring sensors that enable us to develop user-centric
models that characterizes the normal energy usage behavior of
an office occupant. In this study, we make use of staked long
short-term memory (LSTM) to forecast future energy demands.
Moreover, we employed statistical techniques to automate the
detection of anomalous power consumption patterns. Our ex-
perimental results indicate that post-anomaly resolution leads to
6.37% improvement in forecasting accuracy.

Index Terms—LSTM, Short term load forecasting, Time series
forecasting, Agile workplace, COVID-19.

I. INTRODUCTION

Cheap and uninterrupted energy supply has a significant im-
pact on the socio-economic development of a country. Various
studies directly relate energy consumption with technological
advancements, economic growth, and high living standards [1],
[2]. Electrical energy is one of the main sources of energy
whose demand is increasing at an exponential rate. Maintain-
ing the ever increasing energy demand comes at the cost of
higher carbon emissions caused by the sources to generate
electricity. According to the report of the International Energy
Agency (IEA), 63.1 % of global electricity generation comes
from combustible fuels which are quite alarming, keeping the
current environmental concerns in view [3]. Therefore, energy
usage optimisation is essential to reduce the dependence on
fossil fuels and contribute to meeting zero net emissions (ZNE)
targets.

The interconnection of information communication tech-
nologies (ICT), advanced metering infrastructure (AMI), and
the internet of things (IoT) is term as the smart grid. The
overall electrical power system is quite complex, involving
multiple stakeholders including energy producers, distributors,
utilities and consumers [4]. Furthermore, the electricity energy
market is highly competitive and deregulated which requires
efficient energy management schemes to ensure reliability,
operations and consumer satisfaction [5]. This task can be
achieved by exploiting the data generated by different stake-
holders using ICT and AMI. For instance, a historic load
profile can be used for short-term load forecasting (STLF) at

both the supply side and consumer level, enabling the real-time
fine grain consumption monitoring [6]. On the supply side,
STLF is used for obtaining the regional aggregated energy
profile which helps in energy dispatch, schedule maintenance,
and smooth operations. Furthermore, predicted load is also
used to devise effective energy management schemes to ensure
the demand and supply equilibrium and reduce the per-unit
generation cost [3], [5]. STLF for individual consumers is very
essential as it provides insights on their consumption patterns
necessary for scheduling daily activities based on the time of
use pricing mechanism. This is despite it being a very chal-
lenging task due to the random behaviour, residents’ habits,
and unusual seasonal variations. Furthermore, the consumers
are getting more energy aware and conscious about their
energy consumption behaviour. Moreover, the current building
sector is also moving towards smart buildings to optimise
the energy usage and promote efficient energy consumption
practices which can be reinforced by real-time monitoring
using STLF.

Building sector is one of the major electrical consumer with
the global share of approximately 38-40%. According to IEA,
the building energy consumption will kept on increasing on an
average of approximately 1.3% annually [7]. The significant
amount energy in smart building is consumed by heating
and cooling system, security and surveillance system, water
and lighting. With the global NZE policy, the current effects
are more focused on fulfilling the requirements for energy-
efficient buildings by guaranteeing the operative needs with
minimum energy cost and more environment friendly sources
[8]. The recent Covid-19 pandemic has caused the unprece-
dented changes in life style of individual, influencing the
energy market as well, especially smart buildings. For instance,
in big organisation and universities, individuals preferred to
work from home due to restriction, results in drastic change
in energy consumption patterns. Furthermore, in recent times,
a new concept of agile work space has emerged where no spe-
cific space is allotted to individual to use work space efficiently
[9]. The agile work space setup has introduced the additional
complexity, resulting in more random energy consumption
patterns which make STLF even more challenging.

Keeping the agile working space in our mind, we have
deployed a persuasive energy conscious network (PECN) at
the James Watt School of Engineering, University of Glasgow



(UofG). The PECN consists of LoRaWan-enabled IoT nodes
(smart energy sensors) that captures the desk level hourly load
profile and store the data on a cloud server placed at UofG. The
idea of PECN is to merge IoT and smart sensing technologies
to capture the energy pattern in the agile workspace and
use this data to influence user consumption behaviour. The
first step is to develop a STLF model, generating proactive
load curves for real-time monitoring. In this paper, we have
exploited the PECN data and developed a STLF model using
LSTM, and compared the results with feed forward network,
convolutional, and bi-directional neural network. Furthermore,
we have also developed an anomaly detection mechanism to
filter the outliers, resulting in improved forecast results. The
key contributions of this paper are highlighted below:

• We have developed an energy monitoring setup by merg-
ing the IoT and smart sensing technologies to collect the
desk-level information in an agile work space.

