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Abstract

As a new form of digital asset based on blockchain technology, the cryptocurrency has received increasing attention
from researchers and practitioners. However, less attention has been paid to their joint dynamics from the perspective
of portfolio management. This paper investigates the dependence dynamics across four major cryptocurrencies and
their economic importance in portfolio management using the data from January 2014 to June 2020. Our empirical
analysis shows that significant economic gains can be obtained from modelling dynamic asymmetric dependence
among cryptocurrencies. We show that our results are robust to the period of the recent market fluctuations caused
by COVID-19.
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1. Introduction

Cryptocurrencies are digital currencies not backed by real assets or tangible securities but instead are based on
the security of an algorithm. The cryptocurrency prices are highly volatile compared with the traditional assets.
With the rapid growth and increasing importance of the cryptocurrency market, a growing number of studies have
been conducted in recent years. This paper is motivated by three streams of literature on the cryptocurrency market.
The first stream of literature focuses on the market integration in the cryptocurrency market, such as (Bouri et al.,
2021; Ji et al., 2019; Corbet et al., 2020c). Limited attention has been paid to the non-linear dependence, especially
tail dependence among the various cryptocurrencies. Thus, one primary object of this paper is to model the joint
dynamics among cryptocurrencies.

This paper is also motivated by another stream of literature focusing on the portfolio management in the cryp-
tocurrency market, including investment strategies in cryptocurrency (Corbet et al., 2019a), and its diversification
benefits (Corbet et al., 2018a,b; Guesmi et al., 2019; Shahzad et al., 2019; Bouri et al., 2020). Therefore, another
object of this paper is to apply a copula approach to model the joint distribution of cryptocurrencies and then use
constant relative risk aversion (CRRA) utility functions to construct portfolios of cryptocurrencies.

The global spread of COVID-19 has had severe impacts on financial markets worldwide. The cryptocurrency
market has attracted increasing attention due to its hedging property. However, the contagion between the financial
market and cryptocurrency market is confirmed when suffering the shocks of COVID-19 (Conlon et al., 2020; Corbet
et al., 2020a,b; Vidal-Tomás, 2021). Although the cryptocurrency market is not connected with the real economy, the
price of cryptocurrencies is still related to the behaviour of the traders, such as the panic and fear of investors (Vidal-
Tomás, 2021). Motivated by this stream of literature, this paper aims to conduct a robustness test by evaluating the
performance of the cryptocurrency portfolios constructed by our copula models during the COVID-19 crisis.

Compared to the above literature, we contribute to the literature of cryptocurrency by modelling the tail depen-
dence and joint distribution of the cryptocurrencies, which could help the investors to avoid the underestimation of
the risk. It is notable that our paper confirms the existence of non-linear and asymmetric dependence between cryp-
tocurrency pairs. In addition, we propose new strategies in the cryptocurrency market, which can provide outstanding
and robust performances, especially during the COVID-19 crisis.

This paper is organized as follows. In Section 2, we discuss the data and methodology to model the tail dependence
and build the portfolios. Section 3 reports the portfolio investment results in different scenarios, and Section 4
concludes.

2. Data and methodology

2.1. Data and preliminary analysis
We choose the four most long-standing, liquid and large market cap cryptocurrencies, namely Bitcoin, Dash,

Litecoin, and XRP, which contribute almost 75% to the total market capitalization.1 Following Guesmi et al. (2019),
we collect the daily data from CoinMarketCap over the period from February 14, 2014 to June 26, 2020, totalling
2,325 daily observations. The logarithmic return of cryptocurrency i at day t in the long position is given by ri,t =
ln (pi,t+1/pi,t)× 100, where pi,t denotes the close price of cryptocurrency i at day t.

[ INSERT TABLE 1 ABOUT HERE ]

We find that four cryptocurrencies have the non-normality and auto-correlation in Table 1. Thus, we apply the
AR-GARCH model in the next subsection to model the return dynamics. The correlation matrix shows that all four
cryptocurrencies are significantly correlated at 1% level, which coincides with findings of Bouri et al. (2021). It is
interesting to investigate the tail risk connectedness in the cryptocurrency markets, because their performances during
extreme events are of great importance for investors who seek to diversify their cryptocurrency portfolios.

