
Bs → D�
s form factors for the full q2 range from lattice QCD

Judd Harrison ,* and Christine T. H. Davies†

(HPQCD Collaboration)

SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ, United Kingdom

(Received 8 June 2021; accepted 28 April 2022; published 27 May 2022)

We compute the Standard Model semileptonic vector and axial-vector form factors for Bs → D�
s decay

across the full q2 range using lattice QCD. We use the highly improved staggered quark (HISQ) action for
all valence quarks, enabling us to normalize weak currents nonperturbatively. Working on second-
generation MILC ensembles of gluon field configurations which include u, d, s, and cHISQ sea quarks and
HISQ heavy quarks with masses from that of the c mass up to that of the b on the ensemble with the
smallest lattice spacing, allows us to map out the heavy quark mass dependence of the form factors,
and to constrain the associated discretization effects. We can then determine the physical form factors
at the b mass. We use these to construct the differential and total rates for ΓðB0

s → D�−
s lþνlÞ and find

Γl¼e=jηEWVcbj2 ¼ 2.07ð17Þlattð2ÞEM × 1013 s−1, Γl¼μ=jηEWVcbj2 ¼ 2.06ð16Þlattð2ÞEM × 1013 s−1, and

Γl¼τ=jηEWVcbj2 ¼ 5.14ð37Þlattð5ÞEM × 1012 s−1, where ηEW contains the short-distance electroweak
correction to GF, the first uncertainty is from our lattice calculation, and the second allows for long-
distance QED effects. The ratio RðD�−

s Þ≡ Γl¼τ=Γl¼μ ¼ 0.2490ð60Þlattð35ÞEM. We also obtain a value for
the ratio of decay rates Γl¼μðBs → DsÞ=Γl¼μðBs → D�

sÞ ¼ 0.443ð40Þlattð4ÞEM, which agrees well with
recent LHCb results. We can determine Vcb by combining our lattice results across the full kinematic range
of the decay with experimental results from LHCb and obtain jVcbj ¼ 42.2ð1.5Þlattð1.7Þexpð0.4ÞEM × 10−3.

A comparison of our lattice results for the shape of the differential decay rate to the binned, normalized
differential decay rate from LHCb shows good agreement. We also test the impact of new physics couplings
on angular observables and ratios which are sensitive to lepton flavor universality violation.

DOI: 10.1103/PhysRevD.105.094506

I. INTRODUCTION

The determination of the Cabibbo-Kobayashi-Maskawa
(CKM) matrix elements requires precise theoretical calcu-
lations within the Standard Model (SM) and experimental
measurements of quark flavor-changing decay processes.
Meson semileptonic decay rates, to a meson in the final
state, are parametrized by form factors that are related to
matrix elements of the relevant quark flavor-changing weak
current between the initial and final meson states. Lattice
QCD has become the method of choice for the calculation
of these matrix elements, and continuing efforts are being
made to systematically improve the precision with which

form factors are known, in line with the projected reduc-
tions in experimental uncertainty.
Here we focus on semileptonic decays mediated by the

quark-level weak transition b → cl−ν̄l, which have seen
many recent theoretical developments. The most precise
determinations of the corresponding CKM matrix element,
Vcb, make use of measurements of B → D� and B → D [1]
semileptonic decay, emphasizing the former due to favor-
able kinematic factors which do not suppress the differ-
ential decay rate as strongly near zero recoil. In these
determinations, the experimental data for B → D� are
extrapolated using a parametrization scheme to zero recoil,
where only a single form factor is needed, and matched to
lattice calculations (e.g., Refs. [2,3]). Until recently, deter-
minations of Vcb done in this way were in tension with the
alternative inclusive determination, in which all charmed
final-state mesons are considered, and it has since become
apparent that the systematic uncertainties associated with
the underlying model dependence of extrapolating to zero
recoil were being underestimated, with more general para-
metrizations going some way in resolving the tension [4,5].
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It is clear, then, that an improved comparision between
theory and experiment is needed, and that this must be done
across the full physical kinematic range in order to remove
any possible dependence upon the choice of parametriza-
tion scheme. Such a comparison requires an accurate
calculation of the SM form factors using lattice QCD,
which is made challenging by the presence of the light
spectator quark accompanying the b and c quarks in the B
and D� meson states, respectively.
Recent work by LHCb [6] has also provided a com-

plementary determination of jVcbj using the related

Bs → Dð�Þ
s decay. While Bs → Dð�Þ

s decay has not been
measured as precisely as B → Dð�Þ, it is expected that the
experimental uncertainty entering this determination will
be decreased in future measurements. LHCb has also
measured the shape of the normalized differential decay
rate with respect to q2, the squared four-momentum

transfer, for Bs → Dð�Þ
s , allowing a direct comparison

between theory and experiment.
Decays such as Bs → Dð�Þ

s and B → Dð�Þ involving a
b → cl−ν̄l weak decay also allow us to probe lepton
flavor universality. This may be done most straightfor-
wardly by comparing the theoretical ratio in the SM of
branching fractions for decays to a τ final-state lepton to
those to a μ or e to the experimentally measured ratio. The
corresponding ratio for B → Dð�Þ, RðDð�ÞÞ, has been a
source of tension with the SM for some time, e.g.,
Refs. [7,8], though recent measurements by Belle show
consistency with the SM [9]. The sensitivity of other
observables for B → Dð�Þ decay to lepton flavor univer-
sality violation (LFUV) has also recently been investi-
gated [10]. The ratio for the related decay Bc → J=ψl−ν̄l,
RðJ=ψÞ, has also recently been measured for the first time
as part of the experimental program at LHCb [11].
Although this result currently has a large uncertainty, it
is expected that this will be reduced significantly in future
runs [12] to provide a further test of lepton flavor
universality in that channel.
Pseudoscalar-to-pseudoscalar semileptonic decays,

which are described in the SM by two form factors, have
been more extensively studied using lattice QCD than
pseudoscalar-to-vector semileptonic decays, which are
described by four form factors in the SM. The B → D
form factors were calculated away from zero recoil some
time ago [13,14]. More recently, results for the B → D�
form factors away from zero recoil have become available
[15]. The related Bs → Ds semileptonic form factors have
recently been computed across the full physical q2 range
[16], while the relevant form factor for Bs → D�

s has been
computed only at zero recoil [3,17]. The form factors for
Bc → J=ψ decay are less computationally expensive to
calculate using lattice QCD than the form factors for B →
D� or Bs → D�

s, owing to the fact that all of the valence
quarks are heavy. The J=ψ is also very narrow and far from

strong decay thresholds (unlike theD�), making Bc → J=ψ
decay an ideal starting point for lattice QCD calculations of
pseudoscalar-to-vector form factors. The corresponding
Bc → J=ψ form factors, computed in lattice QCD across
the full q2 range, recently became available [18], together
with a high-precision theoretical value for the ratio RðJ=ψÞ
[19], together with other relevant LFUV-sensitive observ-
ables from Ref. [10].
A lattice QCD calculation of the Bs → D�

s form factors is
then well motivated: it will form an important stepping
stone between the recent calculation of Bc → J=ψ form
factors and a future lattice QCD calculation of the B → D�
form factors, as well as allowing for a complementary,
model-independent determination of jVcbj when combined
with LHCb results and a further channel to probe lepton
flavor universality. Bs → D�

s has an advantage over B →
D� from a lattice QCD perspective; there are no valence
u=d quarks, and the D�

s has no Zweig-allowed strong two-
body decay mode, and so it has a very narrow width [20]
that allows us to treat it as a stable meson.
Lattice QCD calculations involving a b quark have

historically relied upon QCD discretizations which make
use of the nonrelativistic nature of the b, or on the large
mass of the b, to avoid the tradeoff between numerical
expense and large discretization effects associated with
placing a relativistic b quark on the lattice (e.g.,
Refs. [2,3]). Recently, however, it has become computa-
tionally viable to use lattices with sufficiently small lattice
spacings to simulate relativistic heavy quarks with masses
very close to the physical b mass [16–18].1 These calcu-
lations carry with them the advantage that the same fully
relativistic action is used for both b and c quarks, and so the
current renormalization factors may be computed non-
perturbatively and with a high precision. This is not
typically possible for calculations using nonrelativistic
actions where the current must instead be renormalized
perturbatively, with the resulting truncation of the pertur-
bation series contributing a potentially large systematic
uncertainty (e.g., Ref. [3]).
In this paper, we apply the method of heavy-HISQ,

which has seen much recent application in studies of the
decays of b quarks (e.g., Refs. [16–18]), to the study of
B0
s → D�−

s ð→ D−
s γÞlþνl decay across the full q2 range.

The subsequent sections are arranged as follows:
(1) In Sec. II, we give expressions for the differential

decay rates, helicity amplitudes, and form factors
relevant for B0

s → D�−
s lþνl.

(2) Section III gives the technical details of the lattice
calculation.

(3) In Sec. IV, we give the results for form factors from
the lattice and discuss how to determine the form

1This builds on the approach developed by HPQCD for heavy
meson decay constants that has proved very successful [21–23].
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factors in the physical continuum limit. We also
provide several tests of the stability of the analysis.

(4) In Sec. V, we use the physical continuum form
factors to make predictions for the differential decay
rates for B0

s → D�−
s ð→ D−

s γÞlþνl and related quan-
tities, as well as providing a breakdown of sources of
uncertainty.

(5) In Sec. VI, we compare our results to recent exper-
imental results from LHCb for the shape of the
differential rate and provide a determination of
jVcbj using our results across the full kinematic range.

(6) In Sec. VII, we investigate the effects of new
physics couplings on lepton-flavor-universality-
violating ratios.

(7) Finally, in Sec. VIII, we summarize our findings.

II. THEORETICAL BACKGROUND

B0
s → D�−

s ð→ D−
s γÞlþνl decay has the same angular

structure as the decay of B−
c → J=ψð→ μþμ−Þl−ν̄l in the

limit in which that the μþμ− pair are massless, and hence
are pure helicity states. The latter case was studied in
Ref. [18]. We adopt the same angular definitions, given in
Fig. 1, as for the Bc → J=ψ case. The differential rate is
given by

d4ΓðB0
s → D�−

s ð→ D−
s γÞlþνlÞ

d cosðθD�
s
Þd cosðθWÞdχdq2

¼ BðD�
s → DsγÞN

X
i

kiðθW; θD�
s
; χÞHiðq2Þ; ð1Þ

where

N ¼ G2
F

ð4πÞ4 ð1þ δEMÞjηEWj2jVcbj2
3ðq2 −m2

lÞ2jp⃗0j
8M2

Bs
q2

: ð2Þ

Here, jp⃗0j is the magnitude of the D�
s spatial momentum in

the Bs rest frame, and ηEW is a process-independent
electroweak correction coming from box diagrams [24].
We include the factor ð1þ δEMÞ, which we take as a

q2-independent uncertainty, to allow for the effects of QED
long-distance radiation (we expect this to be dominated by
final-state interactions between the electrically charged
lepton and D�

s). Following Ref. [25], we include this as
a 1% uncertainty, which we take as the same for e and μ
final states, but independent for the τ final state. Note that
this choice is conservative, since in practice we expect there
to be some amount of correlation between these effects for
μ and τ final states, which we are neglecting here. We
include this uncertainty seperately in quoted results so that
it may be adjusted in light of future calculations. The ki and
Hi are given in Table I. Integrating over angles, the
differential rate in q2 is then given by

dΓ
dq2

¼ N ×
64π

9
½ðH−

2 þH0
2 þHþ2Þ

þ m2
l

2q2
ðH−

2 þH0
2 þHþ2 þ 3Ht

2Þ�: ð3Þ

The helicity amplitudes are defined in terms of standard
Lorentz-invariant form factors [26] as

FIG. 1. Conventions for the angular variables entering the
differential decay rate.

TABLE I. The helicity amplitude combinations and coefficients
for them that appear in the differential rate [Eq. (1)]. Note that the
ki values for terms 1 and 2 have been swapped, as well as terms 4
and 5, compared to Ref. [19], since here we work with the
conjugate mode B0

s → D�−
s ð→ D−

s γÞlþνl.

i Hi kiðθW; θD�
s
; χÞ

1 jHþðq2Þj2 1
2
ð1þ cosðθWÞÞ2ð1þ cos2ðθD�

s
ÞÞ

2 jH−ðq2Þj2 1
2
ð1 − cosðθWÞÞ2ð1þ cos2ðθD�

s
ÞÞ

3 jH0j2 2 sin2ðθWÞ sin2ðθD�
s
Þ

4 ReðHþH�
0Þ − sinðθWÞ sinð2θD�

s
Þ cosðχÞð1þ cosðθWÞÞ

5 ReðH−H�
0Þ sinðθWÞ sinð2θD�

s
Þ cosðχÞð1 − cosðθWÞÞ

6 ReðHþH�
−Þ sin2ðθWÞ sin2ðθD�

s
Þ cosð2χÞ

7 m2
l

q2 jHþðq2Þj2
1
2
ð1 − cos2ðθWÞÞð1þ cos2ðθD�

s
ÞÞ

8 m2
l

q2 jH−ðq2Þj2
1
2
ð1 − cos2ðθWÞÞð1þ cos2ðθD�

s
ÞÞ

9 m2
l

q2 jH0j2 2 cos2ðθWÞ sin2ðθD�
s
Þ

10 m2
l

q2 jHtðq2Þj2 2 sin2ðθD�
s
Þ

11 m2
l

q2 ReðHþH�
0Þ sinðθWÞ sinð2θD�

s
Þ cosðχÞ cosðθWÞ

12 m2
l

q2 ReðH−H�
0Þ sinðθWÞ sinð2θD�

s
Þ cosðχÞ cosðθWÞ

13 m2
l

q2 ReðHþH�
−Þ − sin2ðθWÞ sin2ðθD�

s
Þ cosð2χÞ

14 m2
l

q2 ReðHtH�
0Þ −4 sin2ðθD�

s
Þ cosðθWÞ

15 m2
l

q2 ReðHþH�
t Þ − sinðθWÞ sinð2θD�

s
Þ cosðχÞ

16 m2
l

q2 ReðH−H�
t Þ − sinðθWÞ sinð2θD�

s
Þ cosðχÞ
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H�ðq2Þ ¼ ðMBs
þMD�

s
ÞA1ðq2Þ ∓ 2MBs

jp⃗0j
MBs

þMD�
s

Vðq2Þ;

H0ðq2Þ ¼
1

2MD�
s

ffiffiffiffiffi
q2

p
�
−4

M2
Bs
jp⃗0j2

MBs
þMD�

s

A2ðq2Þ

þ ðMBs
þMD�

s
ÞðM2

Bs
−M2

D�
s
− q2ÞA1ðq2Þ

�
;

Htðq2Þ ¼
2MBs

jp⃗0jffiffiffiffiffi
q2

p A0ðq2Þ; ð4Þ

and they correspond to the nonzero values of
ϵ̄�μðq; λ0ÞhD�

sðp0; λÞjc̄γμð1 − γ5ÞbjB0
sðpÞi for the different

combinations of the D�
s and W− polarizations λ and λ0,

respectively. The form factors in Eq. (4) are the standard
Lorentz-invariant ones; their relations to the matrix ele-
ments are given by [26]

hD�
sðp0;λÞjc̄γμbjB0

sðpÞi

¼ 2iVðq2Þ
MBs

þMD�
s

εμνρσϵ�νðp0;λÞp0
ρpσ;

hD�
sðp0;λÞjc̄γμγ5bjB0

sðpÞi

¼ 2MD�
s
A0ðq2Þ

ϵ�ðp0;λÞ ·q
q2

qμ

þðMBs
þMD�

s
ÞA1ðq2Þ

�
ϵ�μðp0;λÞ− ϵ�ðp0;λÞ ·q

q2
qμ
�

−A2ðq2Þ
ϵ�ðp0;λÞ ·q
MBs

þMD�
s

�
pμþp0μ−

M2
Bs
−M2

D�
s

q2
qμ
�
: ð5Þ

We also have

h0js̄γνcjD�
sðp0; λÞi ¼ ND�

s
ϵνðp0; λÞ; ð6Þ

hB0
sðpÞjb̄γ5cj0Þi ¼ NBs

; ð7Þ

and

X
λ

ϵνðp0; λÞϵ�μðp0; λÞ ¼ −gνμ þ
p0
νp0

μ

M2
; ð8Þ

where ND�
s
and NBs

are amplitudes proportional to the
decay constant of the corresponding meson and ϵ is the D�

s
polarization vector. We use these when we come to extract
the form factors in Eq. (5) from our lattice correlation
functions.

