
 

 
 
 
 

Dawkins, L. C., Osborne, J. M., Economou, T., Darch, G. J.C. and Stoner, O. R. (2022) 

The Advanced Meteorology Explorer: a novel stochastic, gridded daily rainfall 

generator. Journal of Hydrology, 607, 127478. (doi: 10.1016/j.jhydrol.2022.127478). 

 

This is the Author Accepted Manuscript. 

There may be differences between this version and the published version. You are 

advised to consult the publisher’s version if you wish to cite from it. 

 

http://eprints.gla.ac.uk/269731/ 

 

Deposited on: 28 April 2022 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Enlighten – Research publications by members of the University of Glasgow 

http://eprints.gla.ac.uk  

  

https://doi.org/10.1016/j.jhydrol.2022.127478
http://eprints.gla.ac.uk/265262/
http://eprints.gla.ac.uk/


The Advanced Meteorology Explorer: a novel1

stochastic, gridded daily rainfall generator2

Laura C. Dawkins1,*, Joe M. Osborne1, Theodoros Economou2, Geoff J. C. Darch3, and3

Oliver R. Stoner4
4

1Met Office, Fitzroy Road, Exeter, Devon, EX1 3PB, UK5

2Climate and Atmosphere Research Center, The Cyprus Institute, Cyprus6

3Anglian Water Services, Cambridgeshire, UK7

4School of Mathematics and Statistics, University of Glasgow, Glasgow, UK8

*laura.dawkins@metoffice.gov.uk9

Abstract10

Synthetic rainfall simulations from stochastic models are commonly used for water resource management, as they are able to11

provide a wider range of meteorological conditions than those seen in the observed record. Here, we present a novel stochastic12

rainfall modelling framework, the Advanced Meteorology Explorer (AME), which combines and extends existing methods13

to enhance model flexibility, and meet a number of key water industry needs. This framework allows for the simulation of14

physically consistent synthetic daily rainfall data, coherently in space and time, on a high-resolution grid over a region of15

interest. The AME uses an advanced hidden Markov model structure within a Bayesian hierarchical framework to represent16

daily rainfall at a set of locations in a region, conditional on important climate drivers. The climate drivers included in the17

rainfall model at each location are able to vary using penalised regression, ensuring a transferable model that can be applied to18

different locations without adaptation. The dependence between locations is modelled following a flexible copula approach, able19

to capture varying dependence structures within the data, allowing for spatially coherent simulations at the modelled locations.20

Simulations are then interpolated to a high-resolution grid using a terrain adjusted inverse-distance weighted interpolation21

method.22

23

The AME framework is applied to 105 years (1914-2018) of daily rainfall data at 39 sites in the Greater Anglian region24



of the UK, and used to generate 1000 alternative realisations of the same period on a 5 km grid over the region. Valida-25

tion of these simulations shows how the AME framework is able to accurately capture rainfall occurrence and intensity, as26

well as long-duration meteorological drought behaviour, important for quantifying water resource risk in this dry region.27

This framework has the potential to be applied to other regions, incorporate additional weather variables and the effect of28

climate change, and the resulting simulations can be used for environmental risk assessment in any industry impacted by rainfall.29

30

Keywords: Stochastic rainfall model; Hidden Markov Model; Bayesian hierarchical framework; Copula; Vine-copula;31

Penalised Regression; Meteorological drought characterisation.32

1 Introduction33

Stochastic models of multivariate rainfall behaviour have been used within the field of water resource management for many34

years (Wilks and Wilby 1999; Serinaldi and Kilsby 2012; Breinl et al. 2013; Serinaldi and Kilsby 2014b; Verdin et al. 2019).35

These models simulate synthetic rainfall time series that can be used for environmental risk assessment. The intention is that36

these stochastic simulations capture a greater range of plausible meteorological scenarios than seen in the historical record,37

allowing for a more comprehensive quantification of possible water resource challenges. In particular, in the Greater Anglian38

region of the UK, stochastic rainfall simulations are commonly used to explore the range of potential long-duration drought39

behaviours, as these are known to have a large impact on water resource management in this dry region. This insight allows for40

more informed infrastructure planning and decision making, ensuring the water industry can provide a resilient water service to41

those living in their region.42

43

Specifically, the UK water industry has been using rainfall generators for water resources planning for a decade. In 2011 work44

was undertaken by Southern Water and its consultant Atkins, working with Newcastle University and the University of East45

Anglia. The rainfall generator produced from this (Serinaldi and Kilsby, 2012) was spatially coherent across Southern Water’s46

three geographically discrete supply areas. The model was based on non-parametric bootstrap re-sampling and a parametric47

Generalised Additive Model for Location, Scale and Shape (GAMLSS). It accounted for the relationship between rainfall and48

circulation indices: the North Atlantic Oscillation (NAO) and sea surface temperature (SST). The model successfully simulated49

low (and high) rainfall more extreme than observed events, thus facilitating use in assessing the impact of severe drought.50

51
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This rainfall generator was adopted in practice within the UK water industry, with further work undertaken by industry52

to produce spatial, daily data for use in hydrological modelling. However, there were some limitations with the outcomes of53

this latter process (related to the industry application rather than the underlying modelling framework). Firstly, the generated54

hydrological droughts at the severe end of the scale (quantified using hydrological models applied to the simulated rainfall)55

tended to have a small but systematic wet skew when compared to available observations. In practice this was found to lead to56

a significant under preparedness for severe droughts. This necessitated a post-processing step which brought the median of57

the stochastic rainfall distribution close to the corresponding observed quantiles. Secondly, the need for daily catchment data58

meant that further data processing was required, adding uncertainty. The rainfall generator and post-processing steps were59

subsequently improved and added to, including development of a fully parametric version of the model, with application to60

water resources planning at company, regional and national levels (Water UK, 2016).61

62

The rainfall generator was reviewed and updated by the Met Office in 2016 for use in the Water Resources East project63

led by Anglian Water. The rainfall generator review explored training the model on seasonal rather than monthly data, using64

monthly interdependencies on NAO and SST, and the addition of the East Atlantic (EA) pattern. The updated rainfall generator65

was applied to 39 sites across the east of England and used in hydrological modelling. Although reduced, the wet skew in the66

simulations remained. Even after the rainfall correction, flows were found to be skewed, perhaps due to the simplicity of the67

correction or due to issues in the post-processing steps such as the conversion to catchment averages.68

