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A polynomial scale transformation and improved wiener process for a 

novel lithium-ion battery performance degradation model: Remaining 

useful life performance 

Chao Fu, Qing Lv, Ming-Lang Tseng*, Xiancong Wu, Ming K. Lim 

Abstract 

This study contributes to propose a novel lithium-ion battery performance degradation model based on 

improved wiener process. The aging of lithium-ion batteries brings potential hazards to the power 

system of electric vehicles, so the health status of lithium-ion batteries needs to be evaluated. First, a 

polynomial scale transformation model is established to scale the cycle number to transform the 

nonlinear Wiener process into linear Wiener process, and model parameters are estimated by the 

maximum likelihood functions. Second, a performance degradation model based on the improved 

wiener process is constructed to estimate the remaining useful life (RUL) performance, in which the 

cumulative loss reaching the failure threshold is taken as the failure criterion. Finally, the proposed 

RUL estimation method is tested using data provided by NASA. The test results proved that the 

estimation errors of proposed model were controlled within 15%. The RUL estimation method 

proposed in this study provides a new way for the reliability evaluation of lithium-ion batteries and 

guarantees the safe operation of electric vehicle power system. 

Keywords: polynomial scale transformation; improved wiener process; performance degradation 

model; remaining useful life; Lithium-ion battery 
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1  Introduction 

At present, governments all over the world have 

formulated corresponding energy conservation and 

emission reduction plans (Liu et al., 2021, Li et al., 

2021). The electric vehicles (EVs) sales share will 

reach 18% in 2028 according to the prediction report 

of EVAdoption, and the lithium-ion battery industry 

has ushered in a new round of development 

opportunities benefited from the continuous growth of 

new energy vehicles (EVAdoption, 2019). The specific 

energy of lithium-ion batteries is the highest among the 

commercial rechargeable batteries, especially polymer 

lithium-ion batteries to realize the thinness of 

rechargeable batteries (Jaramillo-Cabanzo et al., 2021). 

The development of new energy vehicles can 

effectively control the consumption of fossil energy 

(Liu et al., 2021; Sun et al., 2021). In 2021, the number 

of EVs exceeded 5.5 million in the world, and it grows 

rapidly in the next few years (Global EV Outlook, 

2019). States in the United States have formulated 

policies on the development of EVs and created the 

automobile zero emission alliance (Zhang et al., 2020). 

Hence, lithium-ion batteries are widely applied to EVs 

due to its high energy density and low pollution. To 

ensure the reliable operation of the power system of 

EVs, the health assessment of lithium-ion batteries has 

become a hot issue studied by experts. 

The important lithium-ion battery parameters are 
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monitored and managed by battery management 

system. State of charge and state of health (SOH) are 

key indicators to the system components and 

estimation has always been a hotspot and difficulty, 

which are employed to describe the battery 

degradation degree, and decreases with the increase of 

lithium-ion battery cycle times (Koga et al., 2021; Sun 

et al., 2021). Ungurean et al. (2017) pointed that the 

battery is considered to be invalid when SOH drops to 

70% or 80% and the RUL is usually used to 

characterize SOH. Chen et al. (2021) argued that RUL 

estimation methods have focused on two types, namely 

model-based methods and data-driven methods. 

Model-based methods reflect the performance 

degradation process of lithium-ion batteries through 

establishing mathematical models, such as 

electrochemical model. For instance, Sadabadi et al. 

(2021) and Verma et al. (2020) realized the RUL 

estimation through the electrochemical model, but 

Sadabadi et al. (2021) and Verma et al. (2020) ignored 

to address the calculation costs, complicated structure 

and large unknown parameters of electrochemical 

model that limits its application. RUL as an important 

assessment indicator of SOH is a current research 

hotspot, which realizes accurate estimation of lithium-

ion battery capacity under dynamic conditions. Qiu et 

al. (2020) established a mathematical model to 

simulate the performance degradation trajectory of 

lithium battery. Xue et al. (2020) pointed that the RUL 

estimation methods based on filtering theory establish 

the system state equation and measurement equation, 

and estimate the state quantity online. In order to 

improve the estimation accuracy of lithium-ion battery 

capacity, Lai et al. (2021) proposed an improved 

extended Kalman filter method. Zhang et al. (2020) 

improved the linear fractional Brownian motion and 

proposed a nonlinear drift fractional Brownian motion 

method to predict RUL. In this method, hidden state 

variables are considered and updated by particle filter. 