III. LATTICE CALCULATION

As with previous heavy-HISQ calculations of semi-
leptonic form factors involving b → c transitions—e.g.,
Refs. [16,18]—we work with the heavy meson at rest and
give momentum to the charm quark. We use a range of
heavy quark masses mh between the charm and physical
bottom quark mass, on ensembles with a range of lattice
spacings between 0.09 fm and 0.045 fm. We use the
second-generation Nf ¼ 2þ 1þ 1 MILC ensembles
which include light, strange, and charm HISQ sea quarks
[27,28]. The details of these ensembles, together with the
number of configurations we use, are given in Table II. On
the ensemble with a ≈ 0.045 fm, we are able to reach very
near to the physical b mass. The heavy quark masses we
use, together with the charm and strange quark valence
masses, are given in Table III. Note that in this section, for
notational simplicity, we consider the matrix elements in
terms of continuum current operators. The nonperturbative
renormalization of our lattice current operators is discussed
in Sec. III C, where we use the values computed in
Refs. [16,17]. We calculate, for general choices of current

TABLE II. Details of the gauge field configurations used in our calculation [27,28]. We use the Wilson flow parameter [31], w0, to fix
the lattice spacing given in column 2. The physical value of w0 was determined in Ref. [32] to be 0.1715(9) fm, and the values of w0=a,
which are used together with w0 to compute a, were taken from Refs. [16,33,34]. Set 1 with w0=a ¼ 1.9006ð20Þ is referred to as “fine,”
Set 2 with w0=a ¼ 2.896ð6Þ as “superfine,” Set 3 with w0=a ¼ 3.892ð12Þ as “ultrafine,” and Set 4 with w0=a ¼ 1.9518ð7Þ as “physical
fine.” ncfg and nt give the number of configurations and the number of time sources, respectively. aml0, ams0, and amc0 are the masses of
the sea up/down, strange, and charm quarks in lattice units. We also include the approximate mass of the Goldstone pion, computed in
Ref. [22].

Set a (fm) Nx × Nt aml0 ams0 amc0 Mπ (MeV) ncfg × nt

1 0.0884 32 × 96 0.0074 0.037 0.440 316 980 × 16
2 0.0592 48 × 144 0.0048 0.024 0.286 329 489 × 4
3 0.0441 64 × 192 0.00316 0.0158 0.188 315 374 × 4
4 0.08787 64 × 96 0.0012 0.0363 0.432 129 300 × 8

TABLE III. Details of the strange, charm, and heavy valence
masses.

Set amval
h amval

c amval
s

1 0.65, 0.725, 0.8 0.449 0.0376
2 0.427, 0.525, 0.65, 0.8 0.274 0.0234
3 0.5, 0.65, 0.8 0.194 0.0165
4 0.5, 0.65, 0.8 0.433 0.036

JUDD HARRISON and CHRISTINE T. H. DAVIES PHYS. REV. D 105, 094506 (2022)

094506-4



operator J ¼ c̄Γh and D�
s interpolating operator c̄γνs, the

correlation functions

CD�
s

2ptðt; 0Þ ¼ h0js̄γνcðtÞðs̄γνcð0ÞÞ†j0i;
CHs
2ptðt; 0Þ ¼ h0jðh̄γ5sðtÞÞ†h̄γ5sð0Þj0i;

C3ptðT; t; 0Þ ¼ h0js̄γνcðTÞc̄ΓhðtÞh̄γ5sð0Þj0i: ð9Þ

In order to improve statistics, we work with a random wall
source placed at multiple origin times T0. From each of
these sources we compute charm propagators with
momenta inserted using twisted boundary conditions
[29,30], as well as zero-momentum strange propagators
and zero-momentum heavy quark propagators.
Correlation functions with different T0’s on a single
configuration are binned. We tie the strange and charm
propagators together (with the appropriate operators and
conjugation) at time T0 þ t to construct CD�

s
2ptðt; 0Þ, and we

tie the strange and heavy propagators together at time
T0 þ t to construct CHs

2ptðt; 0Þ. To construct the three-point
correlation functions, we use the strange propagator at
time T0 − T as a source for the heavy quark propagator,
which we tie together with the charm quark at time
T0 þ t − T. The arrangement of propagators in C3pt is
shown in Fig. 2, shifted so that theHs operator is at time 0.
We use twisted boundary conditions in the (1,1,0) direc-
tion with the twist chosen such that for the largest value of
amh on a given lattice the points span the physical q2

range evenly, where we estimate the maximum value of q2

using the measured values of MHs
from Ref. [16]. The

twists we use are given in Table IV, in units of π=Lx,
together with the values of T used in the three-point
functions in Eq. (9).
The correlation functions in Eq. (9) are fit to the forms

derived by considering the insertion of complete sets of
states:

CD�
s

2ptðt; 0Þ ¼
X
n

ððAnÞ2e−tEn þ ð−1ÞtðAn
oÞ2e−tEn

oÞ;

CHs
2ptðt; 0Þ ¼

X
n

ððBnÞ2e−tMn þ ð−1ÞtðBn
oÞ2e−tMn

oÞ; ð10Þ

and

C3ptðT; t; 0Þ ¼
X
n;m

ðAnBmJnme−ðT−tÞEn−tMm

þ ð−1ÞTþtAn
oBmJnmoe e−ðT−tÞE

n
o−tMm

þ ð−1ÞtAnBm
o Jnmeo e−ðT−tÞE

n−tMm
o

þ ð−1ÞTAn
oBm

o Jnmoo e−ðT−tÞE
n
o−tMm

o Þ: ð11Þ

Here, n andm are integers corresponding to on-shell particle
states of increasing energies, An and Bm are the amplitudes
(together with relativistic normalization factors) of the D�

s
and Hs operators, respectively, and En and Mn are their
energies and masses. The time-oscillating terms are a
consequence of the use of staggered quarks, and the
amplitudes and energies with an o subscript denote those
quantities corresponding to time-doubled states. Note that
for the matrix elements of J involving time-doubled states,
we include an additional subscript e to make clear which of
theD�

s orHs states is time-doubled. Jnm is then related to the
matrix element of the current c̄ΓhðtÞ in Eq. (9) between the
states labeled n and m. Jnmeo then corresponds to the matrix
element between theAn state and the time-doubledBm

o state,
Jnmoe to thematrix element between the time-doubledAn

o state
and Bm state, and Jnmoo to the matrix element between the
time-doubled An

o state and the time-doubled Bm
o state. The

ground-state parameters are related to matrix elements as

A0 ¼ ND�
sffiffiffiffiffiffiffiffiffiffi

2ED�
s

p
�
1þ p⃗02

ν

M2
D�

s

�
1=2

;

B0 ¼ NHsffiffiffiffiffiffiffiffiffiffiffi
2MHs

p ; ð12Þ

and

J00ðν;ΓÞ ¼
X
λ

ϵνðp0; λÞhD�
sðp0; λÞjc̄ΓbjHsiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ED�
s
2MHs

ð1þ p⃗02
ν =M2

D�
s
Þ

q ; ð13Þ

where p⃗0
ν is the ν component of the D�

s spatial momentum,
with ν corresponding to the choice of polarization in Eq. (9),

TABLE IV. Values of twists, θ, in units of π=Lx, together with
values of T used in the three-point functions in Eq. (9).

Set θ T

1 0, 0.3656, 0.7312, 1.097, 1.462, 1.828 14, 17, 20
2 0, 0.8019, 1.604, 2.406, 3.208, 4.009 22, 25, 28
3 0, 1.193, 2.387, 3.580, 4.773, 5.967 31, 36, 41
4 0, 0.7268, 1.454, 2.180, 2.907, 3.634 14, 17, 20

FIG. 2. Arrangement of propagators in the three-point function;
we refer to c as the “active” charm quark, h as the “extended”
heavy quark, and s as the “spectator” strange quark. J represents
the insertion of either a vector or axial-vector current, and Hs and
D�

s represent the insertion of the corresponding meson interpolat-
ing operators.
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with current c̄Γh. We also compute γ5 ⊗ γ5 pseudoscalar ηh
and ηc correlation functions, which we will use to para-
metrize the physical mh dependence of our form factors as
well as to determine the valence and sea charm quark mass
mistunings. Note that for the η correlation functions we
neglect disconnected contributions.

A. Extraction of form factors

The combinations of spin-taste operators we use here to
access the form factors, and the methods used to extract the
form factors from the matrix elements, are the same as in
Ref. [18]. We repeat these methods below for reference.
The combinations of spin-taste operators are given in
Table V.
We give the D�

s spatial momentum p⃗0 ¼ ðk; k; 0Þ. In
order to isolate all the form factors, we need one component

of p⃗0 to be zero. Keeping both of the others nonzero
minimizes the discretization errors for a given magnitude
of p0.

1. Extracting Vðq2Þ
Here we choose μ ¼ 3 and ν ¼ 1 and find

Vðq2Þ ¼ ΦðkÞMHs
þMD�

s

2ikMHs

J00ð1;γ3Þ; ð14Þ

where we have defined the relativistic normalization

ΦðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ED�

s
2MHs

ð1þ k2=M2
D�

s
Þ

q
ð15Þ

with k the ν component of p0.

2. Extracting A0ðq2Þ
In order to isolate A0ðq2Þ, following Ref. [35], we make

use of the partially conserved axial-vector current (PCAC)
relation h∂Ai ¼ ðmc þmhÞhPi, where A ¼ cγ5γνh and
P ¼ c̄γ5h. From Eq. (5), we have

X
λ

ϵνðp0; λÞqμhD�
sðp0; λÞjc̄γμγ5hjHsi

¼
X
λ

ϵνðp0; λÞ2MD�
s
A0ðq2Þϵ�ðp0; λÞ · q

¼ 2kED�
s
MHs

MD�
s

A0ðq2Þ: ð16Þ

Taking Γ ¼ γ5 and ν ¼ 1 in Eq. (13) and multiplying by
mc þmb, we then have

A0ðq2Þ ¼ ΦðkÞ ðmc þmbÞMD�
s

2kED�
s
MHs

J00ð1;γ5Þ: ð17Þ

3. Extracting A1ðq2Þ
In order to isolate A1, we use the axial-vector current

Γ ¼ c̄γμγ5h and the D�
s operator s̄γνc and choose μ ¼ ν ¼

3 along the spatial direction with zero D�
s momentum.

Using Eq. (5), this gives

X
λ

ϵ3ðp0; λÞhD�
sðp0; λÞjc̄γ3γ5hjHsi

¼ ðMD�
s
þMHs

ÞA1ðq2Þ; ð18Þ

which gives, in terms of J00,

A1ðq2Þ ¼ Φð0Þ
J00ð3;γ3γ5Þ

MD�
s
þMHs

: ð19Þ

4. Extracting A2ðq2Þ
The extraction of A2 is more complicated than the

extraction of the other form factors, since no trivial choice
of directions in axial-vector and D�

s operators isolates the
contribution of A2 relative to A1 or A0. We use axial-vector
current operator J ¼ c̄γ1γ5h and D�

s operator s̄γ1c. This
yields contributions from each form factor,

ΦðkÞJ00ð1;γ1γ5Þ¼
X
λ

ϵ1ðp0;λÞhD�
sðp0;λÞjc̄γ1γ5bjHsi

¼−
2k2ED�

s
MHs

q2MD�
s

A0ðq2Þ

þðMHs
þMD�

s
Þ
�
1þ k2

M2
D�

s

þED�
s
MHs

k2

M2
D�

s
q2

�
A1ðq2Þ

−A2ðq2Þ
k2ED�

s
MHs

M2
D�

s
ðMHs

þMD�
s
Þ
�
1þM2

Hs
−M2

D�
s

q2

�
:

ð20Þ

We must then subtract the A0 and A1 contributions to
obtain A2.

TABLE V. Spin-taste operators used to isolate form factors. The
first column is the operator used for theHs, the second that for the
D�

s , and the third column is the operator used at the current.

OHs
OD�

s
OJ

V γ0γ5 ⊗ γ0γ5 γ1 ⊗ γ1γ2 γ3 ⊗ γ3
A0 γ5 ⊗ γ5 γ1 ⊗ 1 γ5 ⊗ γ5
A1 γ5 ⊗ γ5 γ3 ⊗ γ3 γ3γ5 ⊗ γ3γ5
A2 γ5 ⊗ γ5 γ1 ⊗ γ1 γ1γ5 ⊗ γ1γ5
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B. Fit parameters

The correlator fits to Eq. (10) and Eq. (11) were
done using the corrfitter PYTHON package [36]. These
were done simultaneously for all correlation functions on
each ensemble, taking all correlations into account. For
ground-state priors we take ED�

s
0 ¼ 2.1ð0.6Þ GeV and

MHs
0 ¼ MHs

maxðamh=0.8Þ1=2 × 1ð0.3Þ GeV, where MHs
max is

the value of MHs
from Ref. [16] corresponding to the

largest value of amh. The mh dependence of the prior for
MHs

0 was chosen heuristically to give prior values approx-
imately following the observed Hs masses on each set
while remaining suitably loose so as not to constrain the fit
results. Our priors for the ηc, ηh, and lowest oscillating state
energies, as well as amplitudes, are given in Table VI, while
for the matrix elements of J we take priors 0(1).
In order to reduce excited state contamination and to

improve the stability and convergence of the fits, we

exclude data for t < tmin and for t > tmax. We also specify
an SVD cut using the tools available in Ref. [36]. We use
several different choices of tmin, tmax, and SVD cut, and we
investigate the stability of our subsequent analysis with
respect to taking different combinations of fit parameters.
These fit parameters are given in Table VII, and the stability
of our analysis will be discussed later in Sec. IV.

C. Nonperturbative current renormalization

The renormalization factors relating the HISQ lattice
currents in Table V to the continuum currents considered in
Sec. II are the same as those used in Ref. [18]. These were
computed previously in Ref. [16] for the local vector
current and in Ref. [17] for the axial current, using the
partially conserved vector current (PCVC) and axial-vector
current (PCAC) relations respectively. As in the previous
Bc → J=ψ form factor calculation, we include some values
of the heavy quark masses for which the Z factors were not
computed. We interpolate between the values computed in
Refs. [16,17] on Sets 1 and 4 for masses amh ¼ 0.725 and
amh ¼ 0.65, respectively, setting the uncertainties of the
interpolated factors equal to the largest uncertainty of the
other values. We tabulate these renormalization factors in
Table VIII, where we include the am-dependent discreti-
zation correction terms, Zdisc, for the HISQ-quark tree-level
wave function renormalization computed in Ref. [37].
These receive contributions beginning at OððamhÞ4Þ for
HISQ and as such are close to 1. The total renormalization
factor for an (axial-)vector current is then given by
ZVðAÞZdisc. Note, however, that no renormalization factor
is required for A0, since we determine it using the
absolutely normalized γ5 ⊗ γ5 pseudoscalar current
together with the PCAC relation.
We neglect correlations between the renormalization

factors Z and our lattice data, since the Z factors have
uncertainties which are typically at least an order of
magnitude smaller than the corresponding form factors.

IV. RESULTS

Here we give the lattice results for the form factors,
which were extracted from the matrix elements in Eq. (13)
resulting from the fits discussed in Sec. III. For V, A1, and

TABLE VI. Correlator fit priors. We take ΔEðoÞ
i ¼ ΛQCD × 1.0ð0.75Þ, where ΔEðoÞ

i ¼ EðoÞ
iþ1 − EðoÞ

i ; i ≥ 0, and here for our correlator
fits we take ΛQCD ¼ 0.75 GeV, ΩD�

s
¼ ð2.12 þ p02Þ12, and ΩHs

¼ Mmax
Hs

ðamh
0.8 Þ

1
2, where Mmax

Hs
is the value of MHs

corresponding to the
largest amh, taken from Ref. [17]. While ΩD�

s
was chosen to follow the relativistic dispersion relation, ΩHs

was chosen heuristically to
give prior values approximately following the observed Hs masses on each set while remaining suitably loose so as not to constrain the
fit results.

Prior ηh ηc D�
sðp0Þ Hs

E0=GeV mh × 2.5ð0.5Þ 3.0(0.9) ΩD�
s
1.0ð0.3Þ ΩHs

1.0ð0.3Þ
Eo
0=GeV � � � � � � ΩD�

s
1.2ð0.5Þ ΩHs

1.2ð0.5Þ
AðBÞnðoÞ 0.1(5.0) 0.1(5.0) 0.1(5.0) 0.1(5.0)

TABLE VII. Details of fit parameters, together with variations
used in Sec. IV C to check stability. ΔT indicates the number of
data points at the extremities of correlation functions not included
in the fit. Bold values are those used to produce our final results.
χ2=d:o:f: is estimated by introducing SVD and prior noise as in
Ref. [36]. We do not compute χ2 values including prior and SVD
noise for those fits with nexp ¼ 4.