69

To improve upon this current industry approach, UK water companies require a rainfall model that is based on sound70

statistical theory, and enables the simulation of synthetic rainfall time series with the following properties:71

1. Simulated on a daily temporal resolution, to provide the granularity required for water resource management decision72

making, with the appropriate dependency in time;73

2. Accurately capturing known behaviour of UK rainfall variability, such as that related to the effect of climate drivers;74

3. On a high-resolution grid covering their water resource region, with appropriate dependency in space;75

4. Providing realistic long-duration meteorological drought characteristics, to ensure water resource risk is appropriately76

quantified.77

A wealth of stochastic rainfall and weather generators have been developed in recent years. These exist on monthly, daily, and78
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sub-daily time-scales and have been developed with different levels of complexity and refinement to address different needs.79

Indeed, many examples provide realistic stochastic daily rainfall simulations at multiple locations, developed using a variety of80

approaches. These include non-parametric approaches, such as nearest neighbour bootstrapping (Buishand and Brandsma,81

2001); semi-parametric approaches, where daily precipitation amounts are generated by first re-sampling observed values82

and then sampling and reshuffling synthetic precipitation amounts from parametric distribution functions (Breinl et al., 2013,83

2015); and parametric models, which represent daily precipitation at individual locations using a chain-dependent process84

(Katz, 1977), and the spatial dependence between locations using latent Gaussian Processes (GPs) (Wilks, 2009; Kleiber et al.,85

2012; Serinaldi and Kilsby, 2014b; Oriani et al., 2018; Verdin et al., 2019). These parametric methods often model daily86

precipitation occurrence using a two-state, first-order Markov chain, and the (non-zero) precipitation amounts are drawn from a87

fitted probability distribution conditional on the simulation of a wet day. Serinaldi and Kilsby (2014b) show how using this88

first-order Markov chain model structure to simulate daily synthetic rainfall provides reasonable agreement with the observed89

lag-1, lag-2, lag-180 and lag-365 day temporal autocorrelations (relevant for addressing point 1 above). Moreover, daily rainfall90

extremes have been shown to be modelled well, especially when marginal distribution families are wisely selected, such as91

those described by Li et al. (2012) and Naveau et al. (2016).92

93

Parametric Hidden Markov Models (HMMs) have also been developed for multi-site daily stochastic rainfall simulation94

(Holsclaw et al., 2016; Kroiz et al., 2020). HMMs characterise rainfall as being associated with one of a finite number of95

‘hidden’ states (e.g. dry, wet and very wet), and model rainfall magnitude and occurrence in each state separately using a96

different statistical distribution. The HMM therefore consists of two parts, firstly a model for the transitions between states97

at consecutive time steps (e.g. the probability of transitioning into a wet state in the next time-step, given you are currently98

in a dry state). This is also often represented using a first-order Markov chain. Secondly, within each of the HMM states,99

a two stage model for the occurrence of rainfall and, if rainfall occurs, the quantity of rainfall at that given time-step. This100

hidden state structure provides a great deal of flexibility, allowing for temporal structures in both the rainfall occurrences and101

intensities to be captured together, through the persistence of each state, meaning higher temporal resolutions can be modelled102

with increased accuracy (Stoner and Economou, 2020a). Specifically, Stoner and Economou (2020a) show how a single site,103

three state, HMM is generally able to capture the temporal dependency structure of hourly rainfall data well (again, relevant for104

addressing point 1 above).105

106
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A further advantage of these parametric approaches is in their ability to introduce non-stationarity within the model pa-107

rameters, through the influence of time-varying covariates, such as large-scale atmospheric indicators or climate drivers (as108

required by point 2 above). This has been found to be important for preserving the long-term variability of stochastic rainfall109

simulations, particularly the length of both the dry and wet extreme spells (Oriani et al., 2018), therefore also relevant for point110

4 above. The underestimation of the true natural variability by weather generators is typically indicated as an “overdispersion"111

problem (e.g., Katz and Parlange 1998). While the introduction of time-varying covariates may address this problem, it should112

be noted that this may not necessarily be for the right reason, as overdispersion could be partially related to the stochastic113

generator structure rather than to non-stationarity. In existing models, non-stationarity is most commonly achieved using114

generalised linear models (GLM) or GAMLSS frameworks, which capture how time-varying covariates influence the occurrence115

and magnitude of rainfall on each day. For example, Furrer and Katz (2007) use a GLM approach to model and simulate116

rainfall in the Pampas region of central-eastern Argentina, including within their models for rainfall occurrence and intensity117

the influence of the El Niño-Southern Oscillation (ENSO) index and time. Similarly, Serinaldi and Kilsby (2014b) use a118

GAMLSS approach to simulate realistic rainfall fields at a daily time scale over the Danube basin, conditioning their models119

for rainfall occurrence and intensity on sea level pressure and time. Moreover, Lister et al. (2018) suggest that using stronger120

predictor-precipitation relationships could further improve the performance of rainfall generators.121

122

A number of these parametric models have also been developed to simulate rainfall on a high-resolution spatial grid (point 3123

above). Most commonly, this is achieved using latent spatial GPs. Examples in the literature use such models to represent the124

gridded spatial structure of the weather generator model parameters themselves (such as the probability of rainfall occurrence)125

and/or the probability integral transformed ‘residual’ rainfall (Wilks, 2008; Verdin et al., 2015; Kleiber et al., 2012; Serinaldi and126

Kilsby, 2014b), similar to the concept of copula modelling (Nelson, 2006). The weather generator parameters are then modelled127

as a function of space, e.g. using locally weighted regressions (Wilks, 2008). By using a latent spatial GP, which captures the128

spatial dependence between two locations based on a correlation function of distance, the models are able to simulate spatially129

coherent rainfall at any desired location (i.e. a grid) within the modelled domain. Similar to this, in multi-site (non-gridded)130

examples, Gaussian copulas or multivariate Normal distributions are often used to capture the dependence between locations131

(Serinaldi and Kilsby, 2012; Kroiz et al., 2020; Chandler, 2019). A possible limitation of such methods is their underlying132

assumption of Gaussianity in the dependence structure. The Gaussian dependence structure assumes asymptotic extremal133

independence (Coles et al., 1999) between modelled variables (i.e. that the most extreme values tend not to occur together),134
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hence the alternative, asymptotic extremal dependence, is not captured.135

136

Here, we develop a novel stochastic rainfall modelling framework, henceforth referred to as the Advanced Meteorology137