• Developed a zone level anomaly detection mechanism for
data filtering and LSTM based STLF model for hourly
load prediction in agile work space.

II. TEST BED AND DATA ACQUISITION

The PECN testbed is currently operational at the University
of Glasgow, UK and it is monitoring and displaying the energy
consumption habits of individuals to persuade them and alter
their energy usage behaviours in ways that may be financially
and environmentally beneficial. This testbed consists of twenty
LoRaWan-enabled smart sensors installed in different studying
desks in two zones, 12 sensors in zone 1 and 8 in zone
2, as illustrated in Fig.1. The sensors continuously report
the electricity-related information to the multi-access edge
computing (MEC) server through the LoRa WAN gateways.
In addition, these sensors have actuating capability to perform
remote controlling. Raw data is collected from smart nodes and
transmitted through LoRaWAN to a LoRa Gateway provided
by IoT Scotland, situated in the Communications, Sensing,
and Imaging (CSI) lab. LoRa Gateway is connected to the IoT
Boston server, also provided by IoT Scotland via 5G backhaul
link. IoT Boston server is not being used to store any data,
it is just a passageway of data packets to the MQTT public
server. A topic (labeling of incoming data packets) is created
at the MQTT server, and a corresponding URL is generated.
Now data is pushed to MEC server where data is received by
Node Red software, a java-based application. At Node Red
the created topic is subscribed, and a flow is created. Then
the following information is retrieved:

1) Active energy (Wh)
2) Reactive energy (VARh)
3) Voltage (V)
4) Frequency (Hz)
5) CO2 footprint
6) Occupancy
The retrieved data set is then stored in tabular form in

InfluxDB. Grafana Dashboard is then used to display the stored
data. The data acquisition process is depicted graphically in
Fig 2.

MEC Server

Smart energy 

sensor

LoRa GW

Zone 1 Zone 2

Fig. 1. Illustrative diagram of the PECN project and how the smart energy
sensors are connected with the MEC server.

Fig. 2. Data acquisition in PECN testbed.

The two zones are considered agile workspace, which means
the desks are not dedicated to a specific person. Therefore, this
working mechanism will add more privacy to the collected
data as usage habits can not be linked to specific individuals.
In this work, we focus on STLF, thus the received data is
accumulated in hourly time resolution and then fed to the ML
algorithms to predict the energy consumption patterns.

The dataset used in this study covers the time period from 15
October 2021 to 2 March 2022 consisting of 138 days. Fig.
3 shows more details about the energy dataset for different
time resolutions. Fig. 3(a), shows the raw data which we
feed to the ML model. It contains 3033 samples collected on
an hourly basis. The average energy consumption throughout
the days is plotted in Fig. 3(b). It can be seen that zone 1
consumed more energy than zone 2. Daily aggregated and
average monthly consumed energy is illustrated in Figs. 3(c)
and (d), respectively.

It is worth noticing that zone 1 has high valued outliers than
zone 2. The augmented ducky fuller test showed that p-values
for zone 1 and zone 2 are 0.000040 and zero, respectively.
Since the p-value is less than 0.05, it means that both collected
datasets of zone 1 and zone 2 are stationary and have no time



Fig. 3. Data characteristics for different time resolutions. (a) Hourly aggre-
gated energy data samples, (b) average energy consumption for one day, (c)
daily aggregated energy consumption, (d) average energy consumption for
each weekday.

decencies. To check the randomness of collated data Ljung-
Box test was performed, results showed that the data does
contain an autocorrelation. The trend of collected data was
checked with the Mann-Kendall test using pyMannKendall
package [10], and results are depicted in 4, where energy
consumption is represented with blue color and trend is shown
with orange color. The test results showed that the trend slop
and intercept of zone 2 are zero while the trend slop of zone
1 is 0.008 and the intercept is 46.16. To observe outliers in

Fig. 4. Trend of zone 1 and zone 2.

Fig. 5. Outlier visualisation in zone 1 and zone 2.

both zones, the boxplot is resented in Fig. 5 . It can be clearly
seen that zone 1 has the high number of outliers.