Set nexp ΔT3pt ΔTD�
s

2pt ΔTHs
2pt

SVD cut χ2=d:o:f: δ

1 3 2 4 4 0.005 1.06 0
3 2 4 4 0.01 1.09 1
3 3 6 6 0.005 0.96 2
4 2 4 4 0.005 � � � 3

2 3 2 4 4 0.025 1.04 0
3 2 4 4 0.05 1.00 1
3 3 7 7 0.025 0.98 2
4 2 4 4 0.025 � � � 3

3 3 3 6 6 0.005 1.02 0
3 3 6 6 0.01 1.01 1
3 4 8 8 0.005 0.99 2
4 3 6 6 0.005 � � � 3

4 3 2 5 5 0.01 1.03 0
3 2 5 5 0.025 1.04 1
3 3 7 7 0.01 1.05 2
4 2 5 5 0.01 � � � 3
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A2, these include the renormalization factors given in
Table VIII. The values of the form factors are tabulated
in the Appendix A in Tables XVIII, XIX, XX, and XXI
together with the value of the momentum component in
lattice units, ak, of the D�

s in the x and y directions.
Our results for the D�

s and ηc masses on each set are
given in lattice units in Table IX together with the
corresponding spin-taste operators. Our results for the
Hs and ηh masses are given in lattice units in Table X
together with the corresponding spin-taste operators.
We fit the heavy mass and lattice spacing dependence of

our lattice form factor results in order to determine the
physical continuum form factors, following the method in
Ref. [18]. We repeat the details of this fit here, as well as
performing similar tests of stability.

A. Extrapolation to the physical point

We parametrize the q2 dependence using the z expansion
[38–40]. We first change variables from q2 to zðq2; t0Þ, with

zðq2; t0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − q2

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t0

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − q2

p
þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tþ − t0
p : ð21Þ

We take t0 equal to the maximum physical value of q2,

t0 ¼ ðMHs
−MD�

s
Þ2; ð22Þ

and

tþ ¼ ðMH þMD�Þ2: ð23Þ
Since we do not have direct access to MH, the mass of the
hū pseudoscalar meson, we instead use Mlatt

H ¼MHs
−

ðMphys
Bs

−Mphys
B Þ. We use the physical value of MD� from

experiment, since our valence charm masses are tuned to
the physical value, and the light quark mass mistuning is
accounted for elsewhere in the fit function. The numerical
values of the physical B, Bs, and D� masses are given in
Table XI. The form factors include poles resulting from bc̄
states, with masses below the pair production threshold tþ,
with the same quantum numbers as the corresponding
current. We include these poles, which are the same for
Bs → D�

s as for Bc → J=ψ and B → D�, using the same
form as in Ref. [18], which was taken from Refs. [38,40]:

Pðq2Þ ¼
Y
Mpole

zðq2;M2
poleÞ: ð24Þ

We approximate the heavy mass dependence of the pole
masses using Mpole¼MHs

þMphys
pole −Mphys

Bs
, which ensures

that in the physical continuum limit the correct physical
pole masses are recovered. The physical pole masses used
here are listed in Table XII.
Our fit function then takes the form

Fðq2Þ ¼ 1

Pðq2Þ
X3
n¼0

anznN n; ð25Þ

TABLE VIII. Z factors from Refs. [16,17] for the axial-vector
and vector operators used in this work, together with the
discretization corrections. ZA and ZV values for amh ¼ 0.725
on Set 1 and amh ¼ 0.65 on Set 4 were obtained by interpolation
from the other values for those sets. The uncertainties of the
interpolated factors are set equal to the largest uncertainty of the
other values.

Set amh ZA ZV Zdisc

1 0.65 1.03740(58) 1.0254(35) 0.99635
0.725 1.04030(58) 1.0309(35) 0.99491
0.8 1.04367(56) 1.0372(32) 0.99306

2 0.427 1.0141(12) 1.0025(31) 0.99931
0.525 1.0172(12) 1.0059(33) 0.99859
0.65 1.0214(12) 1.0116(37) 0.99697
0.8 1.0275(12) 1.0204(46) 0.99367

3 0.5 1.00896(44) 1.0029(38) 0.99889
0.65 1.01363(49) 1.0081(43) 0.99704
0.8 1.01968(55) 1.0150(49) 0.99375

4 0.5 1.03184(47) 1.0134(24) 0.99829
0.65 1.03717(47) 1.0229(29) 0.99645
0.8 1.04390(39) 1.0348(29) 0.99315

TABLE IX. Results for the D�
s masses for the local spin-taste

operator γ1 ⊗ γ1 and 1-link operators γ1 ⊗ 1 and γ1 ⊗ γ1γ2 used
in our calculation; see Table V. Here we also include values for
the local γ5 ⊗ γ5 ηc mass.

aMD�
s

aMηc

Set γ1 ⊗ γ1 γ1 ⊗ 1 γ1 ⊗ γ1γ2 γ5 ⊗ γ5

1 0.96451(48) 0.96493(56) 0.96422(67) 1.364940(48)
2 0.63482(80) 0.6350(12) 0.6347(12) 0.896802(67)
3 0.47327(58) 0.47284(99) 0.4727(11) 0.66721(12)
4 0.93975(48) 0.93957(63) 0.93928(68) 1.329310(45)

TABLE X. Results for the ηh masses and Hs masses for the
local spin-taste operators γ5 ⊗ γ5 and γ0γ5 ⊗ γ0γ5 that we use in
our calculation; see Table V.

Set amh aMHs
ðγ5 ⊗ γ5Þ aMHs

ðγ0γ5 ⊗ γ0γ5Þ aMηh

1 0.65 1.12498(16) 1.12550(27) 1.775201(42)
0.725 1.20419(17) 1.20467(30) 1.921510(40)
0.8 1.28122(19) 1.28166(33) 2.064184(39)

2 0.427 0.77431(28) 0.77456(59) 1.233625(58)
0.525 0.88460(35) 0.88496(73) 1.439573(54)
0.65 1.01969(45) 1.02019(92) 1.693959(49)
0.8 1.17464(56) 1.1752(12) 1.987607(46)

3 0.5 0.80339(34) 0.8020(12) 1.343315(81)
0.65 0.96484(40) 0.9634(14) 1.650857(69)
0.8 1.11894(45) 1.1174(15) 1.946422(60)

4 0.5 0.95452(14) 0.95487(26) 1.470108(45)
0.65 1.11976(19) 1.11987(34) 1.773763(42)
0.8 1.27577(25) 1.27571(44) 2.062919(42)
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where Pðq2Þ is the appropriate pole form for that form
factor [constructed using 1− states for Vðq2Þ, 1þ states for
A1ðq2Þ and A2ðq2Þ, or 0− states for A0ðq2Þ] as in Eq. (24).
The remainder of the fit function is a polynomial in z with
separate coefficients, an, for each form factor that take the
form

an ¼
X3
j;k;l¼0

bjkln ΔðjÞ
h

�
amval

c

π

�
2k
�
amval

h

π

�
2l

: ð26Þ

The ΔðjÞ
h ’s allow for the dependence on the heavy quark

mass using the ηh mass as a physical proxy for this. We

have Δð0Þ
h ¼ 1 and

Δðj≠0Þ
h ¼

�
2Λ
Mηh

�
j
−
�

2Λ
Mphys

ηb

�
j
: ð27Þ

The physical value of the ηb mass is given in Table XI, and
we take Λ ¼ 0.5 GeV. The remainder of Eq. (25), N n,

takes into account the effect of mistuning the valence and
sea quark masses for each form factor, where

N n ¼ 1þ Anδ
val
mc

þ Bnδ
sea
mc

þ Cnδ
val
ms

þDnδ
sea
ms

þ Enδ
sea
ml
;

ð28Þ

with

δvalmc
¼ ðamval

c − amtuned
c Þ=amtuned

c ;

δseamc
¼ ðamsea

c − amtuned
c Þ=amtuned

c ;

δvalms
¼ ðamval

s − amtuned
s Þ=ð10amtuned

s Þ;
δseamsðlÞ ¼ ðamsea

sðlÞ − amtuned
sðlÞ Þ=ð10amtuned

s Þ: ð29Þ

Using a ratio of lattice quark masses to 10amtuned
s is a

convenient proxy for the usual chiral expansion parameter,
which is a ratio of squared meson masses to Λ2

χ where
Λχ ¼ 4πfπ . The tuned values of the quark masses are
given by

amtuned
c ¼ amval

c
Mphys

ηc

Mηc

ð30Þ

and

amtuned
s ¼ amval

s

�
Mphys

ηs

Mηs

�2

: ð31Þ

Mηc on each set is given in lattice units in Table IX, and we
use the values of Mηs given in Ref. [17], which used the
same values of amval

s . To determine the mistuning of the
u=d ¼ l quark mass in the sea, we take

amtuned
l ¼ amtuned

s =½ms=ml�phys; ð32Þ

with ½ms=ml�phys ¼ 27.18ð10Þ from Ref. [22]. We take
priors of 0(1) for each bn, multiplying terms of orderOða2Þ
by 0.5 in line with the tree-level a2 improvement of the
HISQ action [51]. We also use priors of 0.0(0.1) for Bn,
motivated by the results of the analysis ofmsea

c effects on w0

in Ref. [34]. We take priors of 0.0(0.5) for Dn and En for
each form factor, since sea quark mistuning effects enter at
one loop. All of the remaining priors are taken as 0(1),
motivated by the analysis done in Ref. [18] using the
empirical Bayes criterion, which showed that for the Bc →
J=ψ form factors this choice was conservative, which we
expect to be the case here also. The physical masses used
for the ηc and ηs are given in Table XI.
We impose the kinematical constraint

2MD�
s
A0ð0Þ ¼ ðMD�

s
þMHs

ÞA1ð0Þ þ ðMD�
s
−MHs

ÞA2ð0Þ:
ð33Þ

TABLE XI. Values used in our fits for the physical masses of
relevant mesons, in GeV. These are from the Particle Data Group
[41] except for the unphysical ηs, which we take from lattice
calculations of the mass of the pion and kaon [42]. The ηs and ηc
masses are used to set mass mistuning terms in our fit and so
include an uncertainty. The other masses are used as kinematic
parameters in setting up our fit in z space and are used without
uncertainties. In light of the results of Ref. [43], we have checked
that using a value of Mphys

ηc 10 MeV lower than that given here,
allowing for the effects of QED and cc̄ annihilation, has only a
very small effect on our results at the level of 0.05σ.

Meson Mphys½GeV�
ηb 9.3889
Bs 5.3669
B 5.27964
ηc 2.9863(27)
D�

s 2.112
D� 2.010
ηs 0.6885(22)

TABLE XII. Expected Bc pseudoscalar, vector, and axial-
vector masses below the BD� threshold that we use in our pole
factor, Eq. (24). Pseudoscalar values for the ground state and first
radial excitation are taken from experiment [41,44–46]; the other
values are taken from Ref. [3] and are derived from lattice QCD
calculations [47] and model estimates [48–50].

0−=GeV 1−=GeV 1þ=GeV

6.275 6.335 6.745
6.872 6.926 6.75
7.25 7.02 7.15

7.28 7.15
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We do this, using our lattice meson masses at each value of
amh and allowing for discretization and quark mass
mistuning effects, by requiring

A0ð0Þ − ðaMD�
s
þ aMHs

Þ=ð2aMD�
s
ÞA1ð0Þ

þ ðaMD�
s
− aMHs

Þ=ð2aMD�
s
ÞA2ð0Þ ¼ Δkin: ð34Þ

Δkin here is a nuisance term made up of leading-order
discretization and mistuning effects to account for the use

of lattice masses rather than values in the physical con-
tinuum limit. We take

Δkin ¼
X3
i¼1

αc;iðamval
c =πÞ2i þ αh;iðamh=πÞ2i

þ βcδ
val
mc

þ β0cδseamc
þ β0sδvalms

þ βsδ
sea
ms

þ βlδ
sea
ml
; ð35Þ

where α and β are priors taken as 0(1). We find that the fit
returns values for α and β well within their prior widths.

FIG. 3. The points show our lattice QCD results for each form factor as given in Tables XVIII, XIX, XX, and XXI as a function of
squared four-momentum transfer, q2. The legend gives the mapping between symbol color and shape and the set of gluon field
configurations used, as given by the lattice spacing, and the heavy quark mass in lattice units (see Tables II and III). The blue curve with
error band is the result of our fit in the continuum limit and with the physical b quark mass.
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The physical continuum form factors are given by setting
an ¼ b000n and N n ¼ 1 in Eq. (25), to give

Fphysðq2Þ ¼ 1

Pðq2Þ
X3
n¼0

anzn; ð36Þ

where Pðq2Þ is computed using the physical masses given
in Table XII. These Fphys values are plotted in Fig. 3
together with our lattice data. The continuum values of the

TABLE XIII. Physical z-expansion coefficients for the pseu-
doscalar, axial-vector, and vector form factors for Bs → D�

s
decay. The full correlation matrices for these coefficients are
given in Appendix B.

a0 a1 a2 a3

A0 0.1047(57) −0.43ð13Þ −0.10ð96Þ −0.03ð1.00Þ
A1 0.0552(21) −0.010ð54Þ −0.03ð77Þ 0.06(99)
A2 0.059(11) −0.11ð22Þ −0.25ð79Þ −0.05ð1.00Þ
V 0.100(11) −0.18ð27Þ −0.006ð0.998Þ 0.0(1.0)

FIG. 4. The points show our lattice QCD results for each form factor as given in Tables XVIII, XIX, XX, and XXI multiplied by the
pole function of Eq. (24) and plotted in z space. The legend gives the mapping between symbol color and shape and the set of gluon field
configurations used, as given by the lattice spacing, and the heavy quark in lattice units (see Tables II and III). The blue curve with error
band is the result of our polynomial fit in z with lattice spacing and heavy quark mass dependence [Eq. (25)], evaluating the result in the
continuum limit and for the b quark mass, to give the physical form factor for Bs → D�

s.
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z-expansion coefficients an ¼ b000n are given in Table XIII.
The correlation matrices between these parameters are
given in Appendix B.
In Fig. 4, we plot the form factor data, together with the

extrapolated physical continuum form factors, multiplied
by the pole function Eq. (24) against zðq2; t0Þ. There we
see that the fit to the polynomial part of Eq. (25) is
straightforward, with only very simple dependence on
zðq2; t0Þ and only mild heavy quark mass dependence.
Note that here the A1 form factor data and extrapolated
curve are flatter than was found for Bc → J=ψ
in Ref. [18].

B. Heavy mass dependence

Our fit results allow us to examine the physical depend-
ence of the form factors on the heavy quark mass. This
allows us to check that the dependence is relatively benign
and that our fit form in Eq. (25) effectively captures this
dependence.
Our fit function includes heavy mass dependence in

several places. There are ΛQCD=Mηh terms in the z-expan-
sion coefficients, the Hs mass enters through our choice of
t0 ¼ q2max ¼ ðMHs

−MD�
s
Þ2 in the q2-to-zmapping, and the

pole masses entering Pðq2Þ depend on MHs
. We therefore

need to knowhowMHs
varies as a function ofMηh .We fit our

lattice data for the γ5 ⊗ γ5 Hs against a simple function of
the ηh mass. We use the function

MHs
¼ ðMηh −Mphys

ηc Þ=2þMphys
Ds

þ
X4
i¼1

Xi

�
amh

π

�
2i

þ
X4
i¼1

Yi

�
amc

π

�
2i
þ
X4
i¼1

ZiΔ
ðiÞ
hc þN 0; ð37Þ

where

ΔðiÞ
hc ¼

�
2ΛQCD

Mphys
ηc

�
i
−
�
2ΛQCD

Mηh

�
i

ð38Þ

and

N 0
n¼1þA0

nδ
val
mc
þB0

nδ
sea
mc

þC0
nδ

val
ms

þD0
nδ

sea
ms

þE0
nδ

sea
ml
: ð39Þ

This form ensures the correct value ofMHs
asmh → mc. We

take Mphys
ηc ¼ 2.9839 GeV from Ref. [52], neglecting its

very small uncertainty, and we also include the physical
values ofMηb andMBs

fromRef. [52] in the fit as data points.
We take prior widths of 0(1) forA0,B0,C0,D0,E0,Xi, Yi, and
Zi. This gives a sensible fit with χ2=d:o:f: ¼ 1.3 and
Q ¼ 0.2. We then use our fitted parameters Zi to estimate

the continuum value ofMHs
at a givenMηh . SettingN

0, Xi,
and Yi to zero in Eq. (37) gives

MHs
¼ ðMηh −Mphys

ηc Þ=2þMphys
Ds

þ
X4
i¼1

ZiΔ
ðiÞ
hc: ð40Þ

Note that this parametrization of theHs mass is only used to
demonstrate the heavy mass dependence of the form factors
and will not have any impact on the physical Bs → D�

s form
factors.
In Fig. 5, we plot the form factors at fixed values of the

D�
s momentum against Mηh . We choose values of the D�

s

momentum which evenly span the semileptonic range at
the physical b quark mass and only plot the mass region
for which the resulting value of q2 is between 0 and q2max.
We include in these plots our lattice data, connecting
points on a given set which are at the same D�

s spatial
momentum. As for Bc → J=ψ [18], we see that the
continuum form factors have only mild heavy mass
dependence across the range of masses we use here,
and that our extrapolation to the b mass using these points
is reliable. This is consistent with what is seen for other
b → c form factors—e.g., Refs. [16–18,53].