Explorer (AME). The AME draws upon many of the advantages of the modelling frameworks referenced above to meet the138

needs of the UK water industry, extending them in a number of ways to enhance model flexibility. In particular, the AME139

framework is developed to closely match the observed rainfall behaviour within the target region. This is done to ensure that140

the subsequent simulations from the AME do not lead to water industry under preparedness for severe droughts, as was the case141

in previous models. To achieve this, the AME framework requires a larger number of parameters and several methodological142

solutions that increase complexity.143

144

Within this paper, the AME modelling framework is described in Section 2. This framework is then applied to 105 years145

(1914-2018) of daily rainfall data at 39 sites in the Greater Anglian region, and used to generate 1000 alternative realisations of146

the same 105-year period on a 5 km grid over the region. Section 3 introduces the case study data, and the case study specific147

model set up is presented in Section 4. The performance of the model is then evaluated in Section 5, with particular focus on148

the representation of long-duration meteorological drought characteristics (relevant for addressing the water industry need in149

point 4 above). Finally, Section 6 discusses the model’s strengths, weaknesses and potential areas of further development, and150

concludes.151

2 Methodology152

This section presents the stochastic rainfall modelling framework of the AME. The way in which the framework is specifically153

applied to model and simulate gridded daily rainfall in the Greater Anglian region of the UK is then presented in Section 4.154

2.1 Overview of the AME framework155

As described in Section 1, the intention is for the AME framework to closely capture the observed rainfall behaviour within a156

given region and period, to facilitate water resource management decision making. The intention is therefore to heavily depend157

on external covariates and the computation of time variable parameters, to allow for specific periods within the observed record158

(particularly extreme droughts) to be reproduced.159

160

The AME follows a parametric framework in which the marginal distribution of rainfall at a given location is represented using161
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an extension of the advanced HMM recently developed by Stoner and Economou (2020a). This HMM includes both temporally162

non-homogeneous state persistence probabilities, rainfall occurrence probabilities and rainfall distribution parameters, as well163

as ‘clone’ dry states. These clone states have identical rainfall distributions, but differing persistence probabilities, providing164

increased state transition flexibility through explicitly representing differing dry state persistence characteristics. See Stoner165

and Economou (2020a) and references therein for a more detailed description of the clone dry state modelling approach. Stoner166

and Economou (2020a) show how this flexible advanced HMM structure is able to capture well the distribution of dry period167

lengths; seasonal and annual variation in occurrence and intensity of rainfall (including extreme values); and the distribution of168

rainfall intensity when aggregated to daily and monthly resolutions, important for addressing the water industry need in point 1169

above.170

171

The AME builds upon the advanced HMM of Stoner and Economou (2020a) to include the influence of large-scale at-172

mospheric indicators (climate drivers) within the rainfall occurrence and intensity models in each hidden state, hence addressing173

point 2 in Section 1. This is similar to the GLM-HMM model of Holsclaw et al. (2016), but with the additional flexibility174

facilitated by the inclusion of clone dry states and temporally non-homogeneous state persistence probabilities. Further model175

flexibility is introduced within the AME through the implementation of penalised regression (van Erp et al., 2019). Rather than176

fitting the same HMM to each location, based on the same climate drivers, as is commonly done (Furrer and Katz, 2007; Verdin177

et al., 2018), or carrying out a time-consuming variable selection step before model fitting, the in-built penalised regression178

within the AME framework allows for variable selection at the same time as model fitting. This provides a transferable model179

structure that can be fit to different sites/locations with no modification or prior model exploration. This additional flexibility180

is useful when modelling UK rainfall, because the relationship between rainfall and climate drivers is known to vary across181

this region (Lister et al., 2018). In addition, by ‘shrinking’ away non-influential climate drivers, the overall uncertainty of the182

HMM is reduced, hence improving model performance (van Erp et al., 2019). Moreover, within our application of the AME183

framework we present a method for tailoring the climate drivers to best capture their influence on rainfall within the modelled184

region, improving the representation of climate variability, as suggested by Lister et al. (2018).185

186

Further, the AME extends the advanced HMM of Stoner and Economou (2020a) to allow for multi-site modelling, and187

subsequently gridded stochastic simulations to meet the water industry need described in point 3 in Section 1. Similar to a188

number of examples referenced above (Verdin et al., 2015; Kleiber et al., 2012; Serinaldi and Kilsby, 2014b), the site specific189
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rainfall models are used to transform the daily rainfall at each site to standardised margins (using the probability integral190

transform), and the spatial dependence in the resulting residual rainfall is then modelled. Rather than using a latent GP, which191

assumes a Gaussian dependence structure, a more flexible multidimensional copula model is employed. In particular, the AME192

framework uses a vine-copula approach (Czado, 2019), able to capture differing (extremal) dependence structures between193

different pairs of modelled sites. This is found to be important when applying the AME framework to real world data. Stochastic194

simulation from this copula dependence model, combined with the individual site HMMs, provides spatially and temporally195

coherent synthetic daily rainfall time series at the modelled sites, capturing the effect of climate driver variables. The AME196

framework then interpolates these simulations to a high-resolution (5 km) spatial grid using the spatial interpolation method197

developed by the Met Office National Climate Information Centre (NCIC), previously used to interpolate meteorological198

variables for the HadUK-Grid dataset (Hollis et al., 2019).199

200

Finally, similar to Stoner and Economou (2020a) and Oriani et al. (2018) the AME is implemented within a Bayesian201

hierarchical framework allowing for the full quantification of parametric and predictive uncertainty. As described by Oriani202

et al. (2018), Bayesian models produce posterior distributions of the model parameters, and hence sampling from these posterior203

distributions to generate ensembles of weather sequences robustly propagates model parameter uncertainty to the weather204

simulations. Furthermore, with a Bayesian hierarchical framework, expert knowledge about the weather system can be easily205

incorporated in the model structure and in the prior distributions (Oriani et al., 2018).206

207

Figure 1 provides a summary of the methodological steps of the AME, used to firstly fit the framework and subsequently208

simulate from it. Firstly, a HMM is fit to daily rainfall data each location/site. These site specific models are then used to209

transform the daily rainfall at each site to standard Uniform margins using the probability integral transform, allowing for the210

relationship between all sites to be modelled using a multidimensional copula. To simulate from the AME framework, spatially211

coherent stochastic simulations are firstly generated from the fitted multidimensional copula, representative of the modelled212

sites. These simulations are then transformed to temporally coherent daily rainfall at each site using the site specific HMMs.213

Finally, these site simulations are interpolated to a high-resolution grid over the region of interest. The following subsections214

describe these methodological steps in more detail.215
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Figure 1. A diagram summarising the methodological steps of the AME, used to firstly fit the framework (blue boxes) and
subsequently simulate from it (red boxes).