However, Lai et al. (2021) and Zhang et al. (2020) 

ignored that PF has the limitations of particle 

degradation, and particle weights cannot be updated in 

the estimation stage.  

Especially, estimation methods on the basis of 

data-driven models have focused on machine learning 

models and time series models. Various machine 

learning models have been devised, such as SVM, 

BPNN and relevance vector machine. For instance, 

Ren et al. (2021) combined Long Short-Term Memory 

(LSTM) neural network and convolution neural 

network to predict the RUL of lithium-ion battery, and 

used automatic encoder to increase the dimension of 

training samples, so as to fully train the established 

prediction model. However, Ren et al. (2021) lacks to 

address the long training time and high complexity of 

LSTM. Machine learning models have high accuracy, 

but the random parameters have a greater impact on the 

estimation results. Common time series models include 

moving average (MA) model, autoregressive (AR) 

model and autoregressive moving average model (Fan 

et al., 2021). However, time series models only 

consider the time factor, have poor generalization 

ability and are susceptible to external environmental 

interference. In this study, a performance degradation 

model on the basis of improved wiener process was 

proposed to estimate the RUL of lithium-ion batteries. 

First, the single cumulative loss normal distribution 

was tested. Second, a third-order scale transformation 

model was constructed to scale the number of cycles 

corresponding to the cumulative capacity. Finally, the 

maximum likelihood estimation of drift and diffusion 

parameters after scale transformation was carried out 

to obtain the RUL probability density function to 

estimate RUL. The objectives of this study are as 

follows: 

⚫ To establish scale model to convert nonlinear wiener 

process into linear wiener process;  

⚫ To establish performance degradation model of the 

lithium-ion battery under different cumulants on the 

basis of the improved wiener process; and 

⚫ To estimate RUL based on lithium-ion battery 

performance degradation model and obtain reliability 

functions of RUL under different cumulants. 

This study presents the following contributions: 

(1) improving wiener process to estimate the RUL, and 

the estimation error was controlled within 15%; (2) 

establishing the third-order scale transformation model 

to scale the number of cycles corresponding to the 

cumulants; and (3) judging the health status of lithium-

ion battery by RUL estimation to ensure the reliable 

operation of EVs.  

The rest of this study is as follows. Second 2 
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presents the estimation methods of RUL and the 

application of wiener process. Section 3 introduces the 

principle of improved wiener process. Section 4 

analyzes and discusses the simulation results. Section 

5 presents the conclusions and the future research plan.  

2  Method 

2.1  wiener model based on scale transformation 

The battery fails when the capacity of lithium-ion 

battery decreases to 70% to 80% of the rated capacity. 

Capacity loss in the performance degradation model is 

taken as the key performance parameter (Ng et al., 

2014; Miao et al., 2013). The RUL of lithium-ion 

battery is determined through analyzing the current 

capacity degradation. The single capacity loss obeys 

the independent and identical distribution, that is, the 

normal distribution. 

Wiener process, which is a typical stochastic 

process, is called Brownian motion with drift (Tsai et 

al., 2011). Brownian motion describes the random 

movement process of particles under collision, and 

wiener process is suitable for describing the 

nonstationary degradation process of product failure 

due to a large amount of accumulated loss. The motion 

is called Brownian motion if the random process {C(t), 

t≥0} satisfies the following three constraints 

(Lawrynczuk, 2019): 

(1) C(t=0)=0; 

(2) 20, ( ) ( ) ~ (0, ( ))t m C t C m N t m   − − ; 

(3) The random process C(t) has independent and 

stable increments. 