C. Tests of the stability of the analysis

Here, we demonstrate the stability of our analysis
to the different choices of correlator fit inputs given in
Table VII. We show that under these variations, the total
rate of B0

s → D�−
s lþνl decay—i.e., ΓðB0

s →D�−
s lþνlÞ=

jηEWVcbj2ð1þδEMÞ—is stable. This quantity is obtained by
first determining the helicity amplitudes from our form
factors and then integrating in q2 over the differential rate
they give [see Eqs. (4) and (3)]. The results for the
differential rates and total rate will be discussed in more
detail in Sec. V; here we focus on the stability of the final
result under variations of fit choice.
We first look at the choices of the correlator fit

parameters: ΔT3pt, ΔT
D�

s
2pt, ΔT

Hs
2pt, the value of the SVD

cut, and the number of exponentials used in the fit. In
order to verify that our results are independent of such
choices, we repeat the full analysis using all combinations
of the variations listed in Table VII. The total rate
computed using each of these fit variations is plotted in
Fig. 6, where we see that our final result is not sensitive to
such variations.
We also look at the dependence of the physical con-

tinuum z-expansion coefficients, an ¼ b000n , on these var-
iations [see Eq. (25)]. In Fig. 7, we show the variation of the
fitted a0 coefficient for the form factors V and A1, as well as
the a1 term for A1. In these plots, we see that these
coefficients are very stable to variations of correlator fit
inputs.
We also show that the form factors themselves are stable

under these variations. In Figs. 8 and 9, we show the
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variation of the form factors V and A1, evaluated at
q2 ¼ 1 GeV2, 5 GeV2, and 10 GeV2, where we see that
A1 and V are very stable to variations of correlator fit
inputs. Similar plots for A0 and A2 are given in Sec. 1 of
Appendix D.
We also convert our results to the Boyd, Grinstein, and

Lebed (BGL) scheme [38] and check the unitarity

constraints. This analysis is given in Sec. 1 of
Appendix C, where we see that these constraints are far
from saturation. In Ref. [18], we also studied the effect of
including fewer resonances in the pole term [Eq. (24)].
Here, in addition to this analysis, we also investigate using
alternative parametrizations when performing the heavy-
HISQ fit. We show the results of these fits in Appendix D,

FIG. 5. The points show our lattice QCD results for each form factor as given in Tables XVIII, XIX, XX, and XXI as a function of the
ηh massMηh , with data points corresponding to the same D�

s spatial momentum (given in Tables XVIII to XXI) connected. We also use
Eq. (40) to plot our continuum result (solid colored curves) at multiple, evenly spaced, fixed values of D�

s momentum within the
semileptonic region 0 ≤ q2 ≤ q2max. The legend gives the mapping between the symbol color and shape and the set of gluon field
configurations used, as given by the lattice spacing, and the heavy quark in lattice units (see Tables II and III). Note that for the form
factor A2, we exclude from the plot the inaccurate lattice data for amh ¼ 0.5 on Set 4, as well as ak ¼ 0.059 and ak ¼ 0.052 on Sets 2
and 3, respectively.
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where we see no significant variation in the physical form
factors or differential decay rate.

V. DISCUSSION OF LATTICE RESULTS

A. Differential and total rates for each lepton flavor

In this section, we first use our form factors to construct
the helicity amplitudes defined in Eq. (4). These are plotted
in Fig. 10, where we see that H0ðq2maxÞ ¼ H�ðq2maxÞ and
that H0 and Ht are singular at q2 ¼ 0, as we would expect
from the factors of 1=

ffiffiffiffiffi
q2

p
appearing in their definitions.

This singular behavior is canceled in the physical differ-
ential decay rate by the factor of ðq2 −m2

lÞ2 appearing
in Eq. (2).
From these helicity amplitudes we compute the differ-

ential rate with respect to q2, given by Eq. (3). This is
plotted in Fig. 11 for the l ¼ μ and l ¼ τ cases, where in
the plot we normalize both curves by the total rate Γ for the

FIG. 8. As for Fig. 6, showing the stability of the form factor A1

evaluated at q2 ¼ 1 GeV2, 5 GeV2, and 10 GeV2.

FIG. 7. As for Fig. 6, showing the stability of the coefficients of
the z expansion for the form factors under variations of the
correlator fits. We include a subset of coefficients here; other
plots look very similar.

FIG. 6. Plot showing the stability of the total rate for B0
s →

D�−
s μþνμ under variations of the correlator fits. The x-axis value

corresponds toN ¼ δ3 þ 4δ2 þ 16δ1 þ 64δ4, where δn is thevalue
of δ corresponding to the fit given in Table VII for set n. The black
horizontal line and red error band correspond to our final result, and
the blue points and blue error band correspond to the combination
of fit variations associated toN. Our result for the total rate does not
change significantly for these variations in the fits. Note that here
we do not include the contribution of δEM to the uncertainty.
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l ¼ μ case. We integrate these, as well as the rate for l ¼ e,
to find the total rate for each lepton flavor. When integrat-
ing our results, we use a simple (but accurate) trapezoidal
approximation in order to ensure we carry through corre-
lations correctly. We find

ΓðB0
s →D�−

s eþνeÞ
jηEWVcbj2

¼ 2.07ð17Þlattð2ÞEM ×1013 s−1

¼ 13.6ð1.1Þlattð0.1ÞEM×10−12 GeV

ð41Þ
and

ΓðB0
s → D�−

s μþνμÞ
jηEWVcbj2

¼ 2.06ð16Þlattð2ÞEM × 1013 s−1

¼ 13.6ð1.1Þlattð0.1ÞEM × 10−12 GeV

ð42Þ

with the ratio Γl¼e=Γl¼μ ¼ 1.00443ð16Þ, amounting to an
effect of 0.4% in the total rate from the muon mass. Note
that we are ignoring differences in δEM between the two
cases in this ratio. For the l ¼ τ case, the effect of including
the mass is much more substantial, and we find

FIG. 9. As for Fig. 6, showing the stability of the form factor V
evaluated at q2 ¼ 1 GeV2, 5 GeV2, and 10 GeV2.

FIG. 10. Helicity amplitudes for Bs → D�
s plotted as a function

of q2.

FIG. 11. The differential rate dΓ=dq2 for B0
s → D�−

s lþνl for
l ¼ μ and l ¼ τ as a function of q2, normalized by the total
decay rate for the l ¼ μ case. Note that here, for the l ¼ τ curve,
the error bands do not include the contribution from δEM.
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ΓðB0
s →D�−

s τþντÞ
jηEWVcbj2

¼ 5.14ð37Þlattð5ÞEM×1012 s−1

¼ 3.38ð24Þlattð3ÞEM×10−12 GeV: ð43Þ

We can also readily construct RðD�
sÞ, the ratio of the total

rates for the l¼ τ and l ¼ μ cases, where many uncertain-
ties which are correlated between the two cancel. We find

RðD�
sÞ ¼ Γl¼τ=Γl¼μ ¼ 0.2490ð60Þlattð35ÞEM: ð44Þ

This value is ≈1.6σ below the value of RðJ=ψÞ computed in
Ref. [19], as well as the HFLAVaverage SM value ofRðD�Þ
[1].Note that our value is consistentwith thevalue computed
in Ref. [54] using the heavy-quark expansion of
RðD�

sÞ ¼ 0.2472ð77Þ. Note also that unlike the total rate
Γ, for which the contribution of δEM to the uncertainty is
relatively small, the lattice uncertainty in RðD�

sÞ is the same
order of magnitude as the uncertainty resulting from long-
range QED effects, at least for charged final-state mesons.
These QED effects are often ignored but must be addressed
in future calculations in order to produce reliable SM results
with subpercent-level uncertainties.
We also construct the improved ratio [55]

RimpðD�
sÞ ¼

R q2max

m2
τ

dq2 dΓ
dq2 ðB0

s → D�−
s τþντÞR q2max

m2
τ

dq2 dΓ
dq2 ðB0

s → D�−
s μþνμÞ

: ð45Þ

We find

RimpðD�
sÞ ¼ 0.3324ð31Þlattð47ÞEM; ð46Þ

where now the uncertainty resulting from electromagnetic
effects is dominant due to the improved cancellation of
correlated lattice uncertainties.
We may use our value of Γ=jηEWVcbj2 in Eq. (42),

together with values of Vcb and ηEW, to derive a result for
the totalwidth of the decay.We take ηEW ¼ 1.0066 following
Ref. [56] and jVcbj ¼ 41.0ð1.4Þ × 10−3 using an average of
inclusive and exclusive determinations with the error scaled
by 2.4 to allow for their inconsistency [52].Note that herewe
neglect the small uncertainty in ηEW. This gives

ΓðB0
s → D�−

s μþνμÞ ¼ 3.53ð27Þlattð24ÞVcb
ð4ÞEM × 1010 s−1;

ð47Þ
where the first uncertainty is from our lattice QCD calcu-
lation, the second is from the uncertainty in jVcbj, and the
final error is from δEM. We may combine this with the
experimental average of the B0

s mean lifetime [1,52],
τðB0

sÞ ¼ 1.515ð4Þ × 10−12 s, to find the branching fraction

BrðB0
s → D�−

s μþνμÞ ¼ 0.0534ð42Þlattð36ÞVcb
ð1Þτð5ÞEM;

ð48Þ

where the uncertainties are from our lattice calculation, from
the uncertainty in Vcb, from the uncertainty in the B0

s
lifetime, and from δEM, respectively. This is in good agree-
ment with, but much more accurate than, the value of the
more inclusive branching fraction measured by Belle,
BrðB0

s → D�−
s XlþνÞ ¼ 0.054ð11Þ [57].

B. Angular and polarization asymmetries and ratios

We can also construct the lepton polarization asymmetry,
as well as the longitudinal polarization fraction and the
forward-backward asymmetry. Note that as for B → D�
[10] and Bc → J=ψ [19], these are conventionally
defined for the charge conjugate mode, which here is
B̄0
s → D�þ

s l−ν̄l. They are given by

Aλlðq2Þ ¼
dΓλl¼−1=2=dq2 − dΓλl¼þ1=2=dq2

dΓ=dq2
;

FD�
s

L ðq2Þ ¼ dΓλD�
s
¼0=dq2

dΓ=dq2
;

AFBðq2Þ ¼
1

dΓ=dq2
2

π

Z
π

0

dΓ
dq2d cosðθWÞ

cosðπ − θWÞdθW;

ð49Þ

respectively, where we have chosen the forward direction
for the purpose of AFB as being in the direction of the D�

s
momentum in the Bs rest frame. We plot these for the l ¼ μ
and l ¼ τ cases in Fig. 12. Following the notation used in
Refs. [10,19] for the integrated observables and lepton-
flavor-universality-violating ratios, we find for the l ¼ τ
case

hAλτi ¼ 0.520ð12Þ;
hFD�

s
L i ¼ 0.440ð16Þ;

hAFBi ¼ −0.092ð24Þ: ð50Þ

Note that these are consistent with the values given in
Ref. [54] of hFD�

s
L i ¼ 0.471ð16Þ and hAλτi ¼ 0.486ð23Þ.

For the ratios of l ¼ τ to l ¼ μ cases, we find

RðAλτÞ ¼ 0.524ð12Þ;
RðFD�

s
L Þ ¼ 0.880ð18Þ;

RðAFBÞ ¼ 0.345ð56Þ: ð51Þ

C. Ratio of Bs → Ds and Bs → D�
s rates

We may also use our results in combination
with the results of Ref. [16] to compute the ratio
ΓðB0

s → D−
s μ

þνμÞ=ΓðB0
s → D�−

s μþνμÞ. In doing so, we
neglect correlations between the two calculations. Note
that here, as for RðD�

sÞ, the jηEWVcbj2 factors cancel in the
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ratio. The uncertainty in ΓðBs → DsÞ computed
using the results in Ref. [16], ΓðBs → DsÞ=jηEWVcbj2 ¼
6.02ð24Þ × 10−12 GeV, is a factor of ≈2 smaller than the
uncertainty in ΓðBs → D�

sÞ, and the correlations between

the two results are expected to be relatively small.
Neglecting these correlations is therefore not expected to
significantly affect the uncertainty in the ratio. We find

ΓðB0
s → D−

s μ
þνμÞ

ΓðB0
s → D�−

s μþνμÞ
¼ 0.443ð40Þlattð4ÞEM: ð52Þ

This is in good agreement with the experimental value of
ΓðB0

s →D−
s μ

þνμÞ=ΓðB0
s →D�−

s μþνμÞ¼ 0.464ð45Þ recently
measured by LHCb [6] and has a comparable uncertainty.

D. Error budget

We use the lsqfit [58] inbuilt error budget function,
which computes the partial variance of our result with
respect to priors and data, to estimate the contributions
of systematic uncertainties (see, e.g., Appendix A of
Ref. [59]). The error budget for the total rate Γ, for both

FIG. 12. Angular asymmetry variables for B̄0
s → D�þ

s l−ν̄l
decay defined in Eq. (49) for the cases l ¼ μ and l ¼ τ.

TABLE XIV. Error budget for the total rate Γ for the cases
l ¼ μ and l ¼ τ, given in Eqs. (42) and (43), respectively, as well
as for RðD�

sÞ, given in Eq. (44), excluding the contribution from
δEM. Errors are given as a percentage of the final answer. The top
half gives the contributions of systematic uncertainties originat-
ing from the dependence of the form factors on Mηh , from
discretization effects going as amh and amc, from sea and
valence quark mass mistunings, and from uncertainties in the
determination of the lattice spacing. The second half of the table
gives the contributions of the statistical uncertainty in our lattice
correlator data, broken down by set. Finally, “Other priors”
includes all of the remaining sources of uncertainty, such as Δkin
and the current renormalization factors. “Other priors” also
includes the uncertainty of mixed terms in the fit which cannot
be attributed uniquely to any of the categories in the first half of
the table (e.g., from the prior uncertainty of b011n , the coefficient in
Eq. (25) which mixes amh and amc dependence).

Γ=jηEWVcbj2ð1þ δEMÞ
Source l ¼ μ l ¼ τ RðD�

sÞ
Mηh → Mηb 2.62 2.26 1.12
amc → 0 2.0 1.8 0.3
amh → 0 3.7 3.6 0.52
δvalmc

0.20 0.18 0.058
δseamc

2.2 2.3 0.087
δvalms

0.02 0.02 0.01
δseams

1.1 1.1 0.03
δseaml

0.75 0.71 0.10
w0=a, w0 0.46 0.54 0.17

Statistics
Set 1 1.3 1.0 0.51
Set 2 2.5 2.2 0.76
Set 3 4.3 3.6 1.6
Set 4 0.69 0.51 0.26

Other priors 2.3 2.1 0.88

Total 8.0 7.2 2.4
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the l ¼ μ and l ¼ τ cases, excluding the contribution from
δEM, is given in Table XIV together with the budget for
RðD�

sÞ. We see here, as we would expect from Ref. [19],
that the largest uncertainties originate from the statistics on
Set 3, from taking amh → 0 and from taking Mηh → Mηb .
Note that these uncertainties may also be straightfor-

wardly and systematically improved, as discussed in
Ref. [19]. The key improvements would be to include more
gluon field configurations to reduce the statistical errors on
the current finest Set 3. Adding in results from “exafine”
lattices with a ≈ 0.03 fm is also feasible. Thesewould allow
for calculations directly at the physical b-quark mass with
amh ≈ 0.6 [23], reducing the uncertainties associated with
taking amh → 0 and Mηh → Mηb significantly.

VI. COMPARISON TO LHCb RESULTS FOR THE
DIFFERENTIAL DECAY RATE

A. The shape of the differential decay rate

The predicted shape of the differential rate dΓ=dq2 from
our form factors, plotted in Fig. 11, may be compared
directly to recent experimental measurements by LHCb.
The results of these measurements are given in Ref. [56],
where unfolded normalized data are binned according to
the recoil parameter, w ¼ vBs

· vD�
s
, and include correla-

tions. Here, vD�
s
and vBs

are the four-velocities of D�
s and

Bs, respectively. In the Bs rest frame, this gives the simple
form w¼ED�

s
ðp0Þ=MD�

s
¼ðM2

Bs
þM2

D�
s
−q2Þ=ð2MBs

MD�
s
Þ.