2.2 Modelling daily rainfall at each site: The hidden Markov model framework216

Within the AME framework, the daily rainfall is modelled separately at each site using an extension of the advanced HMM217

proposed by Stoner and Economou (2020a). This is represented by step 1 in Figure 1. Capturing the whole distribution of218

rainfall (both low and high intensities) well can be challenging. This is particularly true when modelling rainfall at a high219

temporal resolution, such as on daily or hourly time-scales. An HMM aims to overcome this by representing the modelled220

variable (here rainfall) as coming from a discrete set of states (e.g. dry, wet and very wet). The variable is subsequently221

represented by a discrete mixture of distributions (rainfall models), each representing one of the hidden states. Following the222

notation of Stoner and Economou (2020a), the discrete random variable zt ∈ {1,2,3}, representing the hidden state at time step223

t, is used to characterise the distribution of rainfall, xt , at that time step as:224

p(xt) =
Z

∑
j=1

1(zt = j)p(xt |zt), (1)225

where 1 is an identity function and p(xt |zt) is the conditional distribution of rainfall xt given the hidden state at time t, zt .226

Temporal dependence is achieved within the HMM framework by assuming that zt is an unobserved discrete Markov chain.227

This means that the temporal structure is captured by the persistence of each state, parametrised by the transition matrix228

P = {pi, j} where pi, j = Pr(zt = j|zt−1 = i), i.e. the probability of transitioning from state i into state j at time step t.229
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230

Stoner and Economou (2020a) show how a Z = 3 state HMM, characterising ‘dry’, ‘wet’ and ‘wetter’ conditions, is able to231

effectively model hourly rainfall behaviour in Exeter (UK). In addition, they show how including ‘clone’ dry states within the232

HMM framework provides additional flexibility. These multiple dry states are identical in their rainfall distribution model,233

but are allowed to differ in their persistence probabilities within the state transition matrix. Subsequently, the persistence234

distribution of the dry state has increased flexibility. For example, one of the clone dry states can capture shorter dry periods (i.e.235

have a lower probability of persisting), while the other can capture longer dry periods (i.e. have a higher probability of persisting).236

237

In the case of a Z = 3 state HMM with one clone dry state, the resulting state persistence transition matrix can be sum-238

marised as follows:239

P =



p1 0 q1(1− p1) q2(1− p1)

0 p2 q1(1− p2) q2(1− p2)

v1r1,0 v2r1,0 r1,1 r1,2

v1r2,0 v2r2,0 r2,1 r2,2


, (2)240

where pd is the probability of persisting in clone dry state d for d = 1,2; qw is the probability of transitioning into wet state241

w, given a transition from dry to wet, for w = 1,2; ri, j is the probability of transitioning from state i to state j for i, j = 0,1,2242

representing the dry, wet and wetter states respectively; and vd is the probability of transitioning into clone dry state d, given a243

transition from wet to dry, for d = 1,2.244

245

To ensure it is possible to interpret the clone dry states as a single state, a number of constraints are imposed on the state246

transition matrix. Firstly, the probability of transitioning between clone dry states is set to zero. Secondly, conditional on247

transitioning from dry to wet, the probabilities of transiting from the clone dry states into each of the wet states (q1 and q2) are248

the same for both clone dry states. Finally, conditional on transitioning from wet to dry, the probability of transiting from each249

of the wet states into the clone dry states (v1 and v2) are the same for both wet states.250

251

Temporal variability in the transition matrix is captured through logistic regression on the dry state persistence probabil-252

10/61



ities, pd for d = 1,2:253

log
(

pd(t)
1− pd(t)

)
= ι(d)+ f (x1)+ f (x2)+ · · · , (3)254

where here, ι(d) is an intercept term, which is different for each clone dry state d = 1,2, and f (xi) for i = 1,2, ... are regression255

functions representing how temporally varying covariates x1,x2, ... influence the dry state persistence probabilities. These256

covariates could be representative of temporal information such as ‘day of the year’, or climate drivers such as the NAO. These257

regression functions could take any number of forms, such as linear coefficients, regression splines or stochastic processes (e.g.258

GPs or random effects).259

260

The conditional rainfall model in each hidden state consists of two parts: a model for the occurrence of rainfall; and a261

model for the intensity of rainfall (when it rains). As previously mentioned, the two clone dry states have the same conditional262

rainfall model.263

264

The probability of zero rainfall at time t, denoted πt , is modelled as varying in time, and is different for each state (e.g.265

dry, wet, wetter):266

log
(

πt

1−πt

)
= η(zt)+ f (x1,zt)+ f (x2,zt)+ · · · , (4)267

where η(zt) is the intercept term, and f (xi,zt) for i = 1,2, ... are regression functions representing how temporally varying268

covariates x1,x2, ... influence the probability of zero rainfall in each state.269

270

The intensity of rainfall in each state is modelled using a probability distribution. A number of different strictly posi-271

tive distributions could be used here, such as the Gamma, Exponential or Generalised Pareto Distribution. These distributions272

are commonly characterised in terms of a scale and a shape parameter. The scale, σt , and shape, ξt , parameters are also273
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modelled as varying in time, and are different for each state:274

log(σt) = α(zt)+ f (x1,zt)+ f (x2,zt)+ · · · (5)275

ξt = γ(zt)+ f (x1,zt)+ f (x2,zt)+ · · · (6)276
277

where α(zt) and γ(zt) are intercept terms, and f (xi,zt) for i = 1,2, ... are regression functions representing how temporally278

varying covariates x1,x2, ... influence the rainfall distribution parameters in state zt .279

280

The inclusion of independent effects for each state, and in all parameters of the rainfall model, results in a high degree281

of flexibility in the model. Further, applying this model within a Bayesian framework allows for the full quantification of para-282

metric and predictive uncertainty. This also allows for additional model flexibility to be achieved through the implementation of283