{C(t), t≥0} is a standard Brownian motion when 

σ2 is 1. The increment distribution of the wiener 

process depends on the time difference, so the wiener 

process is a homogeneous independent incremental 

process and obeys the normal distribution (El-Hadidy 

and Alfreedi, 2019). For t(t∈[1,n]), C(tk) is shown as 

follows: 

1

1

( ) [ ( ) ( )]   [1, ]
k

k i i

i

C t C t C t k n−

=

= −      (1) 

The one-dimensional wiener process with drift is 

employed to describe the capacity degradation process 

of lithium-ion batteries (Lim et al. 2019). 

0( ) ( )U t u t C t = +  +        (2) 

where u0 is the initial value; μ indicates the degradation 

rate, which is used to describe the degradation trend; σ 

is the diffusion speed, which describes the influence of 

random factors on the degradation performance; C(t) 

is the standard Brownian motion; and U(t) follows the 

standard normal distribution N(u0+μt, σ2t). 

The degradation amount shows an increasing 

trend when μ>0, and the degradation amount shows a 

decreasing trend when μ<0. The performance 

degradation model is established by equation (2) when 

the degradation rate of the product is constant. In 

practical engineering, the degradation rate of products 

is generally nonlinear. The linear wiener model cannot 

get accurate life estimation. However, the nonlinear 

degradation process can be transformed into linear 

degradation process by scale transformation. Therefore, 

the scale transformation model needs to be established 

to transform the time scale t. 

According to the performance degradation curve 

of the product, the time scale conversion model is 

derived to convert the time t. Suppose that there is a 

non-negative monotonic increasing function β(m) of t, 

such that μt=μ*β(t), then the one-dimensional wiener 

degradation model after scale transformation is 

obtained: 

0 *( ( )) ( ) ( ( ))U t u t C t    = +  +     (3) 

where μ* is the degradation rate after scale 

transformation. 

Let α=β(t) and G(α)=U(t), so that equation (3) is 

transformed into equation (4). 

0 *( ) ( )G u C    = +  +        (4) 

The nonlinear degradation process is transformed 

into linear degradation process by equation (4), and the 

degradation model is established according to the one-

dimensional wiener process after time scale 

transformation. In equation (4), the degradation path is 

linear wiener degradation process when α=t. 

2.2  Lithium-ion battery performance degradation 

modeling based on improved wiener process 

There are some cusps in the capacity degradation 

curve of lithium-ion battery affected by environment 

in the test process. The lithium-ion battery capacity 

degradation curve of was reconstructed by wavelet 

transform to reduce the influence of cusps. The 

reconstructed data of lithium-ion battery capacity was 

employed as experimental data. Then, different 
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polynomial models were used to fit the capacity loss 

under different cumulants. Finally, root mean square 

error (RMSE) and coefficient of determination (R2) 

were applied to evaluate the fitting effect of different 

polynomial models. RMSE and coefficient of 

determination (R2) are expressed as follows: 

            
* 2

1

1
( )

m

i i

i

RMSE z z
m =

= −       (5)

* 2

1

2

1

( )

2 1

( )

m

i i

i

m

i

i

z z

R

z z

=

=

−

= −

−




            (6) 

where m is the number of cycles corresponding to 

lithium-ion battery failure; zi denotes the actual value 

of cumulative capacity loss; zi
* represents the fitting 

value of cumulative capacity loss; z   indicates the 

average value of cumulative capacity loss.  

RMSE and R2 are usually chosen as evaluation 

indicators to evaluate the prediction results. The 

smaller the RMSE value is, the smaller the error 

between fitting value and actual value of polynomial 

model is. The closer the R2 (R2∈[0, 1]) is to 1, the 

better the fitting effect of polynomial model is; the 

closer R2 is to 0, the worse the fitting effect of 

polynomial model is. 

Suppose the cumulative capacity degradation path 

of the lithium-ion battery is β(m). The capacity 

degradation process conforms to the linear wiener 

process when m is equal to β(m). The function β(m) is 

employed to scale the number of cycles of cumulative 

capacity loss, and the number of cumulative capacity 

loss after scale transformation is recorded as 

m(z(m)=z(m*)).  