Here we integrate our computed differential rate normal-
ized by the total rate over the bins used in Ref. [56]. The w
limits of these bins, together with our integrated normalized
rates for each bin, are given in Table XV together with the
measured values from LHCb.
Our results and those of LHCb are plotted together in

Fig. 13. We see that our results largely agree with the LHCb
measurement. We compute the value of χ2=d:o:f: for these
measured values compared to our predicted values in the
usual way, using χ2 ¼ δgσ−1δg, where the vector δg is
made up of the differences between our values and the
measured values, and σ−1 is the inverse of the covariance
matrix for δg, including correlations from this calculation
and those from experiment. We find χ2=d:o:f: ¼ 1.8 with a
Q-value of 0.1. In Fig. 13, we see that the third bin with
1.1688 < w < 1.2212 seems to be the furthest from our
predicted rate. Excluding this bin from the computation of

χ2=d:o:f: results in a χ2=d:o:f: of 0.62, with a Q-value
of 0.78.
For comparison to others, it is useful to give our results in

the Caprini, Lellouch, and Neubert (CLN) form factor
parametrization [39]. In this scheme, the form factors are
rewritten in terms of a single leading form factor hA1

together with three ratios. These are related to our form
factors by

hA1
ðwÞ ¼ A1ðwÞ

2

wþ 1

1

RD�
s

;

R0ðwÞ ¼ A0ðwÞ
RD�

s

hA1
ðwÞ ;

R1ðwÞ ¼ VðwÞ RD�
s

hA1
ðwÞ ;

R2ðwÞ ¼ A2ðwÞ
RD�

s

hA1
ðwÞ ; ð53Þ

FIG. 13. The differential rate dΓ=dw for B0
s → D�−

s μþνμ as a
function of the recoil w ¼ vBs

· vD�
s
and normalized by the total

decay rate calculated from our form factors is given by the purple
band. We also show our rate integrated across bins and mea-
surements by LHCb [56].

TABLE XV. w bins together with normalized integrated rates for B0
s → D�−

s μþνμ for each bin. The row labeled “This work” gives
those values computed using our form factors, discussed in the text, and the LHCb values are those given in Ref. [56]. These are in
reasonable agreement, with χ2=d:o:f: ¼ 1.8 and a Q-value of 0.1. Note that the majority of the tension with our results originates from
the LHCb value for the bin 1.1688 < w < 1.2212.

w bin 1.0–1.1087 1.1087–1.1688 1.1688–1.2212 1.2212–1.2717 1.2717–1.3226 1.3226–1.3814 1.3814–1.4667

Γbin=Γtot This work 0.1946(82) 0.1537(45) 0.1381(29) 0.1291(18) 0.1213(19) 0.1243(40) 0.139(11)
LHCb [56] 0.183(12) 0.1440(84) 0.1480(76) 0.1280(77) 0.1170(69) 0.1220(62) 0.1580(93)
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where RD�
s
¼ 2

ffiffiffi
r

p
=ð1þ rÞ, with r ¼ MD�

s
=MBs

. These are
then parametrized as

hA1
ðwÞ ¼ hA1

ð1Þ½1 − 8ρ2zðwÞ þ ð53ρ2 − 15Þz2ðwÞ
− ð231ρ2 − 91Þz3ðwÞ�;

R0ðwÞ ¼ R0ð1Þ − 0.11ðw − 1Þ þ 0.01ðw − 1Þ2;
R1ðwÞ ¼ R1ð1Þ − 0.12ðw − 1Þ þ 0.05ðw − 1Þ2;
R2ðwÞ ¼ R2ð1Þ þ 0.11ðw − 1Þ − 0.06ðw − 1Þ2; ð54Þ

where the expressions for hA1
ðwÞ, R1ðwÞ, and R2ðwÞ may

be found in Ref. [39], and the expression for R0ðwÞ
is derived from the results of Ref. [39] in Ref. [60]. In
this case,

zðwÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
wþ 1

p
−

ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffi
wþ 1

p þ ffiffiffi
2

p ; ð55Þ

and hA1
ð1Þ, R0ð1Þ, R1ð1Þ, R2ð1Þ, and ρ2 are the free

parameters. Converting our continuum form factor results
to this scheme and then fitting the CLN parameters gives

hA1
ð1Þ ¼ 0.902ð36Þ;

R0ð1Þ ¼ 1.057ð58Þ;
R1ð1Þ ¼ 1.52ð16Þ;
R2ð1Þ ¼ 0.93ð11Þ;

ρ2 ¼ 1.23ð12Þ: ð56Þ

The value of ρ2 may be compared to the LHCb exper-
imental result given in Ref. [56], ρ2exp ¼ 1.16ð9Þ, and we
see that our result is in good agreement. In Ref. [56], the
term hA1

ð1Þ is absorbed into the normalization, and values
for R1ð1Þ and R2ð1Þ are taken from the HFLAVaverage of
the corresponding parameters determined from experi-
mental measurements of B → D� decay [1]. These are
given by

RB→D�
1 ð1Þ ¼ 1.270ð26Þ;

RB→D�
2 ð1Þ ¼ 0.852ð18Þ: ð57Þ

Reference [1] also gives ρ2B→D� ¼ 1.122ð24Þ. Our results
agree with these values within uncertainties, and so we see
no significant SUð3Þflavor symmetry breaking between the
measured shape of B → D� decay and our results for Bs →
D�

s using the CLN parametrization scheme. We may
also compare our values to those measured by LHCb
in Ref. [6]: ρ2;LHCb ¼ 1.23ð17Þ, RLHCb

1 ð1Þ ¼ 1.34ð25Þ,
and RLHCb

2 ð1Þ ¼ 0.83ð16Þ, where again we see good
agreement.
We may also compare our result for R0ð1Þ to the

value for B → D� decays, which is suppressed by a factor

of m2
l=q

2 in experimentally measured rates, and so is
instead determined from HQET [61]. We find this value,
RB→D�;HQET
0 ð1Þ ¼ 1.17ð2Þ, is in slight tension with our

result, with the central value higher by ≈1.5σ. These
comparisons to experiment and HQET results are summa-
rized in Fig. 14.

B. Determination of jVcbj
In this section, we use the results of Ref. [6] to

reconstruct LHCb’s measured differential decay rate, using
the CLN parametrization scheme, and then compare this to
our results here in order to extract a value of jVcbj. We use
the values of ρ2, R1ð1Þ, R2ð1Þ, ηEW, hA1

ð1Þ, and jVcbj given
in Ref. [6], including their correlations, to reconstruct the
measured differential rate, dΓexp=dq2, parametrized in the
CLN scheme. We then fit this using our computed
ð1=jVcbηEWj2ÞdΓ=dq2 in order to extract a value of
jVcbj. We find

jVcbjCLN ¼ 41.6ð1.5Þlattð1.6Þexpð0.4ÞEM × 10−3; ð58Þ

where the first uncertainty is from our form factor calcu-
lation, the second is from the uncertainty in dΓexp=dq2, and
the final uncertainty is from δEM.
Repeating this analysis using the BGL parameters given

in Ref. [6] to reconstruct dΓexp=dq2 yields a value of

jVcbjBGL ¼ 42.7ð1.5Þlattð1.7Þexpð0.4ÞEM × 10−3; ð59Þ

where again the first uncertainty is from our form
factors and the second is from the uncertainty in
dΓexp=dq2. Note that the difference between jVcbjBGL
and jVcbjCLN is compatible with the difference between
jVcbj determined using the two schemes observed in
Ref. [6], using just the zero recoil lattice result, hA1

ð1Þ,
from Refs. [3,17].
Since the fits to both the CLN and BGL schemes in

Ref. [6] have similar χ2=d:o:f:’s, we take the average

FIG. 14. Plot comparing our results for the CLN shape
parameters ρ2, R1ð1Þ, R2ð1Þ, and R0ð1Þ to those determined
by LHCb in Refs. [6,56]. We also include in this figure the
HFLAV values for the B → D� shape parameters [1], as well as
the HQET result for R0ð1Þ for B → D� [61]. We see good
agreement, except for our value of R0ð1Þ, which is in slight
tension with the HQET result.
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central value of jVcbjBGL and jVcbjCLN, together with the
larger of the two uncertainties from Eq. (59), to give

jVcbj ¼ 42.2ð1.5Þlattð1.7Þexpð0.4ÞEM × 10−3: ð60Þ

The uncertainty is split approximately equally between
lattice QCD and experiment.
We show a comparison of our results to those of Ref. [6],

together with the average values computed using B → Dð�Þ
decay and from b → c inclusive measurements, both taken
from Ref. [1], in Fig. 15. Our result from this first
calculation is not sufficiently accurate to resolve the
long-standing tension between the inclusive and exclusive
Vcb results.
We see from Fig. 15 that a model-independent determi-

nation of jVcbj using Bs → D�
s will require a reduction in

uncertainty by a factor of ≈3 to reach the same precision as
that quoted for the exclusive determination using B → D�
at zero recoil. This reduction is feasible with a direct
comparison of improved lattice and experimental results
that would enable a joint fit. Here we have used exper-
imental results indirectly, through the fitted BGL and CLN
parameters provided by LHCb in Ref. [6]. Fitting our
results directly to binned experimental data for dΓ=dq2
would reduce or remove dependence on the parametrization
scheme used by the experiment and would certainly be
preferable if these data were available. A similar compari-
son of future lattice results for the B → D� differential rate
against binned experimental values will be important for
determining Vcb with reduced dependence on the para-
metrization scheme used.

C. Determining dF ðwÞ=dwjw= 1

After integrating over the angular variables, the differ-
ential rate with respect to the recoil w for BðsÞ → D�

ðsÞ may
be written [39]

dΓðBðsÞ → D�
ðsÞlν̄lÞ

dw

¼ G2
FjηEWVcbj2
48π3

ðMBðsÞ −MD�
ðsÞ
Þ2M3

D�
ðsÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 − 1

p
ðwþ 1Þ2

×

�
1þ 4w

wþ 1

M2
BðsÞ − 2wMBðsÞMD�

ðsÞ
þM2

D�
ðsÞ

ðMBðsÞ −MD�
ðsÞ
Þ2

�

× jFBðsÞ→D�
ðsÞ ðwÞj2: ð61Þ

In Ref. [62], it was emphasized that, for determining
Vcb from B → D�lν̄l decay, information about the
slope of FB→D�ðwÞ at zero recoil, dFB→D� ðwÞ=dwjw¼1,
could significantly reduce the uncertainty in jVcbj. They
consider a hypothetical lattice determination of
dFB→D� ðwÞ=dwjw¼1 ¼ −1.44� 0.07, which results in a
≈25% reduction in the uncertainty of Vcb determined using
the BGL parametrization and also moves the values of Vcb
determined using both CLN and BGL schemes to within
≈0.2σ of one another.
Here we find a value for the slope of

dFBs→D�
s ðwÞ

dw

����
w¼1

¼ −0.94� 0.15; ð62Þ

which we determine using a simple finite difference
method. This is consistent with the slope for B → D�
determined from the CLN parameters extracted from

FIG. 15. Comparison of results for jVcbj. The values obtained
using our lattice results across the full physical q2 range and
LHCb results parametrized using the BGL and CLN schemes
given in Ref. [6] are shown in dark blue. We plot the values
determined by LHCb [6], using BGL and CLN parametrizations
and lattice input only at zero recoil, in light blue. We also show
the average value determined using B → Dð�Þ decay, again with
lattice results at zero recoil only, in green, and the value
determined from inclusive b → c measurements in red. Both
of these latter values are taken from Ref. [1]. The pink shaded
band indicates which results use lattice input only at zero recoil.

FIG. 16. Plot showing F ðwÞ − F ð1Þ, defined in Eq. (61),
against w for our Bs → D�

s form factors computed here, together
with the corresponding values from fits to experimental results for
B → D� including light cone sum rule constraints from Ref. [62].
Here we see that our results for the slope of F ðwÞ in the Bs → D�

s
case, which we expect to be close to the slope for B → D�, are
consistent with the CLN fit but in tension with the BGL fit at the
level of ≈2.5σ.
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experimental data including light cone sum rule constraints
in Ref. [62] of dFB→D�

CLN ðwÞ=dwjw¼1 ¼ −0.84ð16Þ, where
we have estimated the uncertainty from the uncertainties of
the CLN parameters in Ref. [62], excluding correlations.
In Fig. 16, we have plotted F ðwÞ − F ð1Þ against w,

where we see the difference between our results for the
slope of F ðwÞ near zero recoil for Bs → D�

s compared to
the slope computed from CLN and BGL fits to B → D�
experimental data in Ref. [62]. Note that our result for the
slope is ≈2.5σ from the slope computed from the BGL fit,
which we would expect to be similar for both B → D� and
Bs → D�

s based on the small expected size of SUð3Þflavor
breaking effects [54].

VII. LFUV OBSERVABLES AND IMPACT OF NEW
PHYSICS COUPLINGS

In this section, we study the impact of new physics (NP)
couplings on observables in Bs → D�

s decay. We do this by
extending the analysis performed in Ref. [19], where the
NP couplings extracted from fits to RðDÞ and RðD�Þ in
Ref. [10] were used to predict the variations of the relevant
observables defined in Ref. [10] away from their Standard
Model (SM) values for the case of Bc → J=ψlν̄l. For
Bs → D�

s , the relevant observables are the same, specifi-
cally those defined in Eq. (49) as well as their integrated
values and ratios given in Eqs. (50) and (51), respectively,
for the SM couplings. We also compute here the value of
the tauonic/muonic ratio, RðD�

sÞ, for different values of
new physics couplings. Following Ref. [19], we consider
nonzero values for gVR

and gVL
, the complex-valued NP

couplings multiplying left- and right-handed NP vector
currents additional to those present in the SM. Here, as in
Refs. [10,19], we only take these couplings to modify the
tauonic decay.
In the left-hand plot of Fig. 17, we plot the tauonic

differential rate, normalized by the muonic rate, where we
see that both the left- and right-handed NP vector currents

increase the tauonic differential rate markedly. The corre-
sponding values of RgiðD�

sÞ for each NP coupling, together
with the numerical values of gVR

and gVL
, are

gVR
¼ −0.01 − i0.39;

RgVR ðD�
sÞ ¼ 0.2912ð71Þlattð40ÞEM;

gVL
¼ 0.07 − i0.16;

RgVL ðD�
sÞ ¼ 0.2915ð71Þlattð40ÞEM: ð63Þ

These values are both larger than our SM value given in
Eq. (44) and are both consistent with the HFLAV average
experimental value for RðD�Þ ¼ 0.295ð14Þ [1].
The middle and right-hand plots in Fig. 17 show AFB

and Aλτ , respectively. Here we see that only AFB, the
forward-backward asymmetry of the final-state tau lepton,

FIG. 17. dΓ=dq2, AFB, and Aλτ for B̄
0
s → D�þ

s τ−ν̄τ in the SM and for the values of gVR
and gVL

given in Eq. (63) from Ref. [10].
dΓ=dq2 is normalized to the total rate in the l ¼ μ case, Γμ, and the gVL

and gVR
curves overlap. For AF;B, the SM and gVL

curves
overlap, and for Aλτ all three curves overlap. Note that here we do not include the contribution of δEM to the uncertainty.

TABLE XVII. LFUV ratios defined in Ref. [10] for the NP
couplings given in Eq. (63). Note that as expected from the form
of the SM current, a modification to the left-handed vector current
does not change any of these ratios away from their SM values.

SM gVR
gVL

RðAλτÞ 0.524(12) 0.524(12) 0.524(12)

RðFJ=ψ
L Þ 0.878(18) 0.880(18) 0.878(18)

RðAFBÞ 0.345(56) 0.126(57) 0.345(56)

TABLE XVI. Integrated angular variables defined in Ref. [10]
for the NP couplings given in Eq. (63).

SM gVR
gVL

hAλτi 0.520(12) 0.520(12) 0.520(12)

hFD�
s

L
0.440(16) 0.441(16) 0.440(16)

hAFBi −0.092ð24Þ −0.033ð18Þ −0.092ð24Þ
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is sensitive to changes in gVR
only. As expected, modifi-

cations to the left-handed current do not result in a change
away from the SM. For Aλτ, neither gVR

nor gVL
produce

any change. The integrated observables and ratios for
these quantities are given in Tables XVI and XVII,
respectively, where we repeat the SM results given in
Eqs. (50) and (51) for reference. Note that these are all
within 1σ of the equivalent quantities computed for Bc →
J=ψlν̄l in Ref. [19].