2.2. Return dynamics
To capture the return dynamics of cryptocurrencies, we allow each return series to have time-varying conditional

mean µi,t and variance σ2
i,t, and we also assume that the standardized returns zi,t = (ri,t − µi,t) /σi,t are identically

distributed. We apply the AR model and the GJR-GARCH(1,1,1) model to the capture the return dynamics. Given
the large values of skewness and kurtosis of cryptocurrency returns, we assume that the residual follows the skewed t
distribution of Hansen (1994). Our marginal model specifications are shown in Appendix A.

[ INSERT TABLE 2 ABOUT HERE ]

Table 2 reports parameter estimates for AR-GARCH model. The leverage effect parameter βi for Bitcoin is
significantly positive, suggesting the existence of leverage effects. This indicates that negative shocks have a stronger
impact than positive shocks. The estimates of skewness parameters show that filtered residuals of Bitcoin are negatively
skewed, while others are positively skewed, which is consistent with the results in Table 1. Our results suggest that
the skewed t distribution is suitable for modelling filtered residuals. Thus, the diagnosis provides evidences that our
marginal distribution models are well-specified.

1Notably, Bitcoin trading takes the dominant role since Dash, Litecoin, and XRP only contribute 6% to the whole market capitalization.
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2.3. Asymmetric dependence
According to Table 1, the four cryptocurrencies are significantly correlated. However, we are more interested in

their co-movements in the tail distributions, since the tail dependence which is not captured by the linear correlation
measure may lead to the underestimation of the portfolio risk.

[ INSERT TABLE 3 AND FIGURE 1 ABOUT HERE ]

First, we follow Christoffersen and Langlois (2013) to characterise the correlations between two variables in the
joint lower and upper tails. The threshold correlations are shown in Figure 1. We compare the bivariate normal
distribution correlation (dashed line) and threshold correlation (solid line) in different quantiles for six cryptocurrency
pairs. All the solid lines show considerable deviations from the dashed lines when the threshold is less than 0.5, indi-
cating that cryptocurrencies are more correlated in the lower tail. Then, we test the asymmetric tail dependence of
the cryptocurrencies by the method described in Patton (2013). The asymmetric dependence between four cryptocur-
rencies is shown in Table 3. This table reports the lower and upper tail dependence coefficients from the Student’s t
copula. The striking higher lower tail dependence confirms the finding from the threshold correlation. Both threshold
correlation and tail dependence highlight the significance of the nonlinear dependence and multivariate asymmetry of
cryptocurrencies.

2.4. Dependence structure of cryptocurrencies
After modelling marginal distributions, we focus on the cryptocurrencies dependence and estimate the parameters

of copula models. We consider three kinds of widely used copulas with different types of tail dependence, namely the
Normal copula, the Student’s t copula, and the skewed t copula of Demarta and McNeil (2005). More details about
the skewed t copula can be found in Appendix B. All the copulas are estimated using maximum likelihood estimation.

[ INSERT FIGURE 2 ABOUT HERE ]

Following Christoffersen and Langlois (2013), we rely on the dynamic conditional correlation (DCC) model of
Engle (2002) to estimate the dynamic copula correlations. We estimate the dynamic correlation for copulas using
the data from February 14, 2014 to June 26, 2020. We find that the correlations between cryptocurrency pairs vary
significantly through time (see Figure 2). The cryptocurrencies become more correlated with each other during the
period from 2018 to 2020. The notable variations in Figure 2 highlight the importance of using the dynamic copula
model to capture the evaluations of dependence between cryptocurrencies.

2.5. Portfolio construction
We start constructing investment portfolios by estimating the AR-GARCH model on each cryptocurrency using

the first 500-day returns2, and then estimate their dynamic dependence using various copula models. We re-estimate
the parameters of AR-GARCH and copula models quarterly with the expanding window following Christoffersen and
Langlois (2013). Then, we can simulate the next term returns and obtain the optimal weighting vector wt at time t,
and re-balance cryptocurrency portfolios on a daily basis. In addition, we consider the simple diversified portfolios
(the naïve 1/N portfolio) as the benchmark.3 Together, our horse race contains four optimal CRRA portfolios and
the naïve 1/N portfolio. The optimal wt could be obtained by maximizing the CRRA utility function of the investor:

U(γ) = (1− γ)−1
(
P0
(
1 + w>t rt+1

)1−γ)
, (1)

where P0 is the initial wealth which we set $1 here, rt is the vector of cryptocurrency returns at time t, wt is the
weighting vector, and γ denotes the degree of relative risk aversion (RRA). We consider three different levels of RRA:
γ = 3, 7, 10. The weighting vector for each time t is obtained by maximizing the expected utility function given
different assumptions for the cryptocurrencies joint distribution.

w∗t ≡ arg max
w∈W

Ef̂t+1

(
U
(
1 + w>t rt+1

))
= arg max

w∈W

ˆ (
1 + w>t rt+1

)1−γ

1− γ ft+1 (rt+1) drt+1, (2)

where ft+1 (rt+1) denotes the joint distribution of four cryptocurrencies. We assume that each cryptocurrency i at
time t has weight wi,t ∈ [0, 1], and the total weight of four cryptocurrencies invested is one. Note that the short-selling
is assumed to be prohibited which means all weights are positive.