Bayesian penalised regression.284

2.3 Ensuring a transferable HMM structure: Bayesian penalised regression285

Here, we extend the advanced HMM of Stoner and Economou (2020a) through the implementation of Bayesian penalised286

regression. This allows for a transferable model structure that can be applied without modification across many different287

sites/locations. Rather than requiring a model selection step prior to model fitting, to identify relevant covariates for explaining288

rainfall behaviour at each site, the penalised regression allows for model selection at the same time as model fitting. This289

additional flexibility is useful when modelling UK rainfall because the influential climate drivers of rainfall are known to vary290

across the country. For example, the NAO is known to have more influence in the west of the UK.291

292

In a Bayesian framework, penalised regression is implemented through the prior distributions that are placed on the rel-293

evant regression coefficients/functions in Equations 3 - 6. These so-called ‘shrinkage priors’ in Bayesian penalisation aim to294

shrink small effects (i.e. unimportant covariates) to zero while maintaining true large effects (van Erp et al., 2019). Since these295

methods not only shrink the mean but also the variance of the posterior distribution of the unimportant effects to zero, their296

inclusion does not impact on the overall uncertainty of the model, and hence model performance.297

298

Within the AME framework, the continuous horseshoe prior (Carvalho et al., 2010) is used to implement penalised re-299

gression, as it has been shown to be a good choice in terms of computational feasibility Piironen and Vehtari (2017). More300
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technical detail about the continuous horseshoe Bayesian shrinkage prior has been provided in the Supplementary Material.301

The application of this within the AME framework to the Greater Anglian region is shown in Section 5.2.1.302

2.4 Modelling the dependence between sites303

When simulating alternative realisations of rainfall over a region, it is important that the model is able to capture the observed304

relationship between spatial locations. Within the AME framework, this is done using a copula approach (step 3 in Figure 1).305

Sklar’s Theorem (Nelson, 2006) states that the 2-dimensional joint distribution of random variables x1 and x2 (here the rainfall306

at two sites), F(h1,h2) = Pr(x1 ≤ h1,x2 ≤ h2), can be written as:307

F(h1,h2) =C{F1(h1),F2(h2)}, (7)308
309

where F1(h1) = Pr(x1 ≤ h1) and F2(h2) = Pr(x2 ≤ h2) are the univariate marginal distributions of x1 and x2 (here the HMMs fit310

to each site), and C is a copula: a 2-dimensional distribution on [0,1]2 that represents the dependence between x1 and x2 when311

transformed to standard margins, achieved by applying the marginal distribution to each variable, also known as the probability312

integral transform.313

314

Hence, in order to fit a copula model for the dependence between sites, the rainfall at each site must first be transformed to315

[0,1] margins by applying the associated univariate marginal HMM distribution function, fit to that site (step 2 in Figure 1).316

The resulting transformed rainfall data are known as the ‘residuals’.317

318

When the univariate marginal HMM distribution function is applied to rainfall at a given site, the hidden state sequence319

must be integrated out in order to achieve the appropriate residual data for copula modelling. This is done by applying the320

marginal HMM distribution function conditioned on the most likely state sequence given the rainfall data, calculated using the321

forward-backward algorithm (Li and Jain, 2009). By integrating out the state sequence, however, the dependences between322

the hidden state sequences at different locations (i.e. the fact that being in the dry state at one site means the dry state is most323

likely in a neighbouring site) are not explicitly captured within the modelling framework. This is a necessary compromise324

of the approach because explicitly modelling the between-site state sequence dependence is computationally infeasible in a325

high-dimensional application (i.e when modelling more than a few sites together).326

327
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Stoner and Economou (2020b) proposed using a coupled HMM to explicitly model between-site state sequences for rainfall328

time series. Applied to daily rainfall time series from 3 sites in the UK, they were able to capture well correlations in occurrence329

and overall intensity, and joint exceedance probabilities between site pairs. However, this method involves constructing a330

combined state sequence with (ZS)2 states, where S is the number of modelled sites and Z is the number of modelled states331

at each site. Hence, explicitly modelling the between-site state sequence dependence at (for example) 30 different sites in a332

4-state coupled HMM would require the estimation of (430)2 = 1.3×1036 state transition probabilities. This is computationally333

infeasible, hence representing the state sequences separately at each site, and modelling the dependence in the transformed334

rainfall residuals using a copula, is the computationally feasible alternative. In addition, it is expected that this state sequence335

dependence will be captured to some extent by fitting all 1-dimensional HMMs to spatially coherent rainfall data, and by336

regressing on the same temporal covariates in each of the transition matrix regression models (Equation 3).337

338

Most often in spatially coherent rainfall models, such as Wilks (2008), Verdin et al. (2015), Kleiber et al. (2012) and339

Kroiz et al. (2020), the dependence between locations is modelled using a Multivariate Normal distribution (equivalent to340

a Gaussian copula), or a GP spatial dependence model. The Gaussian copula assumes asymptotic independence between341

random variables, meaning that the largest values of the variables are represented as rarely occurring together (Coles et al.,342

1999). The alternative, asymptotic dependence, may also occur in environmental data (Dawkins and Stephenson, 2018),343

meaning that the largest values of the variables tend to occur at the same time. For additional flexibility in the AME344

framework, different forms of dependence structure (asymptotic independence and dependence) between pairs of sites is345

captured. This flexibility is found to be important in the application of the AME framework to the Greater Anglian region of346

the UK (see Section 4.2). Within the AME framework, this is achieved by using a vine-copula dependence model (Czado, 2019).347

348

Vine-copulas are a very flexible way of modelling dependence between multiple variables (in this case residual rainfall349

at different sites). Vine-copulas use a series of bivariate copulas within a nested set of ‘trees’ to model multiple combinations of350

pairs of variables (see Czado (2019) and Aas et al. (2009) for more detail). This flexibility is achieved within the vine-copula351

by allowing for each bivariate pair to be represented by a different form of copula dependence model. This means that, for352

example, the dependence between one pair of variables could be represented by the asymptotically independent Gaussian353

copula, while another pair could be represented by the asymptotically dependent Gumbel copula.354

355
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The AME framework employs a regular vine-copula (Dissmann et al., 2013). This form of vine-copula represents the356

dependence between N variables using N− 1 nested trees. The first tree consists of N− 1 bivariate models, linking all N357

variables together in a pairwise fashion. The second tree then consists of N− 2 bivariate models, linking the N− 1 pairs358

of variables together into pairs-of-pairs. This nested structure continues until the (N−1)th tree, which links together all N359

variables using a final bivariate model.360

361

During model fitting, the way in which the pairs of variables are grouped (i.e. which are paired together in tree 1, tree362

2 etc.) is determined by the maximum spanning tree (Monma et al., 1990), where the edge weights are equal to the empirical363