VIII. CONCLUSIONS

We have extended the heavy-HISQ methods of Ref. [18]
to compute the four form factors, A0ðq2Þ, A1ðq2Þ, A2ðq2Þ,
and Vðq2Þ, for Bs → D�

slν̄l across the full kinematic range
of the decay for the first time using lattice QCD. As in
Ref. [18], our calculation uses the HISQ action for all
quarks, allowing us to normalize the lattice weak current
operators that couple the b and c quarks fully nonpertur-
batively. We have included with this work the complete set
of parameters and their correlations needed to reconstruct
our form factors, which are expected to be useful in
upcoming improved analyses by the LHCb experiment.
Using these form factors, we have presented the first

computation in lattice QCD of the total decay rate to each
of the three different final-state leptons, as well as the
tauonic/muonic ratio. We find [repeating Eqs. (41) to (44)]

ΓðB0
s → D�−

s eþνeÞ
jηEWVcbj2

¼ 2.07ð17Þlattð2ÞEM × 1013 s−1;

ΓðB0
s → D�−

s μþνμÞ
jηEWVcbj2

¼ 2.06ð16Þlattð2ÞEM × 1013 s−1;

ΓðB0
s → D�−

s τþντÞ
jηEWVcbj2

¼ 5.14ð37Þlattð5ÞEM × 1012 s−1;

RðD�
sÞ ¼ 0.2490ð60Þlattð35ÞEM; ð64Þ

where the full error budget for these quantities is given in
Table XIV. Note that we have included an uncertainty in
RðD�

sÞ to allow for long-distance QED corrections that
could differ between the τ and μ cases. These QED effects
must be addressed in future calculations in order to produce
results with reliable percent-level uncertainties.
Since the current experimental average for RðD�Þ is

causing some tension with the SM, we have considered the
impact of NP scenarios using our form factors (Sec. VII)
and illustrated how a modified left- or right-handed vector
current consistent with measurements of B → Dð�Þ might
show up in Bs → D�

s decay. We have shown that these NP
currents result in a modified value of RðD�

sÞ, which is larger
than in the SM and is within ≈0.6σ of the current
experimental average value of RðD�Þ.
We have also computed the ratio of total SM rates for

Bs → Ds and Bs → D�
s . We find [repeating Eq. (52)]

ΓðB0
s → D−

s μ
þνμÞ

ΓðB0
s → D�−

s μþνμÞ
¼ 0.443ð40Þlattð4ÞEM; ð65Þ

which is in good agreement with the experimental value
from LHCb [6]. We give the forward-backward asymmetry
of the final-state lepton, the lepton polarization asymmetry,
and the longitudinal polarization fraction in Eq. (50).
We have compared the normalized differential decay

rate, ð1=ΓÞdΓ=dq2, computed using our form factors, to the
recent measurement of the shape of the decay by LHCb. We
find that the measurement is broadly consistent with our
computed shape, showing only very mild tension which
can be seen to originate from a single w bin. We have also
used our results to determine the SM CLN parameters ρ2,
R0ð1Þ, R1ð1Þ, R2ð1Þ, and hA1

ð1Þ for Bs → D�
s. The value of

the slope of hA1
ðwÞ, ρ2, measured by LHCb for Bs → D�

s is
found to be in good agreement with our computed value,
while our values for the other parameters are seen to be
consistent with values for the corresponding parameters
for B → D�.
Finally, we have used our result together with the

reconstructed experimentally measured differential decay
rate, parametrized using both the CLN and BGL schemes,
to compute a value of jVcbj. We find that the value
computed in this way, using lattice results across the full
kinematic range, is consistent with that computed using
lattice input for only hA1

ð1Þ. Our values for jVcbj computed
using experimental results parametrized in the CLN and
BGL schemes, respectively, are given in Eqs. (58) and (59).
For jVcbj, we take the average of their central values, with
the larger of the two errors, to find [repeating Eq. (60)]

jVcbj ¼ 42.2ð1.5Þlattð1.7Þexpð0.4ÞEM × 10−3: ð66Þ

This value is not yet accurate enough to resolve the tension
between inclusive and exclusive (using B → D� at zero
recoil) values for Vcb. Note that here, if binned exper-
imental data for the differential rate were available, jVcbj
could be determined by comparing our lattice results
directly to experiment in a joint fit, without the need to
use a parametrization scheme.
Such a model-independent determination of jVcbj using

Bs → D�
s would require a reduction in uncertainty by a

factor of ≈3 in order to be competitive. Such a reduction in
the uncertainty of our form factor results is feasible and
may be achieved by working on “exafine” lattices with
lattice spacings ≈0.03 fm, allowing us to work directly at
the physical b-quark mass, as well as by including addi-
tional configurations to reduce statistical uncertainties at
other values of the lattice spacing, as discussed in Sec. V D.
Our work paves the way for the calculation of form

factors for B → D� decay across the full range of q2. This
would also allow a direct determination of jVcbj from
unfolded experimental results binned in q2, reducing the
reliance on extrapolation to the zero recoil point.
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APPENDIX A: LATTICE RESULTS

Here, in Tables XVIII to XXI, we give the lattice results
for the form factors, including renormalization factors,
which were extracted from the matrix elements in Eq. (13)
resulting from the fits discussed in Section III.

APPENDIX B: RECONSTRUCTING THE FIT

Our parametrization of the form factors for Bs → D�
s in

the continuum limit is given by Eq. (36). It consists of a
pole factor with no uncertainty and a polynomial in z for
which the coefficients with their uncertainties are given in

TABLE XVIII. Lattice form factor results for Set 1. ak here is
the value of the x and y components of the lattice momentum for
the D�

s . ak is calculated from the corresponding twist in Table IV.

amh ak A0 A1 A2 V

0.65 0.0 � � � 0.9261(53) � � � � � �
0.0358913 0.90(13) 0.9251(54) 1.1(2.0) 1.09(48)
0.0717826 0.898(68) 0.9226(57) 1.21(83) 1.21(22)
0.107674 0.893(48) 0.9183(61) 1.22(58) 1.23(15)
0.143565 0.882(38) 0.9120(67) 1.24(50) 1.23(12)
0.179456 0.867(33) 0.9037(76) 1.26(48) 1.22(10)

0.725 0.0 � � � 0.9277(54) � � � � � �
0.0358913 0.92(14) 0.9267(55) 0.8(2.3) 1.10(49)
0.0717826 0.913(71) 0.9242(58) 1.01(71) 1.22(22)
0.107674 0.907(50) 0.9199(62) 1.04(42) 1.24(15)
0.143565 0.897(40) 0.9136(68) 1.06(33) 1.24(12)
0.179456 0.882(35) 0.9052(78) 1.07(30) 1.23(10)

0.8 0.0 � � � 0.9299(56) � � � � � �
0.0358913 0.93(14) 0.9289(57) 0.7(2.7) 1.12(49)
0.0717826 0.930(75) 0.9264(59) 0.91(76) 1.24(22)
0.107674 0.924(53) 0.9220(63) 0.95(40) 1.26(16)
0.143565 0.913(43) 0.9157(70) 0.97(28) 1.25(12)
0.179456 0.898(37) 0.9073(80) 0.98(23) 1.24(11)

TABLE XIX. Lattice form factor results for Set 2. ak here is the
value of the x and y components of the lattice momentum for the
D�

s . ak is calculated from the corresponding twist in Table IV.

amh ak A0 A1 A2 V

0.427 0.0 � � � 0.908(12) � � � � � �
0.0524832 0.89(18) 0.906(13) 1.6(1.7) 1.26(56)
0.104966 0.87(10) 0.896(15) 1.07(96) 1.23(31)
0.15745 0.824(79) 0.879(18) 0.97(94) 1.19(25)
0.209933 0.768(75) 0.857(23) 1.0(1.3) 1.13(24)
0.262416 0.705(78) 0.831(32) 1.2(2.8) 1.06(24)

0.525 0.0 � � � 0.904(13) � � � � � �
0.0524832 0.92(20) 0.903(13) 1.9(1.7) 1.26(58)
0.104966 0.89(11) 0.893(15) 1.13(60) 1.24(33)
0.15745 0.851(87) 0.875(18) 0.97(46) 1.20(27)
0.209933 0.792(83) 0.852(24) 0.91(51) 1.14(25)
0.262416 0.727(86) 0.825(33) 0.90(69) 1.07(26)

0.65 0.0 � � � 0.900(13) � � � � � �
0.0524832 0.96(22) 0.898(14) 2.3(2.2) 1.28(61)
0.104966 0.94(12) 0.888(15) 1.24(63) 1.27(35)
0.15745 0.891(98) 0.870(19) 1.03(37) 1.22(28)
0.209933 0.829(93) 0.847(25) 0.94(33) 1.17(27)
0.262416 0.760(97) 0.821(35) 0.89(37) 1.09(28)

0.8 0.0 � � � 0.896(14) � � � � � �
0.0524832 1.02(25) 0.895(14) 2.6(2.8) 1.32(64)
0.104966 0.99(14) 0.884(16) 1.36(78) 1.31(37)
0.15745 0.94(11) 0.866(20) 1.10(42) 1.26(30)
0.209933 0.88(11) 0.843(26) 0.99(31) 1.20(29)
0.262416 0.80(11) 0.817(36) 0.93(30) 1.13(30)

TABLE XX. Lattice form factor results for Set 3. ak here is the
value of the x and y components of the lattice momentum for the
D�

s . ak is calculated from the corresponding twist in Table IV.

amh ak A0 A1 A2 V

0.5 0.0 � � � 0.8810(73) � � � � � �
0.0585768 0.963(62) 0.8705(79) 1.00(54) 1.42(19)
0.117154 0.907(40) 0.839(11) 0.83(18) 1.31(13)
0.17573 0.818(43) 0.792(18) 0.75(14) 1.20(14)
0.234307 0.714(59) 0.740(32) 0.66(21) 1.08(18)
0.292884 0.620(87) 0.676(68) 0.45(45) 0.97(30)

0.65 0.0 � � � 0.8684(75) � � � � � �
0.0585768 1.034(73) 0.8584(82) 1.00(74) 1.47(20)
0.117154 0.976(48) 0.828(11) 0.86(24) 1.36(14)
0.17573 0.881(51) 0.782(18) 0.79(16) 1.24(14)
0.234307 0.767(69) 0.731(33) 0.72(17) 1.11(20)
0.292884 0.66(10) 0.668(70) 0.59(27) 1.00(33)

0.8 0.0 � � � 0.8580(77) � � � � � �
0.0585768 1.109(84) 0.8485(84) 0.96(92) 1.54(21)
0.117154 1.048(55) 0.819(11) 0.88(30) 1.41(14)
0.17573 0.948(59) 0.774(19) 0.83(20) 1.28(15)
0.234307 0.823(81) 0.723(33) 0.78(19) 1.15(22)
0.292884 0.70(12) 0.660(72) 0.67(26) 1.04(36)
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Table XIII. In this section, we give the correlations between
the z-expansion coefficients which are necessary for
reconstructing our results explicitly, as well as instructions
for using the included Supplemental Material [63] to load
the z-expansion parameters together with their correlations
automatically into PYTHON [64].
The correlation between two coefficients is defined in the

usual way as

CorrðX; YÞ ¼ hðX̄ − XÞðȲ − YÞiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2ðXÞσ2ðYÞ

p ; ðB1Þ

where σ2ðXÞ is the variance of X and X̄ is the mean of X.
The values are tabulated in Tables XXII–XXXI.
In this calculation and in the Supplemental Material [63],

we use the gvar PYTHON package to track and propagate
correlations. Included in the Supplemental Material [63] are
two text files: “CORRELATIONS.txt” contains a diction-
ary including the means and variances of the z-expansion
parameters on the first line and a dictionary detailing the
correlations between these parameters on the second line,
and “CHECKS.txt” contains arrays of q2 values and form

TABLE XXI. Lattice form factor results for Set 4. ak here is the
value of the x and y components of the lattice momentum for the
D�

s . ak is calculated from the corresponding twist in Table IV.

amh ak A0 A1 A2 V

0.5 0.0 � � � 0.9244(90) � � � � � �
0.0356761 0.87(25) 0.9240(92) 8(35) 1.37(93)
0.0713522 0.88(12) 0.9213(98) 6(25) 1.27(44)
0.107028 0.874(90) 0.917(11) 20(65) 1.27(33)
0.142704 0.859(76) 0.911(12) −7ð22Þ 1.25(27)
0.178381 0.840(69) 0.904(13) −1.9ð7.4Þ 1.22(24)

0.65 0.0 � � � 0.9272(98) � � � � � �
0.0356761 0.90(29) 0.927(10) 1.7(4.0) 1.4(1.0)
0.0713522 0.91(14) 0.924(11) 1.2(1.5) 1.28(47)
0.107028 0.90(10) 0.920(12) 1.2(1.1) 1.28(35)
0.142704 0.884(88) 0.914(13) 1.14(97) 1.26(29)
0.178381 0.865(80) 0.906(15) 1.13(97) 1.23(26)

0.8 0.0 � � � 0.931(10) � � � � � �
0.0356761 0.93(33) 0.931(11) 1.7(5.6) 1.5(1.1)
0.0713522 0.95(16) 0.928(12) 1.2(1.6) 1.31(50)
0.107028 0.94(12) 0.923(13) 1.12(84) 1.31(37)
0.142704 0.92(10) 0.917(14) 1.07(61) 1.28(30)
0.178381 0.900(92) 0.909(16) 1.03(53) 1.25(27)

TABLE XXII. Correlation matrix for z-expansion coefficients
of A0.

σ2 aA00 aA01 aA02 aA03

aA00 1.0 −0.3781 −0.007023 −0.004275
aA01 −0.3781 1.0 −0.1681 0.00345
aA02 −0.007023 −0.1681 1.0 −0.002318
aA03 −0.004275 0.00345 −0.002318 1.0

TABLE XXIII. Correlation matrix for z-expansion coefficients
of A0 and A1.

σ2 aA10 aA11 aA12 aA13

aA00 0.2776 −0.02225 0.1044 0.01322
aA01 0.04791 0.0006896 −0.2142 −0.02751
aA02 −0.01723 0.03742 0.0506 −0.003768
aA03 0.003371 −0.008893 0.0279 0.006599

TABLE XXIV. Correlation matrix for z-expansion coefficients
of A0 and A2.

σ2 aA20 aA21 aA22 aA23

aA00 −0.3816 0.2939 −0.09207 −0.006694
aA01 0.03317 −0.4783 0.1869 0.01545
aA02 0.1246 −0.2087 −0.01677 0.004254
aA03 0.005469 −0.001225 −0.03466 −0.004052

TABLE XXV. Correlation matrix for z-expansion coefficients
of A0 and V.

σ2 aV0 aV1 aV2 aV3

aA00 −0.002394 −0.01266 −0.000435 −2.199 × 10−5

aA01 0.003344 0.01268 0.000509 2.598 × 10−5

aA02 −0.001888 0.003397 0.0003099 1.767 × 10−5

aA03 0.0001465 0.0001454 2.376 × 10−5 1.374 × 10−6

TABLE XXVI. Correlation matrix for z-expansion coefficients
of A1.

σ2 aA10 aA11 aA12 aA13

aA10 1.0 −0.03043 −0.01583 −0.01588
aA11 −0.03043 1.0 −0.3144 0.02958
aA12 −0.01583 −0.3144 1.0 −0.09184
aA13 −0.01588 0.02958 −0.09184 1.0

TABLE XXVII. Correlation matrix for z-expansion coefficients
of A1 and A2.

σ2 aA20 aA21 aA22 aA23

aA10 0.3327 −0.09657 0.066 0.01124
aA11 0.4326 0.04303 −0.1541 −0.02324
aA12 −0.3016 0.5087 0.485 0.05027
aA13 −0.005564 −0.007639 0.1149 0.01492
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factor mean and standard deviation values at the corre-
sponding values of q2. This file is used by the PYTHON

script load_fit.py as a simple check that the fit has been

loaded correctly. Running python load_fit.py will load the
parameters from “CORRELATIONS.txt” and compare
values computed at hard coded intervals in q2 to those
in “CHECKS.txt” which were computed as part of this
work. Running python load_fit.py will also produce some
simple plots of the form factors across the full q2 range. We
have tested load_fit.py using PYTHON3.7.5 [64], gvar 9.2.1

[65], NumPy 1.18.2 [66], and MATPLOTLIB3.1.2 [67].

APPENDIX C: BGL PARAMETERS AND
UNITARITY CHECK

1. Conversion to BGL scheme

We may also use our results to determine the parameters
entering the BGL parametrization. This allows us to check
the unitarity constraints:

PðaBGLn Þ2 ≤ 1. To do this, we
convert our form factors to the helicity basis, given by
Ref. [68]:

g ¼ 2

MBs
þMD�

s

V;

f ¼ ðMBs
þMD�

s
ÞA1;

F1 ¼
MBs

þMD�
s

MD�
s

�
−

2M2
Bs
jp⃗0j2

ðMBs
þMD�

s
Þ2 A2

−
1

2
ðt −M2

Bs
þM2

D�
s
ÞA1

�
;

F2 ¼ 2A0; ðC1Þ

where p⃗0 is the D�
s spatial momentum in the Bs rest frame.