2 The 500-day is a reasonably long sample period for the robust estimation of copula-based models. We also tested 1-year (365 days)
and 2-year (730 days) returns as alternative estimation periods and obtained similar results. For parsimonious reasons, we only report our
main results based on the 500-day data in this paper. The results for the 1- and 2-year periods are available upon request.

3Note that we also set initial values of the wt as 25% in the optimization of CRRA utility functions.
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3. Results

3.1. Investment results
Table 4 reports the out-of-sample performances of different portfolios over the period July 2, 2015 to June 26,

2020. We use the naïve 1/N portfolio as the benchmark, compared with the portfolios based on the multivariate
normal distribution, the Normal copula, the Student’s t copula, and the skewed t copula. The three panels in Table
4 show the investment results with different levels of risk aversion (γ = 3, 7, 10). As Equation 2 shows, a higher level
of risk aversion would lead to less variations in the estimation of the weight for each term t. CDB could measure
the diversification benefits, which takes into account higher-order moments and non-linear dependence (More details
on CBD can be found in Appendix C.). In our case, the values of daily CDB are calculated with a one-year rolling
window.

[ INSERT TABLE 4 AND FIGURE 3 ABOUT HERE ]

The left panel of Table 4 reports the results of the performance from the different portfolios without transaction
costs. The Sharpe ratios of all the CRRA portfolios are significantly higher than the naïve 1/N portfolio. The
copula model portfolios yield higher Sharpe ratios than the ones of the multivariate normal distribution model, which
indicates the economic importance of acknowledging nonlinear dependence. The CRRA portfolios are rebalanced on a
daily basis, which increase the average turnover and portfolio volatility. Although the values of CDB for copula-based
CRRA portfolios are lower than that of the naïve 1/N portfolios, all the CRRA portfolios could still manage a high
CDB (close to 0.9).4 The skewed t copula model has the highest CDB among the optimal portfolios via in Panel A.

More trading (high turnover) could increase the transaction costs and reduce the profits of portfolios. Thus, to
check the robustness of our results, we further compare the performance of all the portfolios after taking into account
transaction costs. Following the Lintilhac and Tourin (2017), we use bid-ask spread of BTC/USD exchange rate
from Bitstamp to represent the transaction costs of cryptocurrencies.5 The transaction costs, following Barroso and
Santa-Clara (2015), can be calculated from the following equation:

tci,t =
F aski,t,t+1 − F bidi,t,t+1

F aski,t,t+1 + F bidi,t,t+1
, (3)

where tci,t represents the transaction costs of cryptocurrency i at time t. F aski,t,t+1 and F bidi,t,t+1 denote the forward ask
and bid price for cryptocurrency i at time t, respectively.

The right panel of Table 4 presents the performance of portfolios that take into account transaction costs. The
CRRA portfolios experience a decrease in the annualized return and the Sharpe ratio, but they still significantly
outperform the naïve 1/N portfolio. Next, we plot the portfolio performance as well as the performance of four
cryptocurrencies using the mean-variance framework in the upper panel of Figure 3. The CRRA portfolios are
significantly benefited by modelling their dependence. The skewed t copula model (with γ = 3) yields the highest
return among all the candidates.

Overall, we find that the optimal CRRA portfolios clearly outperform the benchmark. In addition, the CRRA
portfolios based on copula models can provide better performance than the ones formed by the multivariate normal
distribution, which indicates the evidence of the non-linear correlation. The skewed t copula model yields the best
performance in terms of the Sharpe ratio, which highlights the importance of modelling the asymmetric dependence
among cryptocurrencies.

3.2. Portfolio performance during the COVID-19 pandemic
We further check whether the results are robust to sample selection by applying the above framework to the period

of the COVID-19 pandemic. Our sample of the COVID-19 crisis is from February 12, 2020 to June 26, 2020, where the
starting point is the day when the US reported the first COVID-19 case (World-Health-Organization, 2020). Since our
dataset only includes a short period of the COVID-19 pandemic, we change the frequency of the models’ estimation
from quarterly to monthly.