Hence, it is clear that the collected samples have no trends,
and the randomness exists, which is attributed to the fact that
few students were visiting these zones at irregular times due to
the situation of the COVID-19 pandemic. Accordingly, energy
forecasting will be more challenging and require careful ML
model selection and hyperparameter tuning.

III. SHORT-TERM LOAD FORECASTING

A time series is described as a succession of values that
are arranged sequentially and observed across time [11]. For a
long time, linear statistical approaches such as ARIMA models
have had an impact on time series forecasting. However, by
the 1980s, it had become evident that linear models could not
forecast time series for real applications [12]. In the meantime
multiple new models started to emerge such as bilinear model
[13], the threshold auto regressive [14], auto regressive con-
ditional heteroscedastic (ARCH) model [15]. ML techniques
have gained traction in the forecasting community during the
last two decades and have established themselves as genuine
competitors to traditional statistical models [12]. The results of
Werbos’ studies show that Artificial Neural Networks (ANNs)
outperform classical statistical methods like linear regression
and Box-Jenkins analysis [16].

In neural network time series forecasting a specific number
of samples, known as call back window, are fed to the model,
and the model predicts future values. A simplest example can
be, feeding the past two values to the model and predicting a



future value. Recurrent neural networks (RNNs) have histor-
ically been used in time series problems [17]. The network’s
delay recursion property of an RNN allows it to represent the
dynamic performance of systems [18]. Furthermore, RNNs
save a vector of activations for each time step, making the
RNN an extraordinarily deep neural network [19]. However,
because of the exploding and vanishing gradient problems, it
is generally difficult to train RNNs to learn long-term relation-
ships in time series data. [20] [21]. LSTM was developed to
tackle this problem by improving gradient flow in the network.
It is achieved by introducing a block in the cell that retains
long-term memory [22]. The input gate, output gate, forget
gate, and self-recurrent neuron are the four gates (or units) that
make up an LSTM memory cell. The input gate determines
whether the input signal can influence the result of the memory
cell. The output gate, on the other hand, selects whether it
can change the state of other memory cells. The forget gate,
has the flexibility of remembering (or forgetting) its previous
condition [23] [24].

In this paper, an LSTM network was used for short-term
energy prediction. Research studies have demonstrated that
increasing the depth of a neural network can improve its
performance [25], hence a stacked LSTM network containing
three LSTM layers, one dropout layer, and one output layer
was created, as shown in Fig. 6.

For the construction of the LSTM network, the Keras library
was used [26]. The first LSTM layers had 100 units, followed
by a dropout layer, used to tackle the problems of overfitting.
The dropout layer was further connected to the LSTM layer
of 50 units and then to another LSTM layer of 32 units.
In the end, a dense layer was added as the output layer.
The performance of the created neural network was evaluated
based on Mean Absolute Percentage Error (MAPE), which can
be calculated as:

MAPE =
1

n

t=1∑
n

∣∣∣∣At − Ft

At

∣∣∣∣ (1)

where At is actual value, Ft is foretasted value and n is total
number of iterations. It is worth mentioning that the MAPE is
independent of system capacity and the unit of measurement,
it may be the only error metric that can be used to compare
forecasting performance between various utilities [27].

The data set consists of Wh energy values is used, as
graphically illustrated in Fig. 3(a). During the experimentation
call-back window of 2 to 24 previous values was considered
to forecast one future value, however, optimal results were
obtained using the past two values.

To perform cross-validation the train-test split method was
implemented where seventy percent of the data was used as
training and thirty percent used as testing. Experiment results
showed that a MAPE of 13.77% was achieved from zone 1
and 12.30% from zone 2. The predicted and original curves
for zone 1 and zone 2 are drawn in Fig. 7 and 8, respectively.
Our experimental results showed energy curves of zone 2 can
be foretasted with a lower MAPE, of 12.30%, because we

LSTM (100 units)

Dropout layer (0.2)

LSTM (50 units)

LSTM (30 units)

Output layer(Dense layer)

Pre
Precessed

Input

Fig. 6. Designed neural network

have observed that zone 1 has a higher number of outliers
and anomalies as compared to zone 2 (Fig. 3(a).

Fig. 7. Energy forecasting of zone 1.

Fig. 8. Energy forecasting of zone 2.