* ( )m m=               (7) 

The nonlinear degradation process of cumulative 

capacity loss z is transformed into a linear degradation 

process by scaling transformation, and the nonlinear 

wiener process is transformed into a linear wiener 

process. The relationship between the number of 

cycles and cumulative loss is more in line with the 

requirements of wiener process after polynomial scale 

transformation. The cumulative capacity degradation 

model of lithium-ion battery is depicted in equation (8): 

0

2

( *) * * * ( *)

( *)~ ( * *,( *) *)

z m z m C m

z m N m m

 

 

= +  + 



     (8) 

where z0 indicates the cumulative capacity loss at the 

initial time, and there is no capacity loss in the initial 

stage, so z0 is 0; μ* is the degradation rate of 

cumulative capacity loss, which reflects the lithium-

ion battery performance degradation trend; m* 

represents the number of cycles corresponding to the 

cumulative capacity loss after scale transformation; σ* 

denotes the cumulative capacity diffusion speed that 

reflects the influence of random factors in the process 

of degradation; and β(m*)obeys the standard Brownian 

motion. 

2.3  Principle of life estimation and reliability 

calculation 

The cumulative capacity loss is taken as the 

performance parameter to characterize the lithium-ion 

battery life. The number of cycles corresponding to the 

failure is used as the life value and the corresponding 

cumulative capacity loss is taken as the failure 

threshold. The lithium-ion battery is in failure state 

when the capacity of batteries decreases to 70% to 80% 

of the rated capacity, and the failed battery should be 

replaced to make the system operate safely.  

Equation (9) is employed to define the RUL: 

 inf : ( ) | (0)F m z m L z L=         (9) 

For the improved wiener process, the key is to 

find the scale transformation model and transform the 

nonlinear degradation process into the linear 

degradation process. Then the probability density 

function f (m*, L) of lithium-ion battery life after scale 

transformation is obtained. For the linearized 

degradation process, the time distribution is inverse 

Gaussian distribution when wiener process reaches the 

failure threshold for the first time. Under the failure 

threshold L, the probability density function of 

residual life after scale transformation is as follows:  

2
0

2

( * *)

2( *) *0

2 3
( *; )

2 ( *) ( *)

L z m

mL z
f m L e

m





 

− − −

−
=   (10) 

Generally, the expected value of RUL is taken as 

the life estimation value. The capacity degradation 

reliability function is built through equation (10):  
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0

2

2 *( )

( *)0 0* * * *
( *; ) ( )

* * * *

L z

L z m L z m
R m L e

m m



 

 

− −

− − − + −
=  （ ）- (11) 

In practical engineering application, the actual 

value of failure threshold is difficult to determine. It is 

generally believed that the same batch of products have 

the same failure threshold, and the performance 

degradation path of the same batch of products is 

similar under the mature design condition and 

processing technology. The scale transformation 

model was established according to the historical 

degradation information to transform the time scale of 

products to estimate the RUL. 

3  Results & Discussion 

The battery data provided by NASA was used in 

the simulation experiment. Charge and discharge tests 

of lithium-ion batteries were carried out at room 

temperature. First, the battery was charged at a 

constant current of 1.5A, the battery was charged at 

constant voltage when the battery voltage reached 4.2V, 

and the battery was stopped charging when the 

charging current of the battery dropped to 0.02A. 

Second, the battery discharged with a constant current 

of 2A, the battery was stopped when the battery 

voltage dropped to 2.5V. The charge and discharge test 

of lithium-ion battery was repeated until the battery 

reached the failure standard, and the battery 

experiment was terminated. sym5 wavelet function 

was applied to decompose the lithium-ion battery 

capacity degradation data. The decomposition layer 

was 3 layers, and a soft threshold function was used. 

Then the lithium-ion battery capacity data was 

reconstructed and the capacity degradation curve and 

cumulative capacity curve after reconstruction are 

depicted in the Figure 1.  