[ INSERT TABLE 5 ABOUT HERE ]

Table 5 reports the portfolio losses during the period of the COVID-19 pandemic. The CRRA portfolios have
smaller losses than the naïve 1/N portfolio, even considering transaction costs. The skewed t copula model shows
the best performance in the COVID-19 with the minimum loss at the each level of risk aversion. The lower panel of

4 The optimal portfolios in this paper are obtained by maximizing an investor’s CRRA utility. Christoffersen and Langlois (2013)
suggest that CRRA functions are locally mean-variance preferences. Thus, the CRRA portfolios could yield significantly higher Sharpe
ratios than the naïve 1/N portfolio. The CDB is a dynamic measure of diversification benefits that takes into account higher-order moments
and nonlinear dependence. Therefore, we mainly use the CDB to compare the performance of copula-based portfolios with the portfolios
based on the multivariate normal distribution.

5We use the same transaction costs for different cryptocurrencies for simplicity following literature (Brauneis and Mestel, 2019; Pla-
tanakis and Urquhart, 2019). The bid and ask prices are from Quandl over the period April 15, 2014 to June 26, 2020.
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Figure 3 shows that the CRRA portfolios consistently outperform the naïve 1/N portfolio in this period. Note that
the CRRA portfolios provide higher CDB than the naïve 1/N portfolio during the pandemic period. Interestingly,
the CRRA portfolios yield higher returns during the period of market upturn. In comparison, these portfolios turn
to avoid loss and provides better risk management during the period of market downturn.

4. Conclusion

This paper investigates the joint dependence across cryptocurrencies and explores the economic importance of
acknowledging their dependence in portfolio management. First, we confirm the existence of non-linear and asym-
metric dependence between cryptocurrencies. Second, we model the return dynamics and the joint distribution of
cryptocurrencies using AR-GRACH and various copulas. Finally, we use the dependence structure to identify the
optimal cryptocurrency portfolios in real-time investment.

Our analysis reveals several interesting findings. First, we verify the existence of non-linear and asymmetric
dependence between cryptocurrency pairs, which may influence not only the estimation of portfolio risk, but also the
diversification benefits. Second, we show that significant economic value can be obtained by modelling the asymmetric
and dynamic dependence between cryptocurrencies in real-time investing. Our empirical results suggest that the
optimal portfolios which consider the dynamic asymmetric dependence perform reasonably better than benchmark
portfolios. We show that our results are robust during the period of the COVID-19 pandemic.
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Table 1: Descriptive Statistics of Daily Cryptocurrencies Return

Notes: This table presents summary statistics and other results for daily returns of four cryptocurrencies over the period of February 14,
2014 to June 26, 2020, which corresponds to a sample of 2,325 observations for each series. The top panel presents summary statistics;
the second panel presents diagnostic statistics; the third panel presents the correlation matrix for four cryptocurrencies. Significance at
the 5% and 1% levels is denoted by * and **.

Bitcoin Dash Litecoin XRP
Mean 0.0011 0.0023 0.0004 0.0010
Medium 0.1387 -0.1743 -0.0087 -0.2836
Std. 0.0396 0.0758 0.0571 0.0655
Skewness -0.9045 2.8575 0.3706 2.2667
Kurtosis 15.6859 46.8488 16.5970 43.3267
Diagnostics
JB test 0.0000 0.0000 0.0000 0.0000
LB Q 0.0614 0.0006 0.0005 0.0000
LM 0.0000 0.0000 0.0000 0.0000
First-order -0.0214 -0.0013 -0.0111 0.0158
Second-order -0.0078 -0.0563* -0.0283 0.0679**
Cross Correlations
Bitcoin 1.0000
Dash 0.4365** 1.0000
Litecoin 0.6548** 0.3794** 1.0000
XRP 0.3692** 0.2097** 0.3860** 1.0000

Table 2: Estimation for Univariate Distribution

Notes: This table reports parameter estimations and model diagnostics for the AR-GARCH model with normal shocks. Panel A reports
parameter estimates from AR(0) and AR(2) models for the conditional mean; Panel B reports parameter estimates from GJR-GARCH(1,1)
models for the conditional variance; Panel C reports parameter estimates from skew t models for the distribution of the standardized
residuals; Panel D presents simulation-based p-values from two Kolmogorov-Smirnov and Cramervon Mises goodness-of-fit tests for the
models of the conditional marginal distributions. We estimate all parameters using the sample from February 14, 2014 to June 26,
2020, which corresponds to a sample of 2,325 observations for each series. The values in parenthesis represent the standard errors of the
parameters.