Kendall’s tau (Czado, 2019). Within the AME framework, the vine-copula model fitting is given the option to represent the364

dependence between each pair (or pair of pairs etc.) in each tree using either a Gaussian or a Gumbel copula (other copula365

models could also be incorporated, such as the Frank or Joe copulas). During the vine-copula model fitting, the optimal copula366

model for each pairing (e.g. Gaussian or Gumbel) is determined by the Akaike information criterion (AIC) (Bozdogan, 1987).367

That is, each possible combination of copula is explored for each pair within each tree, and the optimal combination is chosen368

such that it best fits the data according to the AIC.369

370

This fitted copula can then be used to simulate standardised (uniformly distributed) data spatially coherently across the371

modelled sites (step 4 in Figure 1). These copula simulations are then transformed to temporally coherent daily rainfall at each372

site by applying the associated site specific HMM quantile function (inverse cumulative distribution function), conditioned on373

the most likely state sequence and the historical covariates (step 5 in Figure 1).374

375

It should be noted that, although the vine-copula provides a great deal of flexibility in the modelled dependence struc-376

ture in a computationally efficient way, the vine structure is better suited to modelling tree-like organised data, such as flow377

along a river network (Timonina et al., 2015). Within the vine-copula model the cross-correlations between only N-1 pairs378

of variables are explicitly modelled, while the other hierarchical bivariate structures describe the links between probabilities379

resulting from the bivariate distributions at the lower stages of the hierarchy. When modelling rainfall, which might not neces-380

sarily have this tree-like structure, it may therefore be preferable to use copulas characterised by all pairwise cross-correlation381

matrices, such as meta-elliptical copulas (Serinaldi and Kilsby, 2014b). Meta-elliptical copulas are able to capture extremal382

dependence between variables; however, they require the specification of one asymptotic dependence structure for all pairs of383
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variables. There is a growing literature in the area of flexible pairwise dependence models for extremal dependence (Wadsworth384

and Tawn, 2012; Huser and Wadsworth, 2019), though these models are non-trivial to apply and computationally challenging to385

fit to higher dimensional data (Dawkins and Stephenson, 2018). Their application is therefore found to be beyond the scope of386

this study. In addition, when applying the AME framework to the Greater Anglian region, the vine-copula was found to capture387

well the dependence in residual rainfall between sites not explicitly modelled as pairs within the vine structure. This supports388

the suitability of this flexible and computationally cheap alternative (see Section 4.2).389

2.5 Interpolation390

The desired final output of the AME framework is a high-resolution gridded daily rainfall dataset. To achieve this, the spatially391

and temporally coherent stochastic simulations at the modelled sites are interpolated to the desired grid (step 6 in Figure392

1). This is done using the spatial interpolation method developed by the Met Office National Climate Information Centre393

(NCIC), previously implemented to interpolate meteorological variables for the HadUK-Grid dataset Hollis et al. (2019). This394

interpolation method is described in detail in Perry and Hollis (2005). For daily rainfall, the approach:395

1. Calculates the long term average of daily rainfall at each station in the HadUK-Grid station record (Hollis et al., 2019);396

2. Fits a regression model to these long-term averages using terrain elevation and terrain shape as covariates;397

3. Interpolates the regression residuals to the target grid using inverse-distance weighted averaging;398

4. Adds back the regression model covariates to give gridded long-term average rainfall;399

5. For the site data to be interpolated (here the stochastic simulations at the 39 sites), calculates daily rainfall at each site400

and on each day as the percentage of the long-term average at that location;401

6. Interpolates these rainfall percentages to the target grid using inverse-distance weighted averaging;402

7. Multiplies the gridded long-term averages with the gridded rainfall percentages in each grid cell, to give gridded daily403

rainfall output;404

Since the method utilises the long term average of the HadUK-Grid daily rainfall at each location across the region (point 1405

above), the method retains the climatology (long term properties) of the original gridded data: a desirable feature of the approach.406

407

Following this final step in the methodology (see Figure 1), the AME framework provides spatially and temporally coherent408

synthetic daily rainfall data on a high-resolution grid over a region of interest.409
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3 Data410

The AME framework is now applied to a case study region in the east of the UK. This section introduces the data used within411

this application.412

3.1 Rainfall data413

Observed rainfall time series are taken from the HadUK-Grid daily rainfall dataset (Hollis et al., 2019), which covers the414

UK. This dataset is produced on a 1 km × 1 km grid resolution on the Ordnance Survey National Grid (OSGB) projection415

system, and we consider data in the period 1891-2018. From HadUK-Grid, a total of 39 daily rainfall time series for 39416

sites across the Greater Anglian region are extracted. These 39 sites are distributed across the region (Figure 2) and cover417

a range of rainfall climatologies. The region covers some notably dry areas that receive little more than 500 mm of rainfall418

per year on average (represented by sites such as 25, 28, 32, 34 and 38). In contrast, some north-western areas of the419

region (representing the higher ground of the Pennines) see more than 1300 mm of rainfall per year on average (represented420

by sites such as 6 and 7). Further exacerbating the spatial variability in rainfall in this region is the coastline. There is421

more rainfall around north and east facing coasts, mostly due to convective rainfall that is triggered in the colder seasons422

over the North Sea. This makes for a complicated water resource situation. The majority of water supplies in this region423

come from aquifers and reservoirs. Groundwater sources are slow to refill. The nature of water resource here means that424

the region is particularly vulnerable to droughts arising from multi-month to multi-year rainfall accumulation deficits. This425

is particularly the case when there is a rainfall deficit in the winter months, since this is when most groundwater recharge occurs.426

427

To ensure the 39 daily rainfall time series are of high quality, and can be taken forward in modelling daily rainfall at428

each site (Section 2.2), we conduct a number of quality checks. The 39 sites represent the locations of monthly station data429

available to Anglian Water and used in previous stochastic dataset generation. Therefore, aggregating the daily rainfall time430

series from HadUK-Grid to monthly time series should give similar values to those from the monthly station data. This should431

especially be the case where station data from the 39 sites is included in the HadUK-Grid daily rainfall dataset. If there are432

differences in a certain period, this could indicate that derived daily rainfall time series for the 39 sites rely more heavily on433

data interpolation, rather than observed station data. This is less suitable for modelling purposes since interpolated daily rainfall434

values are not likely to capture some of the highest rainfall totals that actually occurred, especially those associated with heavy435

convective showers.436
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Figure 2. The location of the 39 sites across the Greater Anglian region, plotted on top of the annual mean rainfall (using a
1961-1990 climatology period). The 39 sites are not labelled sequentially, since they represent a subset of an original set of 42
sites. As such, the highest numbered site is 42.