 

Figure 1. Wavelet reconstruction curve and cumulative 

capacity curve 

The reconstructed lithium-ion battery capacity 

degradation data was smoother and reflected the 

degradation characteristics of the original data. In this 

study, it is considered that the battery fails when the 

battery decays to 70% of the rated capacity (1.4Ah). 

The number of cycles corresponding to the failure is 

109, and the corresponding failure threshold L is 

0.6029. Figure 1 revealed that the cumulative capacity 

was non-linear, so the polynomial scale transformation 

was employed to linearize the cumulative capacity loss. 

3.1  Polynomial scale transformation model 

The first 60, 70, 80 and 90 cumulants were fitted 

to obtain the polynomial scale transformation model. 

Then the polynomial scale transformation model was 

applied to scale the cycle number corresponding to the 

lithium-ion battery capacity accumulation. The first-

order, second-order, third-order and fourth-order 

models were established to fit the capacity loss 

accumulation curves. The RMSE and coefficient of 

determination (R2) were employed to evaluate the 

fitting effect of each polynomial model. The 

expressions of each order model are revealed in Table 

1. 

Table 1. Polynomial fitting models 

Model Equation 

First-

order 

model 
1 1( )y x p x=   

Second-

order 

model 

2

2 1 2( )y x p x p x=  +   

Third-

order 

model 

3 2

3 1 2 3( )y x p x p x p x=  +  +   

Fourth-

order 

model 

4 3 2

4 1 2 3 4( )y x p x p x p x p x=  +  +  +   

Note: pi is the polynomial fitting coefficient. 

First-order, second-order, third-order and fourth-

order polynomial models were established to fit the 

cumulative capacity values of lithium-ion batteries at 

60, 65, 70, 75, 80, 85, 90, 95 and 100 times. The fitting 

effects of each order model are depicted in Figure 2.  

Figure 2 indicated that the fitting accuracy of the 

first-order and second-order models were poor, and the 

fitting curves had a large deviation from the true value 

curves. The fitting curves of the third-order model and 

the fourth-order model could reflect the degradation 

trend of battery cumulative capacity loss. To reduce the 

calculation cost, this study used the third-order fitting 

model to change the time scale of the accumulation 

capacity loss. The estimated parameters of the third-

order scale transformation model are in Appendix.  
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(a) Fitting results of polynomial models for the first 60 to 70 cumulative capacity losses

 

(b) Fitting results of polynomial models for the first 75 to 85 cumulative capacity losses

 

(c) Fitting results of polynomial models for the first 90 to 100 cumulative capacity losses 

Figure 2. Fitting results under different accumulations 

3.2  Life estimation and reliability evaluation 

The probability density function curves of 

lithium-ion battery life under different cumulants were 

drawn by the obtained probability density functions, as 

revealed in Figure 3. 
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Figure 3.Probability density curves under different cumulants 

The expected value of the probability density 

function is taken as the battery life estimation value. 

The life estimation values under different cumulants 

were obtained from Figure 3 were not the same. The 

lithium-ion battery life estimated value had a large 

deviation from the actual value when the cumulative 

capacity loss was small. This is due to the small 

amount of cumulants that cannot reflect the capacity 

degradation trend. With the increase of accumulations, 

the estimated RUL value was more and more close to 

the actual value. The historical degradation 

information was more complete when the cumulants 

increased, and the parameter estimation in scale 

transformation model was more accurate. Therefore, 

the RUL estimation value with more cumulants was 

more accurate. The battery life estimation belongs to 

long-term estimation when the cumulative capacity 

loss is small, and the life estimation belongs to short-

term estimation with the increase of cumulants. The 

short-term estimation accuracy is higher than the long-

term estimation as the battery capacity degradation 

information becomes more complete. 

The life estimated values were obtained through 

the probability functions and lithium-ion battery life 

reliability functions. Table 2 lists the estimated results.  