Bitcoin Dash Litecoin XRP
Panel A: Conditional mean
φ0 0.0011 0.0023 0.0004 0.0010

(0.0008) (0.0015) (0.0011) (0.0013)
φ1 0.0019

(0.0206)
φ2 -0.0563

(0.0206)
Panel B: Conditional variance
ω 0.0001 0.0002 0.0001 0.0003

(0.0000) (0.0001) (0.0000) (0.0001)
α 0.1126 0.2282 0.0896 0.2387

(0.0106) (0.0114) (0.0073) (0.0209)
γ 0.0722 -0.0234 -0.0122 -0.0183

(0.0092) (0.0124) (0.0065) (0.0016)
β 0.8172 0.7589 0.8661 0.7110

(0.0098) (0.0089) (0.0086) (0.0313)
Log-likelihood 4429.78 3299.65 3585.26 3632.31
Variance persistence 0.876 0.782 0.933 0.745
Panel C: Skew t density
υ 2.9485 3.2793 2.6852 2.8018
κ -0.0220 0.1203 0.0417 0.0768
Panel D: GoF tests
KS p-value 0.126 0.123 0.129 0.122
CvM p-value 0.334 0.297 0.346 0.338
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Table 3: Tests of Asymmetric Tail Dependence

Notes: This table presents the coefficient of lower tail dependence (“Lower”), the coefficient of upper tail dependence (“Upper”) and their
difference for each pair of cryptocurrencies. We estimate the tail dependence from Student’s t copula using the sample from February 14,
2014 to June 26, 2020, which correspond to a sample of 2,325 observations for each series. We use both parametric estimation methods
developed in Patton (2012). The p-values of testing a zero difference are computed by a bootstrapping with 1000 replications.

Lower Upper Difference p-value
Bitcoin-Dash 0.2851 0.0686 0.2165 0.0231
Bitcoin-Litecoin 0.5021 0.1726 0.3295 0.0174
Bitcoin-XRP 0.2723 0.0469 0.2254 0.0000
Dash-Litecoin 0.2899 0.0635 0.2264 0.0390
Dash-XRP 0.2295 0.0200 0.2095 0.0000
Litecoin-XRP 0.2878 0.0397 0.2481 0.0690
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Figure 1: Threshold Correlations Between Cryptocurrencies

Notes: This figure presents threshold correlations between four cryptocurrencies. Our sample consists of daily returns from February 14,
2014 to June 26, 2020. The continuous line represents the correlations when both cryptocurrency returns are below (above) a threshold.
The dashed line represents the threshold correlation implied by a bivariate normal distribution using the linear correlation coefficient
between two cryptocurrencies.
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Figure 2: Dynamic Correlations Implied by the skewed t Copula

Notes: This figure presents dynamic correlations between four cryptocurrencies. The correlations are implied in the skewed t copula model
on residuals of cryptocurrencies from the AR-GARCH model. Our sample consists of daily returns from February 14, 2014 to June 26,
2020.
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Figure 3: Portfolio Performance

Notes: This figure presents the mean (annualized return) and standard deviation (annualized volatility) of different portfolios. Our sample
consists of daily returns from July 2, 2015, to June 26, 2020. The red dashed line is a straight line with the slope of the highest Sharpe
ratio among all portfolios and zero intercept. Overall, there are six styles of points in this figure, representing the risk-return performance
of 1/N (naïve 1/N portfolio), Original (four cryptocurrencies), Linear (Normal distribution with linear correlation), Norm-Cop (Normal
copula), T-Cop (Student’s t copula) and Skew-Cop (Skewed t copula) portfolios. The upper panel shows the portfolio performance with
the full sample, while the lower panel reports the performance with the data during the COVID-19 pandemic. The left panel presents the
performance without the transaction cost. The right panel plots the performance with the transaction cost.
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Appendix

A. AR-GARCH model
We fit an AR model to the conditional mean

ri,t = φ0,i +
p∑
k=1

φi,kri,t−1 + εi,t, where εi,t = σi,tzi,t, (.1)

where φ0,i denotes the constant term, φ1,i denotes the coefficient of AR(1), and εi,t denotes the residuals of AR process.
We employ the GJR-GARCH(1,1,1) model to capture volatility persistence, heteroskedasticity and the leverage effect:

σ2
i,t = ωi + αiε

2
i,t−1 + βiσ

2
i,t−1 + γiε

2
i,t−1Ii,t−1, (.2)

where Ii,t−1 captures the leverage effect. Ii,t−1 = 1 if εi,t−1 < 0, and Ii,t−1 = 0 if εi,t−1 ≥ 0. βi denotes the GARCH
parameter while αi denotes the ARCH parameter.