The results of the LSTM neural network were compared
with feed forward, convolutional and bi-directional LSTM
neural networks. After an exhaustive set of simulations, it was
found that the feed forward neural network provided a MAPE
of 41.94% and 37.3% for zone 1 and zone 2, respectively.
The convolutional neural network surpassed the feed forward
network, with MAPE of 28.08% and 34.27% for zones 1
and 2, respectively. The bidirectional neural network did not
outperform the convolutional neural network; it only generated
a MAPE of 42% and 35% for zone 1 and zone 2, respectively.



IV. ANOMALY IDENTIFICATION

An anomaly can be defined as anything inconsistent from
the rest of the data set [28]. Anomaly detection is performed
in many applications such as energy forecasting [29] [30],
grouping of load patterns [31], load data cleaning [32] and
gas demand forecasting [33]. The anomalies in zone 1 and
zone 2 can be categorised as point anomalies, also known as
outliers [34]. Since the collected data falls under the category
of stationary time series, non-regressive approaches [35] such
as z-score can be used [36]. This method has been utilised
in detection of anomalies in many applications such as [37],
[38], [39]. Z-score can be calculated as:

Z =
xi − µ

σ
(2)

where Z stands for z-score, xi is data value at ith point
and σ represents standard deviation. Given the random nature
of the data Z of 5 was considered. After passing the data
through anomaly removal criteria, described above, 14 and
30 anomalous points were detected from zone 1 and zone
2, respectively. Anomalous points from zone 1 and zone 2
are presented in Fig. 9 and in Fig. 10, respectively, here red
dots represent anomalies and a black dotted line is drawn to
separate train and test data.

After anomaly detection of zone 1 and zone 2, data was
again fed to the designed neural network to forecast future
values. Since the best results were obtained from LSTM
networks, so here only LSTM is considered. Post anomaly
forecasting of zone 1 showed that MAPE decreased from
13.77% to 10.92% and in zone 2 MAPE decreased from
12.30% to 5.93%. Post anomaly original and foretasted for
zone 1 and zone 2 curves are presented in Fig. 11 and Fig.
12, respectively. The experimental results are summarized in
Table I, here feed forwarded, convolutional, and bidirectional
LSTM neural networks are represented by FF, Conv, and Bi-
LSTM, respectively.

Fig. 9. Anomaly detection in Zone 1.

V. CONCLUSIONS

Energy forecasting is a difficult task in an agile environment.
To obtain user-centric information on energy consumption
Persuasive Energy Conscious Network (PECN) testbed was
created during the pandemic at the University of Glasgow,
UK. The PECN testbed collects energy consumption from

Fig. 10. Anomaly detection in Zone 2.

Fig. 11. Post anomaly STL forecasting of Zone 1.

two different zones operating as agile workspace meaning that
anyone can sit anywhere throughout the day. In this paper,
we performed short-term energy forecasting and anomaly
detection. A stacked LSTM neural network with three LSTM
layers was used for energy forecasting. The result of the
designed LSTM network was compared with feed forward,
convolutional and bidirectional LSTM networks. The results
of a comprehensive set of simulations showed that LSTM
outperformed all other neural networks. Results indicated that

Fig. 12. Post anomaly STL forecasting of Zone 2.

TABLE I
PERCENTAGE MAPE

Zone
Neural Net. FF Conv LSTM Bi-LSTM Post anomaly LSTM

Zone 1 41.49 28.08 13.77 42 10.92
Zone 2 37.3 34.27 12.30 35 5.93



the designed neural network was better able to forecast energy
in zone 2 with MAPE of 12.30 % compared to zone 1 with
MAPE of 13.77 % because zone 1 contained outliers with
high energy consumption points. To overcome this problem,
anomaly detection was done using a z-score model. Z-score
> 5 indicated 14 and 30 anomalous points in zone 1 and zone
2, respectively. After anomaly reduction, the MAPE of zone 1
and zone 2 was reduced to 10.92% from 5.93%, respectively.
In our future work, we plan to expand this work and exploit
federated learning; a decentralised model training mechanism
without sharing the data. Furthermore, our idea is to introduce
a feedback mechanism in one of the zones to intervene in the
inefficient energy consumption behaviour. Moreover, as the
pandemic restriction is relaxing and we expect full capacity
in both zones which provides us the opportunity to study the
energy consumption behaviour of individuals post Covid-19.
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