The BGL scheme then parametrizes these form factors
using the expansion in z space:

FðtÞ ¼ 1

PðtÞϕðt; t0Þ
X∞
n¼0

aBGLn zðt; t0Þn; ðC2Þ

where the pole function Pi is the same as the one we have
defined in Eq. (24), and the outer functions ϕ are defined in
Ref. [68]. We use the resonance masses given in Ref. [68]
in the pole functions Pi. In order to compute the outer
functions, we use the values of χLðTÞð�uÞ computed in
Ref. [18]. We use our results to output form factor values in
the helicity basis at a large number of q2 values, which we
subsequently fit using Eq. (C2) truncated at n ¼ 3. Our

TABLE XXVIII. Correlation matrix for z-expansion coeffi-
cients of A1 and V.

σ2 aV0 aV1 aV2 aV3

aA10 0.008341 0.009546 0.0007997 4.367 × 10−5

aA11 0.01089 0.02048 0.0008922 4.38 × 10−5

aA12 −0.000702 0.01654 0.0008034 4.176 × 10−5

aA13 −0.001079 0.0005229 1.918 × 10−6 −2.31 × 10−8

TABLE XXIX. Correlation matrix for z-expansion coefficients
of A2.

σ2 aA20 aA21 aA22 aA23

aA20 1.0 −0.6033 0.1237 −0.001915
aA21 −0.6033 1.0 −0.2094 0.01039
aA22 0.1237 −0.2094 1.0 −0.07082
aA23 −0.001915 0.01039 −0.07082 1.0

TABLE XXX. Correlation matrix for z-expansion coefficients
of A2 and V.

σ2 aV0 aV1 aV2 aV3

aA20 0.01155 −0.025 −0.000755 −3.602 × 10−5

aA21 −0.002784 0.04492 0.001724 8.523 × 10−5

aA22 0.003861 −0.002808 0.0001025 7.013 × 10−6

aA23 0.0008794 4.2 × 10−5 2.166 × 10−5 1.227 × 10−6

TABLE XXXI. Correlation matrix for z-expansion coefficients
of V.

σ2 aV0 aV1 aV2 aV3

aV0 1.0 −0.4502 0.0155 0.0007512
aV1 −0.4502 1.0 −0.1043 −0.003208
aV2 0.0155 −0.1043 1.0 −0.0001705
aV3 0.0007512 −0.003208 −0.0001705 1.0

TABLE XXXII. BGL parameters computed by converting the physical continuum results computed using Eq. (25) to the BGL scheme
in Eq. (C2).

aBGL0 aBGL1 aBGL2 aBGL3

PðaBGLn Þ2
F1 0.002402(90) −0.0018ð44Þ −0.041ð97Þ 0.04(82) 0.003(74)
F2 0.0384(21) −0.077ð45Þ −0.25ð42Þ 0.0(1.0) 0.07(21)
f 0.01420(53) −0.019ð14Þ −0.0ð0.2Þ 0.0(1.0) 0.00055(84)
g 0.0300(33) 0.0(0.08) −0.04ð54Þ 0.0(1.0) 0.002(41)
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results, expressed in terms of the BGL parametrization, are
given in Table XXXII, together with the unitarity bounds,
which we find to be far from saturation.

2. Comparison to B → D� BGL coefficients

As well as checking that the unitarity constraints are
satisfied by the BGL parameters for Bs → D�

s, it is also
useful and interesting to reparametrize our results using the
BGL scheme for B → D�. This allows us to compare our
results to those for B → D�, and also allows for our results
to be more readily incorporated into analyses which assume
SUð3Þflav symmetry.
The BGL coefficients are sensitive to the meson masses

through the outer functions and through the definition of
zðq2; t0; tþÞ. In order to reparametrize our results using the
BGL scheme for B → D�, we first convert our results to the
helicity basis, using the Bs and D�

s masses [as in Eq. (C1)],
and then fit these to the BGL parametrization for B → D�,
in which zðq2; t0; tþÞ and the outer functions are computed
using the B and D� masses. In order to compare with the

BGL coefficients for B → D� determined in Refs. [62,69],
weuse themasses andvalues of χLðTÞð�uÞ given inTables IV
and III of Ref. [69]. References [62,69] both use the same
definitions for the outer functions, given in Ref. [38], which
we also use here, as well as choosing t0 ¼ t−. Note that these
definitions differ from those used in Sec. I of Appendix C,
from Ref. [68], where the tþ is given by the true pair
production threshold in each channel (e.g., the threshold for
BD production for the vector channel and the threshold for
B�D production for the axial-vector and pseudoscalar
channels), whereas in Ref. [38] and Refs. [62,69] it is taken
to be ðMD� þMBÞ2 for all channels. Note also that since our
results for Bs → D�

s satisfy the kinematical constraint
Eq. (33), involving the Bs and D�

s masses, the equivalent
constraint for B → D� will not be satisfied and so must be
imposed. We must also impose the constraint F1ðq2maxÞ ¼
ðMB −MD� Þfðq2maxÞ, which will not otherwise be satisfied.
We impose these constraints explicitly by using them to fix
the zeroth-order coefficients of F2 and F1.
We use a BGL parametrization including up to z2 terms

for f; F1, and g, and up to z for F2. The coefficients are
given in Table XXXIII, where we see that our results are
consistent with the BGL parameters for B → D�. The
correlation matrix for our results in this parametrization
scheme is given in Table XXXIV. We conclude that there is
no significant effect on the form factors evident in our
results with a strange spectator quark compared to those
with an up/down one.

APPENDIX D: STABILITY OF OUR FORM
FACTORS UNDER VARIATIONS OF THE FIT

1. Variations of correlator fits

In Figs. 18 and 19, we show the variation of the form
factors A0 and A2, evaluated at q2 ¼ 1 GeV2, 5 GeV2, and
10 GeV2, as in Fig. 6. In these plots, we see that these form
factors do not change significantly as a result of varying the
correlator fit inputs.

TABLE XXXIII. BGL parameters for our results determined
using the BGL parametrization for B → D�, compared to the
BGL parameters extracted from experimental data, lattice results,
and light cone sum rules for B → D� in Ref. [62].

BGL fit: This work, Bs → D�
s B → D� [62]

af0 0.01258(47) 0.01224(18)

af1 −0.008ð15Þ −0.052ðþ27;−15Þ
af2 −0.03ð22Þ 1.0ðþ0;−5Þ
aF1

1
0.00009(402) −0.0070ðþ54;−52Þ

aF1

2
−0.066ð61Þ 0.089ðþ96;−100Þ

ag0 0.0339(37) 0.0289ðþ57;−37Þ
ag1 0.005(100) 0.08ðþ8;−22Þ
ag2 −0.005ð315Þ −1.0ðþ2.0;−0Þ
aF2

1
0.0108(50) � � �

TABLE XXXIV. Correlation matrix for our BGL parameters determined using the BGL parametrization for B → D�, given in
Table XXXIII.

af0 af1 af2 aF1

1 aF1

2
ag0 ag1 ag2 aF2

1

af0 1.0 −0.097 0.057 −0.192 0.031 0.008 0.011 0.006 0.127

af1 1.0 −0.546 0.191 −0.204 0.014 0.011 −0.043 −0.033

af2 1.0 −0.051 0.007 −0.009 0.024 0.081 −0.059

aF1

1
1.0 −0.737 −0.002 0.036 −0.016 0.177

aF1

2
1.0 −0.001 − 0.043 0.019 0.414

ag0 1.0 −0.382 0.006 0.002

ag1 1.0 −0.087 0.014

ag2 1.0 0.007

aF2

1
1.0
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2. Order of expansion

We also investigate the effects of including fewer z terms
in Eq. (25) as well as fewer amc, amh, and 2ΛQCD=Mηh
terms in Eq. (26). Figure 20 gives the total width, as well as
values of the form factors at several values of q2, obtained
using these variations, where we see that our results are
insensitive to the removal of the highest-order terms. We
also investigate the effect of increasing or decreasing the
prior widths of the parameters bijkn in Eq. (26) by a factor of
2. These results are also shown in Fig. 20 where, as in
Ref. [18], we see only a very small effect on the central
values of our results.

3. Variation of pole term

The pole function in Eq. (24) includes the effects of
subthreshold bc̄ resonances in q2. These begin at the square
of the Bc mass, ð6.275 GeVÞ2, significantly above the

maximum physical value of q2max ≈ ð3.25 GeVÞ2. As such,
we do not expect the exact positions or number of poles to
have a large effect on the fits, although the choice of the
number of poles to include will act as a normalization,
changing the magnitude of the coefficients an appearing in
Eq. (25). Here we investigate the effect of including fewer
poles in Eq. (24) by repeating our analysis including only
the first Npoles resonances listed in Table XII.
We take a prior width on the z-expansion coefficients of

5.0 − Npoles. We are able to obtain a good fit, with
χ2=d:o:f: ≈ 0.1 in all cases. Since there are only three
poles for A0 expected below tþ, we include only three poles
for that form factor even in the Npoles case.
Figure 21 shows these results, plotting against the left-

hand y axis the magnitude of the coefficient corresponding
to the order-z term, a1, coming from the fits as a function of
the number of poles included. Results are given for each
form factor. We see that as we include fewer poles,

FIG. 18. As for Fig. 6, showing the stability of the form factor
A0 evaluated at q2 ¼ 1 GeV2, 5 GeV2, and 10 GeV2.

FIG. 19. As for Fig. 6, showing the stability of the form factor
A2 evaluated at q2 ¼ 1 GeV2, 5 GeV2, and 10 GeV2.
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increasingly large z-expansion coefficients are needed
partly in order to account for the removal of physical q2

dependence from missing poles, but also because of the
normalization change.

4. Inclusion of outer functions

In order to investigate the effect of excluding the outer
functions from Eq. (25), we consider using the BGL para-
metrization described in Sec. I of Appendix C for the
extrapolation to the physical point of Sec. IVA. In order
to do this, we first convert our lattice data for the form factors
to the helicity basis given in Eq. (C1). To evaluate the outer
functionsϕ, defined in Ref. [68], as we vary the heavymass,
we must evaluate the function χLðTÞð�uhÞ, defined in
Ref. [38], at different values of uh. As in Ref. [18], we take
ub ¼ 0.33,mpole

b ¼ 4.78, and αs ¼ 0.22. We use uh ¼ ub ×
Mηb=Mηh to approximate the heavy mass dependence of uh,

as well as using mpole
h ¼ mpole

b ×Mηh=Mηphysb
. Our BGL fit

function then has the form

FðtÞ ¼ 1

PðtÞϕðt; t0Þ
X∞
n¼0

aBGL0n zðt; t0Þn; ðD1Þ

FIG. 20. Plot showing the stability of the total rate for
B0
s → D�−

s μþνμ, considering lower-order truncations of z-expan-
sion, discretization, and heavy-mass-dependent terms in Eqs. (25)
and (26). Oðn1; n2; n3; n4Þ corresponds to the result including
terms of highest order Oðð2Λ=MηhÞn1 ; ðamcÞ2n2 ; ðamhÞ2n3 ; zn4Þ.
The vertical black line is our final result, corresponding to
Oð3; 3; 3; 3Þ, and the gray band is its uncertainty. We also include
variations in which we multiply our prior widths by a factor of
either 2 or 0.5, labeled as 0ðσÞ → 0ðσ × 2Þ and 0ðσÞ → 0ðσ=2Þ,
respectively. Our result for the total rate is very stable to these
variations. Note that here we do not include the contribution of
δEM to the uncertainty. We also include similar plots for the form
factors, evaluated at q2 ¼ 1 GeV2, 5 GeV2, and 10 GeV2,
plotted in green, red, and blue, respectively.

FIG. 21. Magnitude of the OðzÞ coefficient, a1, for each form
factor plotted against the number of poles included in Eq. (24).
The prior widths on the bijkn are scaled according to the number of
poles; see text. Note that the maximum number of poles included
for A0 is 3. The black crosses and error bars give the total width
for the l ¼ μ case, Γ=jηEWVcbj2, determined from that fit, using
the right-hand y axis. The gray band corresponds to our final
result for the total width usingNpoles ¼ 4, and prior values for bijkn
of 0(1). This shows how the different coefficients as a function of
Npoles give a very stable result for the total width. Note that here
we do not include the contribution of δEM to the uncertainty in
Γ=jηVcbj2.
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TABLE XXXV. BGL parameters computed using the full BGL scheme, including outer functions, for the physical continuum
extrapolation using Eq. (D1). Note that these values are in good agreement with those computed by converting the physical continuum
results computed using Eq. (25) to the BGL scheme, given in Table XXXII.

aBGL00 aBGL01 aBGL02 aBGL03

PðaBGL0n Þ2
F1 0.00235(10) −0.0058ð63Þ −0.04ð13Þ −0.31ð91Þ 0.10(56)
F2 0.0357(33) −0.122ð79Þ −0.20ð87Þ 0.0(1.0) 0.06(34)
f 0.01388(62) −0.017ð26Þ −0.10ð54Þ 0.0(1.0) 0.01(11)
g 0.0329(57) −0.03ð11Þ 0.01(99) 0.0(1.0) 0.002(21)

FIG. 22. The form factors as a function of the recoil w. The red curves, denoted “A, V” in the legend, are the result of this work,
computed using Eq. (25) to fit the lattice form factor data without the use of outer functions. The green curves use the full BGL
parametrization [Eq. (D1)], including the outer functions ϕðt; t0Þ and their heavy mass dependence, to fit the lattice form factor data. The
blue curves were computed using Eq. (D4), fitting the q2 dependence using powers of w − 1 without including any pole terms or outer
functions. Here we see that the three methods produce consistent results for the form factors.
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with

aBGL0n ¼
X3
j;k;l¼0

b0jkln ΔðjÞ
h

�
amval

c

π

�
2k
�
amval

h

π

�
2l

N n; ðD2Þ

where N and ΔðjÞ
h have the same definitions as in the main

analysis discussed in Sec. IVA.We take t0 ¼ t− ¼ q2max and
use the same approximate form as in Sec. IVA for the
variation of the pole masses with the heavy quark mass. We
take the same priors as in Sec. IVA for the coefficients b0jkln

and for those entering N n. In this fit, we also impose the
kinematical constraint at q2 ¼ 0, which here takes the form
2F1ð0Þ − F2ð0ÞðM2

Bs
−M2

D�
s
Þ ¼ 0. Note that this is equiv-

alent to the constraint 2MD�
s
A0ð0Þ ¼ ðMD�

s
þMHs

ÞA1ð0Þ þ
ðMD�

s
−MHs

ÞA2ð0Þ from the definitions of the helicity basis
form factors given in Eq. (C1). We also have, from the
definitions in Eq. (C1), the additional condition that
F1ðq2maxÞ ¼ ðMBs

−MD�
s
Þfðq2maxÞ. We impose these con-

ditions both at the physical point and on each lattice,
including a nuisance term as in Sec. IVA. Note that here
we neglect the running of αs with heavy mass, allowing for
this to be taken up elsewhere in the fit. The results of fitting
our lattice data to Eq. (D1) are given in Table XXXV, where
we see that the BGLparameters from this fit are very close to
those given in Table XXXII, which were computed from the
continuum form factors extrapolated to the physical con-
tinuum using Eq. (25) without including outer functions. In
both cases, the unitarity bounds are far from saturation
without the need to impose this constraint in our fits. This
shows that the approach adopted here and in Ref. [18], of
excluding the outer functions from the physical continuum
extrapolation, is consistent with including them.
The physical continuum form factors computed using

Eq. (D1) (converted to the A0; A1; A2; V basis) are given in
Fig. 22, together with those computed using Eq. (25). The
total rate computed using the outer functions is, for the l¼μ
case, ΓBGL0¼1.88ð20Þlattð2ÞEM×1013 s−1, compared to the
value Γ ¼ 2.06ð16Þlattð2ÞEM × 1013 s−1 computed in Sec. V,
again demonstrating that the exclusion of the outer functions
during the extrapolation to the physical continuum point does
not have any significant effect on our results.
In Fig. 22, we also plot form factors resulting from

performing the extrapolation in the HQET basis. The form
factors in this basis are related to the form factors in the
helicity basis by

g¼ hV
MBs

ffiffiffi
r

p ;

f¼MBs

ffiffiffi
r

p ð1þwÞhA1
;

F1¼M2
Bs

ffiffiffi
r

p ð1þwÞððw− rÞhA1
− ðw−1ÞðrhA2

þhA3
ÞÞ;

F2¼
1ffiffiffi
r

p ðð1þwÞhA1
þðrw−1ÞhA2

þðr−wÞhA3
Þ; ðD3Þ

and for this extrapolation we use a simple form in powers of
w − 1, which does not include any information about the
pole terms:

FðtÞ ¼
X∞
n¼0

aHQETn ðw − 1Þn: ðD4Þ

Here,

aHQETn ¼
X3
j;k;l¼0

b00jkln ΔðjÞ
h

�
amval

c

π

�
2k
�
amval

h

π

�
2l

N n: ðD5Þ

We see in Fig. 22 that our final results for the continuum
form factors, extracted by fitting lattice data to Eq. (25), are
broadly consistent with the two alternative fits discussed in
this section: the HQET-like fit to simple powers of w − 1,
Eq. (D4), and the full BGL expression, Eq. (D1). We also
show in Fig. 23 that the shape of the differential decay rate
resulting from each of these fits is consistent. The total rate
for the semimuonic mode resulting from the w − 1 fit is
1.95ð19Þ × 1013 s−1, which is consistent with our final
result, Γ ¼ 2.06ð16Þlattð2ÞEM × 1013 s−1, computed using
Eq. (25) to perform the extrapolation.