B. Copula model
The skewed t copula model is shown below. The multivariate probability density function (PDF) of the multivariate

skewed t distribution is given by Demarta and McNeil (2005):

ft(r; v, λ,Ψ) =
2

2−(v+N)
2 K v+N

2

(√
(v + z∗>Ψ−1z∗)λ>Ψ−1λ

)
ez
∗>Ψ−1λ

Γ
(
v
2
)

(πv)
N
2 | Ψ | 12

(√
(v + z∗>Ψ−1z∗)λ>Ψ−1λ

)− v+N
2
(

1 + z∗>Ψ−1z∗

v

) v+N
2

(.3)

where v is the degree of freedom, Ψ denotes the correlation matrix, λ is the skewness parameters. N is the dimension
of data. z∗ denotes the standardized residuals from the AR-GARCH model.
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Given the PDF of the univariate and multivariate skewed t distributions, the PDF of the skewed t copula can be
derived as follows:

ct(η;λ, v,Ψ) =
2

(v−2)(N−1)
2 K v+N

2

(√
(v + z∗>Ψ−1z∗)λ>Ψ−1λ

)
ez
∗>Ψ−1λ

Γ
(
v
2
)1−N | Ψ | 12

(√
(v + z∗>Ψ−1z∗)λ>Ψ−1λ

)− v+N
2
(

1 + z∗>Ψ−1z∗

v

) v+N
2

×
N∏
j=1

(√(
v +

(
z∗j
)2
)
λ2
j

)− v+1
2
(

1 + (z∗j )2

v

) v+1
2

K v+1
2

(√(
v +

(
z∗j
)2
)
λ2
j

)
ez
∗
j
λj

(.4)

where K(·) denotes the modified Bessel function of the second kind, and z∗ = t−1
λ,v (ηi) denotes the copula shocks,

where tλ,v(ηi) is univariate skewed t distribution:

tλ,v (ηi) =
ˆ ηi

−∞

21− v+1
2 K v+1

2

(√
(v + x2)λ2

i

)
exλi

Γ
(
v
2
)√

πv
(√

(v + x2)λ2
i

)− v+1
2 (

1 + x2

v

) v+1
2

dx (.5)

However, a closed-form solution for skewed t quantile function is not available. We use simulation to obtain the
quantile estimation and employ 1,000,000 replications of the equation below. More details about the skewed t copula
can be found in Christoffersen et al. (2012) and Christoffersen and Langlois (2013).

X =
√
WZ + λW (.6)

where W follows an inverse Gamma IG(υ/2, υ/2) distribution which could be calculate from the parameter v; Z
denotes a N -dimensional normal distribution with mean 0 and correlation matrix Ψ; λ denotes a N × 1 asymmetry
parameter vector.

C. Conditional diversification benefits
We followed Christoffersen et al. (2012) to calculate the CDB of each portfolio as follows.
Firstly, we calculate the expected shortfall ES:

ESqt (Ri,t) = −E
[
Ri,t | Ri,t ≤ F−1

i,t (q)
]

(.7)

where Ri,t is the return of cryptocurrency i at term t, F−1
i,t (q) denotes the inverse cumulative distribution function

and q is the probability which we set 5% here. ESqt (Ri,t) denotes the expected shortfall of cryptocurrency i at term
t with the percentile q.

ESqt (wt) ≤
N∑
i=1

wi,tES
q
t (Ri,t) for all wt (.8)

where ESqt (wt) is the expected shortfall for the portfolios with the weight wt. Hence, we could set the upper bound
as

ESqt (wt) ≡
N∑
i=1

wi,tES
q
t (Ri,t) (.9)

as for the lower bound, we set the value at risk of the portfolio with the weight wt:

ESqt (wt) ≡ −F−1
i,t (wt, q) (.10)

where the F−1
i,t (wt, q) denotes the inverse cumulative distribution function of the portfolio with the weight wt. There-

fore, we can calculate the CDB for a portfolio using following function

CDBt (wt, q) ≡
ESqt (wt)− ESqt (wt)
ESqt (wt)− ESqt (wt)

(.11)

The higher CDB provides a better risk management.
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