437

The difference averaged across all 39 sites is relatively stable across the common time period of 1900-1990, although438

the differences appear noticeably larger before about 1910 (Supplementary Figure 1). Further data quality checks are under-439

taken to check for any unusual behaviour in the daily rainfall time series. This considers two key features of the daily rainfall440

distribution; the proportion of zero rainfall days and the variance of daily rainfall (calculated for each year). Both the proportion441

of zero rainfall days and the variance of daily rainfall are smallest in the early part of the record, noticeably before about 1915442

(not shown). This is particularly stark for the variance of daily rainfall.443

444

Although there is a possibility that these early 20th-century “trends” could be due to natural climate variability, several445

individual sites show a change in these two features of the daily rainfall distribution as a marked step change around 1910. This446

change in behaviour is not entirely unexpected; even though HadUK-Grid improves considerably on previous UK observed447

gridded datasets, in part through extensive digitisation of historical observational data, there are still inhomogeneities that can448

appear, most commonly through using a time-varying network of underlying rain gauges. Rainfall datasets are known to be449
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particularly sensitive to changes in the distribution of rain gauges (Legg, 2015).450

451

In HadUK-Grid the maximum number of rain gauges is reached in the 1960s and 1970s before numbers fall, albeit with a452

more optimal distribution of gauges (Hollis et al., 2019). Before this time gauge numbers are much reduced, especially those453

recording daily rainfall. Therefore, the HadUK-Grid gridded dataset relies more heavily on data interpolation before this time.454

An obvious outcome of this is to expect more homogeneous spatial information early in the 20th century, and this is evidenced455

by the reduced rainfall variability and proportion of zero rainfall days here. Given this information, and the wish to retain456

information from some high impact droughts in the Greater Anglian region in the 1920s and 1930s, this study makes use of the457

observed record in the period 1914-2018.458

3.2 Covariates459

For the calculation of climate indices/drivers, we use data from the European and North Atlantic daily to multi decadal climate460

variability (EMULATE) mean sea level pressure (EMSLP) dataset (Ansell et al., 2006) and the fifth generation of European461

Centre for Medium-Range Weather Forecasts (ECMWF) atmospheric reanalyses of the global climate (ERA5). EMSLP consists462

of mean sea-level pressure (MSLP) (as daily means) for the 1850–2003 period covering the North Atlantic and European (NAE)463

region (25◦–70◦N, 70◦W–50◦E). ERA5 consists of MSLP (as daily means) for the 1979–present period with global coverage.464

This allows for continuous MSLP indices to be calculated for the period 1914-2018, using ERA5 for the period 2004-2018.465

There is strong agreement between the two MSLP datasets in the common period, 1979–2003 (not shown). For calculating an466

SST index we use the Hadley Centre Sea Ice and Sea Surface Temperature (HadISST) dataset (Rayner et al., 2003), over the467

period 1914-2018.468

469

Including the most relevant explanatory variables (covariates) to represent the drivers of rainfall in the Greater Anglian470

region is crucial for simulating realistic rainfall variability and, in turn, hydrological impacts, such as long duration (multi-year)471

UK drought. For example, Serinaldi and Kilsby (2012) used the NAO and SSTs as explanatory variables for winter monthly472

rainfall. These were shown to influence rainfall variability across the UK. However, because the focus in this work is on473

one specific region of the UK, the Greater Anglian region, this topic is revisited to understand whether there are stronger474

drivers of rainfall variability here. The need for this was highlighted by Lister et al. (2018), suggesting that using stronger475

predictor-precipitation relationships could further improve the performance of rainfall generators. The inclusion of the EA476
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pattern in configurations of rainfall generators has improved performance in previous industry-led work undertaken by the Met477

Office in the Greater Anglian region, as detailed in Lister et al. (2018). For this reason the EA pattern was also considered as a478

predictor in this study.479

480

Recent research has added more clarity on these relationships and how the inclusion of explanatory variables could be481

optimised. For example, the NAO is a useful explanatory variable in winter but the summer North Atlantic Oscillation (SNAO)482

– the summer counterpart of the NAO – still explains 25% of northern European summer rainfall variability (Dunstone et al.,483

2018). A more favourable representation of this dominant mode of summer variability could lead to improved simulation of484

temporal persistence of below average rainfall across the summer months, representative of realistic shifts in the jet stream485

and prolonged periods of blocking regimes. The summer of 2018 over the UK and northern Europe is one such example of a486

strongly positive SNAO season, which was exemplified by an amplified and persistent omega block (Kornhuber et al., 2019).487

Where NAO is used as an explanatory variable year-round, it often uses a station-based NAO index (e.g. the difference between488

the normalised MSLP over the Azores and the normalised MSLP over Iceland). This definition is trained on the winter NAO489

and will not be as strongly correlated with summertime UK temperature and precipitation (Hall and Hanna, 2018). There is490

a stronger correlation between the SNAO and precipitation in southern and eastern areas of the UK, relative to northern and491

western areas.492

493

One objective of the AME development is to pick explanatory variables that show strong relationships with precipitation494

variability across many parts of the UK throughout the year, so that the AME approach is suitable for application across all UK495

catchments and water regions. The EA pattern and NAO offer different levels of precipitation correlation in different regions of496

the UK. This correlation also varies by season. Therefore, a more robust representation of these circulation indices in stochastic497

weather generators is important. Here, four relevant climate indices are explored.498

3.2.1 MSLP-based indices499

Three indices are derived from MSLP and represent key modes of pressure variability in the North Atlantic-European (NAE) do-500

main; the winter NAO (WNAO), the summer NAO (SNAO) and the EA pattern. Empirical orthogonal function (EOF)/principal501

component (PC) analysis is used to understand and calculate the three MSLP-based indices. EOF1 for winter shows the502

well-documented WNAO pattern, with pressure dipoles to the west of Spain and near Iceland (Figure 3). This particular503

example (Figure 3a) shows a positive WNAO pattern, which would be characterised by warmer, wetter and windier conditions504

20/61



over the UK. EOF2 for winter (Figure 3c) shows the EA pattern, with anomalous pressure over a broad region of the NAE505

domain, centred between the UK and Iceland; this shows the EA pattern in its positive phase, characterised by more unsettled506

weather over the UK. In contrast, EOF1 for summer shows the SNAO (Figure 3b). The SNAO is clearly shifted northwards507

relative to its winter counterpart, with centres of action over the UK and Greenland. Here, the positive phase of the SNAO is508

shown, relating to warmer, drier conditions for the UK. EOF2 for summer still pertains to the EA pattern (Figure 3d). It retains509

a centre of action between the UK and Iceland, albeit shifted slightly northwards.