FIG. 23. The normalized differential rate 1
Γ

dΓ
dq2

resulting from fit
variations. The red curve, denoted “A,V” in the legend, is the
result of this work, computed using Eq. (25) to fit the lattice form
factor data without the use of outer functions. The green curve
uses the full BGL parametrization [Eq. (D1)], including the outer
functions ϕðt; t0Þ and their heavy mass dependence, to fit the
lattice form factor data. The blue curve was computed using
Eq. (D4), fitting the q2 dependence using powers of w − 1
without including any pole terms or outer functions. Here we see
that the three methods produce consistent results for the differ-
ential rate.

JUDD HARRISON and CHRISTINE T. H. DAVIES PHYS. REV. D 105, 094506 (2022)

094506-30



[1] Y. S. Amhis et al. (HFLAV Collaboration), Eur. Phys. J. C
81, 226 (2021).

[2] J. A. Bailey et al. (Fermilab Lattice, MILC Collaborations),
Phys. Rev. D 89, 114504 (2014).

[3] J. Harrison, C. Davies, and M. Wingate (HPQCD Collabo-
ration), Phys. Rev. D 97, 054502 (2018).

[4] D. Bigi, P. Gambino, and S. Schacht, Phys. Lett. B 769, 441
(2017).

[5] M. Bordone, M. Jung, and D. van Dyk, Eur. Phys. J. C 80,
74 (2020).

[6] R. Aaij et al. (LHCb Collaboration), Phys. Rev. D 101,
072004 (2020).

[7] C. Kim, G. Lopez-Castro, S. Tostado, and A. Vicente, Phys.
Rev. D 95, 013003 (2017).

[8] P. Gambino, M. Jung, and S. Schacht, Phys. Lett. B 795, 386
(2019).

[9] G. Caria et al. (Belle Collaboration), Phys. Rev. Lett. 124,
161803 (2020).

[10] D. Bečirević, M. Fedele, I. Nišandžić, and A. Tayduganov,
arXiv:1907.02257.

[11] R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 120,
121801 (2018).

[12] R. Aaij et al. (LHCb Collaboration), arXiv:1808.08865.
[13] J. A. Bailey et al. (MILC Collaboration), Phys. Rev. D 92,

034506 (2015).
[14] H. Na, C. M. Bouchard, G. P. Lepage, C. Monahan, and J.

Shigemitsu (HPQCD Collaboration), Phys. Rev. D 92,
054510 (2015); 93, 119906(E) (2016).

[15] A. Bazavov et al. (Fermilab Lattice, MILC Collaborations),
arXiv:2105.14019.

[16] E. McLean, C. Davies, J. Koponen, and A. Lytle, Phys. Rev.
D 101, 074513 (2020).

[17] E. McLean, C. T. H. Davies, A. T. Lytle, and J. Koponen,
Phys. Rev. D 99, 114512 (2019).

[18] J. Harrison, C. T. H. Davies, and A. Lytle (HPQCD Col-
laboration), Phys. Rev. D 102, 094518 (2020).

[19] J. Harrison, C. T. H. Davies, and A. Lytle (LATTICE-
HPQCD Collaboration), Phys. Rev. Lett. 125, 222003
(2020).

[20] G. C. Donald, C. T. H. Davies, J. Koponen, and G. P.
Lepage, Phys. Rev. Lett. 112, 212002 (2014).

[21] C. McNeile, C. T. H. Davies, E. Follana, K. Hornbostel, and
G. P. Lepage (HPQCD Collaboration), Phys. Rev. D 85,
031503 (2012).

[22] A. Bazavov et al., Phys. Rev. D 98, 074512 (2018).
[23] D. Hatton, C. T. H. Davies, J. Koponen, G. P. Lepage, and

A. T. Lytle, Phys. Rev. D 103, 054512 (2021).
[24] A. Sirlin, Nucl. Phys. B196, 83 (1982).
[25] B. Chakraborty, W. G. Parrott, C. Bouchard, C. T. H.

Davies, J. Koponen, and G. P. Lepage, Phys. Rev. D 104,
034505 (2021).

[26] J. D. Richman and P. R. Burchat, Rev. Mod. Phys. 67, 893
(1995).

[27] A. Bazavov et al. (MILC Collaboration), Phys. Rev. D 87,
054505 (2013).

[28] A. Bazavov et al. (MILC Collaboration), Phys. Rev. D 82,
074501 (2010).

[29] C. T. Sachrajda and G. Villadoro, Phys. Lett. B 609, 73
(2005).

[30] D. Guadagnoli, F. Mescia, and S. Simula, Phys. Rev. D 73,
114504 (2006).

[31] S. Borsanyi et al., J. High Energy Phys. 09 (2012) 010.
[32] R. J. Dowdall, C. T. H. Davies, G. P. Lepage, and C.

McNeile, Phys. Rev. D 88, 074504 (2013).
[33] B. Chakraborty, C. T. H. Davies, P. G. de Oliviera, J.

Koponen, G. P. Lepage, and R. S. Van de Water, Phys.
Rev. D 96, 034516 (2017).

[34] B. Chakraborty, C. T. H. Davies, B. Galloway, P. Knecht, J.
Koponen, G. C. Donald, R. J. Dowdall, G. P. Lepage, and C.
McNeile, Phys. Rev. D 91, 054508 (2015).

[35] G. C. Donald, C. T. H. Davies, J. Koponen, and G. P. Lepage
(HPQCD Collaboration), Phys. Rev. D 90, 074506 (2014).

[36] G. P. Lepage, corrfitter Version 8.0.2, github.com/gplepage/
corrfitter.

[37] C. Monahan, J. Shigemitsu, and R. Horgan, Phys. Rev. D
87, 034017 (2013).

[38] C. Boyd, B. Grinstein, and R. F. Lebed, Phys. Rev. D 56,
6895 (1997).

[39] I. Caprini, L. Lellouch, and M. Neubert, Nucl. Phys. B530,
153 (1998).

[40] R. J. Hill, eConf C060409 (2006) 027.
[41] M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98,

030001 (2018).
[42] R. J. Dowdall, C. T. H. Davies, G. P. Lepage, and C.

McNeile, Phys. Rev. D 88, 074504 (2013).
[43] D. Hatton, C. T. H. Davies, B. Galloway, J. Koponen, G. P.

Lepage, and A. T. Lytle (HPQCD Collaboration), Phys. Rev.
D 102, 054511 (2020).

[44] R. Aaij et al. (LHCb Collaboration), Phys. Rev. D 95,
032005 (2017).

[45] A. M. Sirunyan et al. (CMS Collaboration), Phys. Rev. Lett.
122, 132001 (2019).

[46] R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 122,
232001 (2019).

[47] R. J. Dowdall, C. T. H. Davies, T. C. Hammant, and R. R.
Horgan, Phys. Rev. D 86, 094510 (2012).

[48] E. J. Eichten and C. Quigg, Phys. Rev. D 49, 5845 (1994).
[49] S. Godfrey, Phys. Rev. D 70, 054017 (2004).
[50] N.Devlani,V.Kher, andA.Rai, Eur. Phys. J.A50, 154 (2014).
[51] E. Follana, Q. Mason, C. Davies, K. Hornbostel, G. P.

Lepage, J. Shigemitsu, H. Trottier, and K. Wong (HPQCD,
UKQCD Collaborations), Phys. Rev. D 75, 054502 (2007).

[52] P. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys.
2020, 083C01 (2020).

[53] L. J. Cooper, C. T. Davies, J. Harrison, J. Komijani, and M.
Wingate (HPQCD Collaboration), Phys. Rev. D 102,
014513 (2020).

[54] M. Bordone, N. Gubernari, D. van Dyk, and M. Jung, Eur.
Phys. J. C 80, 347 (2020).

[55] G. Isidori and O. Sumensari, Eur. Phys. J. C 80, 1078 (2020).
[56] R. Aaij et al. (LHCb Collaboration), J. High Energy Phys.

12 (2020) 144.
[57] C. Oswald et al. (Belle Collaboration), Phys. Rev. D 92,

072013 (2015).
[58] G. P. Lepage, lsqfit Version 11.4, github.com/gplepage/

lsqfit.
[59] C. Bouchard, G. P. Lepage, C. Monahan, H. Na, and J.

Shigemitsu, Phys. Rev. D 90, 054506 (2014).

BS → D�
S FORM FACTORS FOR THE … PHYS. REV. D 105, 094506 (2022)

094506-31

https://doi.org/10.1140/epjc/s10052-020-8156-7
https://doi.org/10.1140/epjc/s10052-020-8156-7
https://doi.org/10.1103/PhysRevD.89.114504
https://doi.org/10.1103/PhysRevD.97.054502
https://doi.org/10.1016/j.physletb.2017.04.022
https://doi.org/10.1016/j.physletb.2017.04.022
https://doi.org/10.1140/epjc/s10052-020-7616-4
https://doi.org/10.1140/epjc/s10052-020-7616-4
https://doi.org/10.1103/PhysRevD.101.072004
https://doi.org/10.1103/PhysRevD.101.072004
https://doi.org/10.1103/PhysRevD.95.013003
https://doi.org/10.1103/PhysRevD.95.013003
https://doi.org/10.1016/j.physletb.2019.06.039
https://doi.org/10.1016/j.physletb.2019.06.039
https://doi.org/10.1103/PhysRevLett.124.161803
https://doi.org/10.1103/PhysRevLett.124.161803
https://arXiv.org/abs/1907.02257
https://doi.org/10.1103/PhysRevLett.120.121801
https://doi.org/10.1103/PhysRevLett.120.121801
https://arXiv.org/abs/1808.08865
https://doi.org/10.1103/PhysRevD.92.034506
https://doi.org/10.1103/PhysRevD.92.034506
https://doi.org/10.1103/PhysRevD.92.054510
https://doi.org/10.1103/PhysRevD.92.054510
https://doi.org/10.1103/PhysRevD.93.119906
https://arXiv.org/abs/2105.14019
https://doi.org/10.1103/PhysRevD.101.074513
https://doi.org/10.1103/PhysRevD.101.074513
https://doi.org/10.1103/PhysRevD.99.114512
https://doi.org/10.1103/PhysRevD.102.094518
https://doi.org/10.1103/PhysRevLett.125.222003
https://doi.org/10.1103/PhysRevLett.125.222003
https://doi.org/10.1103/PhysRevLett.112.212002
https://doi.org/10.1103/PhysRevD.85.031503
https://doi.org/10.1103/PhysRevD.85.031503
https://doi.org/10.1103/PhysRevD.98.074512
https://doi.org/10.1103/PhysRevD.103.054512
https://doi.org/10.1016/0550-3213(82)90303-0
https://doi.org/10.1103/PhysRevD.104.034505
https://doi.org/10.1103/PhysRevD.104.034505
https://doi.org/10.1103/RevModPhys.67.893
https://doi.org/10.1103/RevModPhys.67.893
https://doi.org/10.1103/PhysRevD.87.054505
https://doi.org/10.1103/PhysRevD.87.054505
https://doi.org/10.1103/PhysRevD.82.074501
https://doi.org/10.1103/PhysRevD.82.074501
https://doi.org/10.1016/j.physletb.2005.01.033
https://doi.org/10.1016/j.physletb.2005.01.033
https://doi.org/10.1103/PhysRevD.73.114504
https://doi.org/10.1103/PhysRevD.73.114504
https://doi.org/10.1007/JHEP09(2012)010
https://doi.org/10.1103/PhysRevD.88.074504
https://doi.org/10.1103/PhysRevD.96.034516
https://doi.org/10.1103/PhysRevD.96.034516
https://doi.org/10.1103/PhysRevD.91.054508
https://doi.org/10.1103/PhysRevD.90.074506
github.com/gplepage/corrfitter
github.com/gplepage/corrfitter
github.com/gplepage/corrfitter
https://doi.org/10.1103/PhysRevD.87.034017
https://doi.org/10.1103/PhysRevD.87.034017
https://doi.org/10.1103/PhysRevD.56.6895
https://doi.org/10.1103/PhysRevD.56.6895
https://doi.org/10.1016/S0550-3213(98)00350-2
https://doi.org/10.1016/S0550-3213(98)00350-2
https://doi.org/10.1103/PhysRevD.98.030001
https://doi.org/10.1103/PhysRevD.98.030001
https://doi.org/10.1103/PhysRevD.88.074504
https://doi.org/10.1103/PhysRevD.102.054511
https://doi.org/10.1103/PhysRevD.102.054511
https://doi.org/10.1103/PhysRevD.95.032005
https://doi.org/10.1103/PhysRevD.95.032005
https://doi.org/10.1103/PhysRevLett.122.132001
https://doi.org/10.1103/PhysRevLett.122.132001
https://doi.org/10.1103/PhysRevLett.122.232001
https://doi.org/10.1103/PhysRevLett.122.232001
https://doi.org/10.1103/PhysRevD.86.094510
https://doi.org/10.1103/PhysRevD.49.5845
https://doi.org/10.1103/PhysRevD.70.054017
https://doi.org/10.1140/epja/i2014-14154-2
https://doi.org/10.1103/PhysRevD.75.054502
https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1103/PhysRevD.102.014513
https://doi.org/10.1103/PhysRevD.102.014513
https://doi.org/10.1140/epjc/s10052-020-7850-9
https://doi.org/10.1140/epjc/s10052-020-7850-9
https://doi.org/10.1140/epjc/s10052-020-08653-w
https://doi.org/10.1007/JHEP12(2020)144
https://doi.org/10.1007/JHEP12(2020)144
https://doi.org/10.1103/PhysRevD.92.072013
https://doi.org/10.1103/PhysRevD.92.072013
github.com/gplepage/lsqfit
github.com/gplepage/lsqfit
github.com/gplepage/lsqfit
https://doi.org/10.1103/PhysRevD.90.054506


[60] S. Fajfer, J. F. Kamenik, and I. Nisandzic, Phys. Rev. D 85,
094025 (2012).

[61] F. U. Bernlochner, Z. Ligeti, M. Papucci, and D. J.
Robinson, Phys. Rev. D 95, 115008 (2017); 97, 059902(E)
(2018).

[62] D. Bigi, P. Gambino, and S. Schacht, Phys. Lett. B 769, 441
(2017).

[63] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevD.105.094506 for loading
correlated parameters into PYTHON.

[64] G. Van Rossum and F. L. Drake, PYTHON3 Reference
Manual (CreateSpace, Scotts Valley, CA, 2009).

[65] G. P. Lepage, gvarVersion 9.2.1, github.com/gplepage/gvar.
[66] S. van der Walt, S. C. Colbert, and G. Varoquaux, Comput.

Sci. Eng. 13, 22 (2011).
[67] J. D. Hunter, Comput. Sci. Eng. 9, 90 (2007).
[68] T. D. Cohen, H. Lamm, and R. F. Lebed, J. High Energy

Phys. 09 (2018) 168.
[69] D. Bigi, P. Gambino, and S. Schacht, J. High Energy Phys.

11 (2017) 061.

JUDD HARRISON and CHRISTINE T. H. DAVIES PHYS. REV. D 105, 094506 (2022)

094506-32

https://doi.org/10.1103/PhysRevD.85.094025
https://doi.org/10.1103/PhysRevD.85.094025
https://doi.org/10.1103/PhysRevD.95.115008
https://doi.org/10.1103/PhysRevD.97.059902
https://doi.org/10.1103/PhysRevD.97.059902
https://doi.org/10.1016/j.physletb.2017.04.022
https://doi.org/10.1016/j.physletb.2017.04.022
http://link.aps.org/supplemental/10.1103/PhysRevD.105.094506
http://link.aps.org/supplemental/10.1103/PhysRevD.105.094506
http://link.aps.org/supplemental/10.1103/PhysRevD.105.094506
http://link.aps.org/supplemental/10.1103/PhysRevD.105.094506
http://link.aps.org/supplemental/10.1103/PhysRevD.105.094506
http://link.aps.org/supplemental/10.1103/PhysRevD.105.094506
http://link.aps.org/supplemental/10.1103/PhysRevD.105.094506
github.com/gplepage/gvar
github.com/gplepage/gvar
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1007/JHEP09(2018)168
https://doi.org/10.1007/JHEP09(2018)168
https://doi.org/10.1007/JHEP11(2017)061
https://doi.org/10.1007/JHEP11(2017)061