 

 

Table 2. Estimated results of improved wiener model 

Cycle time 
Actual 

life 

Calculated 

life value 

Absolute 

error 

60 

109 

93 -16 

65 93 -16 

70 98 -11 

75 96 -13 

80 97 -12 

85 98 -11 

90 99 -10 

95 101 -8 

100 104 -5 

 

Table 2 depicted that the errors between the 

estimated value and the real value of the improved 

wiener process were different under different 

cumulants. The biggest estimation errors under 60 and 

65 cumulants were 16 due to the capacity degradation 

information was not complete in the early stage of 

prediction, and less cumulants could not accurately 

reflect the overall degradation trend. Hence, the scale 

transformation model obtained by fitting cannot 

accurately reflect the degradation trend. The estimated 
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errors of the improved wiener process decreased with 

the increase of cumulants. This is because the 

degradation information is more complete with the 

increase of accumulations, and the scale 

transformation model can more accurately reflect the 

capacity degradation trend, so the estimated result of 

improved wiener process is closer to the real value. 

The estimated battery life value of the improved 

wiener process is smaller than the actual life. Because 

the estimated value is smaller than the actual value, 

engineers can replace aging batteries in advance to 

avoid causing safety accidents due to excessive battery 

aging in practical engineering application. The life 

value and reliability are estimated by the improved 

wiener process to realize on-line monitoring and early 

warning of loss to determine the maintenance plan and 

improve the system reliability through fault 

pretreatment. 

In terms of Lithium-ion battery RUL, many 

studies applied data-driven models to this field and this 

study adopted the classic Support Vector Machine 

(SVM) model and Back Propagation Neural Network 

(BPNN) model as comparison models to predict RUL. 

The data reconstructed by wavelet was used as the 

training sample and the test sample of the SVM and 

BPNN models. The first 60 to 100 capacity data were 

taken as the training samples of the SVM and BPNN 

models to analyze the prediction results. The 

predictive results of SVM model are presented in Table 

3. 

SVM model did not predict the lithium-ion 

battery life value when the number of training samples 

was 60 and 65. The SVM model has high requirements 

for the number of training samples. Table 3 revealed 

that SVM model accurately predicted the RUL with the 

increase of sample number. When the number of 

training samples reached 70 or more, SVM model 

could predict the Lithium-ion battery RUL. We can 

find that SVM is sensitive to the number of training 

samples. SVM model cannot accurately predict the life 

value when the number of training samples is small; 

SVM model accurately predicts the life value when 

there are enough training samples. 

The first 60 to 100 capacity data were used as the 

training samples of the BPNN model, and then the 

BPNN model was employed to predict the lithium-ion 

battery life value under different training samples. The 

prediction results of the BPNN model are depicted in 

Table 4. 

 

Table 3. Calculation results of SVM model 

Number of 

training 

samples 

Actual 

life 

Calculated 

life value 

Absolute 

error 

60 

109 

— — 

65 — — 

70 113 6 

75 111 2 

80 111 2 

85 112 3 

90 111 2 

95 111 2 

100 111 2 

Table 4. Calculation results of BPNN model 

Number of 

training 

samples 

Actual 

life 

Calculated 

life value 

Absolute 

error 

60 

109 

— — 

65 — — 

70 104 -5 

75 104 -5 

80 113 4 

85 112 3 

90 113 4 

95 110 1 

100 110 1 

The prediction results of BPNN model were 

similar to those of the SVM model. The BPNN model 

did not predict the RUL when the numbers of training 

samples were 60 or 65. Similarly, the prediction results 

of BPNN model are sensitive to the number of training 

samples. Although the BPNN model has a higher 

predictive accuracy, the predictive results of the model 

are basically bigger than the actual life value of the 

battery, which results in the failed battery cannot be 

detected in time and continue to aging. Figure 4 depicts 

the relative errors between the predicted value and the 

actual value of three predictive models.  
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Figure 4. Relative errors 

The estimated errors of improved wiener process 

were controlled within 16% to meet the needs of 

practical engineering. The estimated life values of the 

improved wiener process are all smaller than the actual 

battery life value, which makes engineers replace the 

failed battery more efficiently. In addition, the 

predicted values of the data-driven models are greater 

than the failure threshold of the battery, causing the 

battery to continue to run in the failure mode. 

Therefore, the proposed improved wiener process has 

certain application advantages on the premise of 

satisfying the prediction accuracy. 

 

4 Concluding remarks 
Lithium-ion batteries, which have better energy 

density and improve the driving mileage, are widely 

used in pure EVs. The safe and reliable operation of 

lithium-ion battery is important for EVs. RUL as a key 

SOH performance parameter is applied to evaluate the 

aging degree of lithium-ion battery. Therefore, on the 

basis of the improved wiener process, the performance 

degradation model was constructed to estimate the 

RUL, and was compared with data-driven models. The 

findings are as follows: 

⚫ A polynomial model was established to fit the lithium-

ion battery cumulative loss curve. The R2 values of the 

third-order and fourth-order polynomial models 

reached 0.99, indicating that the fitting accuracy of 

two polynomial models was high. 

⚫ The third-order polynomial model was used as the 

scale transformation model to reduce the 

computational cost. The nonlinear wiener process was 

transformed into a linear wiener process by the third-

order polynomial model.  

⚫ RUL was estimated by the performance degradation 

model. The estimation results revealed that the 

estimation error became smaller and smaller with the 

increase of cumulants, that is, the degradation 

information becomes more and more complete with 

the increase of cumulants, which improves the 

estimation accuracy of the model.  

⚫ SVM and BPNN models were more sensitive to the 

number of training samples. SVM and BPNN models 

did not predict the RUL when the number of training 

sample was small. Compared with SVM and BPNN 

models, the estimated values of RUL of the proposed 

model were smaller than the actual value, which could 

help engineers detect the failed battery more timely to 

ensure the safety of EV power system.  

The contributions of this study are as follows: (1) 

a third-order time scale transformation model is 

established to scale the cycle numbers corresponding 

to the cumulative capacity loss; (2) a performance 

degradation model based on improved wiener process 

is proposed to estimate RUL; and (3) the proposed 

RUL estimation model has positive significance for the 

EV industry development. 

This study proposes a novel RUL estimation 

model which can be applied to practical engineering; 

still, the limitations are existed. The mathematical 

statistical model is used to estimate the RUL, but the 

mathematical statistical model estimation accuracy is 

lower than the data-driven model. Future studies 

combine mathematical statistics model and data-driven 

model to establish a hybrid method under multi-time 

scales to improve the estimation accuracy. 
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Table 1. Third-order scale transformation model 

Cycle time 1p̂  2p̂  3p̂  

60 -6.101×10-4 1.014×10-1 2.639 

65 -7.996×10-4 1.15×10-1 2.425 

70 -9.352×10-4 1.255×10-1 2.247 

75 -1.01×10-3 1.318×10-1 2.134 

80 -1.021×10-3 1.327×10-1 2.116 

85 -9.766×10-4 1.285×10-1 2.204 

90 -9.01×10-3 1.208×10-1 2.372 

95 -8.241×10-4 1.127×10-1 2.562 

100 -7.582×10-4 1.053×10-1 2.742 

Note: 1p̂ , 2p̂  and 3p̂  are the estimated values of 

parameters p1, p2 and p3. 

Nomenclature U(t) Standard normal distribution 

Acronym μ* Degradation rate after scale transformation 

RUL Remaining useful life m The number of cycles  

EVs Electric vehicles zi The actual value of cumulative capacity loss 

SOH State of health zi
* The fitting value of cumulative capacity loss 

MA Moving average z  The average value of cumulative capacity loss 

AR Autoregressive z0 The cumulative capacity loss at the initial time 

LSTM Long Short-Term Memory μ* The degradation rate of cumulative capacity loss 

SVM Support vector machine m* The number of cycles 

BP Back propagation σ* The cumulative capacity diffusion speed  

R2 Coefficient of determination L Failure threshold 

RMSE Root mean square error μ Degradation rate 

Notation C(t) Standard Brownian motion 

u0 Initial value f Probability density function 
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