Figure 3. EOF1 in (a) winter (December-January-February), representing the WNAO and (b) summer (June-July-August),
representing the SNAO, and EOF2 in (c) winter and (d) summer, both representing the EA pattern. The green boxes show the
domains over which MSLP is calculated in deriving the indices.

510

511

A traditional approach to calculating the MSLP-based indices is used, calculating either the average MSLP over a domain (EA512

pattern), or the MSLP difference between two domains (SNAO and WNAO indices). Results are similar if using an EOF-based513

approach and projecting spatial patterns of daily MSLP anomalies on the EOFs of the circulation patterns. The domains used to514

calculate indices, overlaid on the EOFs, are shown in Fig. 3. The WNAO and SNAO indices are calculated as the difference515

between the southern node and the northern node (the WNAO reflects the common definition of taking the pressure difference516

between the Azores and Iceland). Indices are calculated at daily frequency. The WNAO is calculated for all days in the winter517
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half-year (October-March) and the SNAO is calculated for all days in the summer half-year (April-September). The EA pattern518

is calculated as a continuous index covering all seasons, although we use slightly different definitions in the summer-half year519

and the winter half-year, reflecting the slight shift in the centre of action of this mode of variability between summer and winter520

(Fig. 3c,d).521

3.2.2 SST index522

Recent work has shown that there is a relationship, albeit a weak one, between North Atlantic SSTs and rainfall over the UK,523

as well as a wider Northern European area (Sutton and Dong, 2012; Dunstone et al., 2018). Anomalous North Atlantic SST524

states have been proposed as a mechanism for driving long-duration rainfall deficits and meteorological drought (Sutton and525

Hodson, 2005). Here, we determine a domain to use for calculating an SST index by regressing monthly North Atlantic SSTs526

(following linear detrending, to remove any signal due to global mean warming) against a Greater Anglian regional average527

monthly rainfall time series.528

529

Considering all months (rather than individual seasons), there is a weak but significant relationship between rainfall variability530

in the Greater Anglian region and SST anomalies over a region centred to the south-west of the UK (Figure 4). This same531

pattern emerges when regressing against both the proportion of zero rainfall days and the variance of daily rainfall. These SST532

anomalies are even more pronounced during the peak long-duration (one year or longer) drought events experienced in the533

1914-2018 period over the Greater Anglian region, with these SST anomalies mirrored when looking at long-duration wet534

periods (not shown). Given this region shows the strongest correlation with rainfall variability over the Greater Anglian region,535

a monthly SST index is calculated as the average anomalies over the domain 45.5◦-54.5◦N, 20.0◦-5.0◦W.536

4 Model set up537

This section describes how the AME framework is applied to model and simulate daily rainfall across the Greater Anglian538

region.539

4.1 Modelling daily rainfall at each site540

Daily rainfall data is modelled at each of the 39 sites presented in Figure 2, using the HMM framework described in Section 2.2.541

Specifically, a Z = 3 state HMM was used here, as it has previously been shown to represent hourly rainfall behaviour in Exeter542

(UK) well (Stoner and Economou, 2020a). To minimise model complexity we began by including just one additional clone dry543
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Figure 4. Regression of monthly SST anomalies onto the Greater Anglian region monthly rainfall time series. Units are per
standard deviation of the Greater Anglian regional average monthly rainfall time series. Stippling indicates where the
regression is not statistically significant at the 95% confidence level and the black box represents the domain over which the
SST index is subsequently calculated (45.5◦-54.5◦N, 20.0◦-5.0◦W).

state (rather than the two used in Stoner and Economou (2020a)). Following model checking, it was concluded that this number544

of clone dry states was adequate for capturing dry periods in the observations. In addition, it might be expected that less dry545

state persistence flexibility would be required to model daily rainfall here, compared to hourly rainfall in Stoner and Economou546

(2020a), hence the need for fewer clone dry states.547

548

The mathematical configuration of equations 3 - 6, developed for this case study application, are given in the Supplementary549

Material. The temporal variability in the HMM state transition matrix, captured through the logistic regression on the dry550

state persistence probabilities (equation 3), is modelled as a function of ‘time of the year’ and ‘time overall’. Specifically,551

a cyclic cubic spline of the ‘time of the year’, capturing the smooth seasonal variation in the persistence of the dry states,552

and an independent and identically distributed (i.i.d.) stochastic process of 5-yearly Gaussian random effects, capturing the553

non-smooth, between-year variability in the persistence of the dry states. Each 5-yearly random effect represents one 5-year554

block of data in the period 1914-2018, and the same random effect value is representative of all days in that 5-year block. An555

alternative model using 1-yearly random effects (i.e. a single value representative of all days in each year) was also explored,556

but was found to provide no additional benefit in representing rainfall behaviour. The 5-yearly random effects model is therefore557

used to reduce model complexity. Using random effects rather than smooth regression splines to capture this ‘time overall’558
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effect also improves model robustness. This is because the random effects are able to successfully capture the observed559

non-smooth ‘jumps’ in dry state persistence in time (as seen in Figure 8 in Section 5.2.1).560

561

The temporal variability in the probability of zero rainfall in each hidden Markov state (equation 4) is modelled as a function of562

‘time of the year’ and the four climate drivers discussed in Section 3.2. As above, the ‘time of the year’ effect is captured using563

a cyclic cubic spline, while the relationship between each climate driver and the (logit) probability of zero rainfall in each state564

(equation 4) is captured by a single regression coefficient, characterising a linear relationship.565

566

As described in Section 2.2, the intensity of rainfall in each state is modelled using a probability distribution. In line567

with the model developed by Stoner and Economou (2020a), and in order to capture extremes well, we model rainfall in each568

state using a zero-threshold Generalised Pareto Distribution (GPD). The scale and shape parameters of these distributions,569

representing the variance and tail behaviour respectively, are modelled as varying in time (equations 5 and 6). The scale570

parameter is modelled as a function of ‘time of the year’, ‘time overall’ and the four climate drivers, while the shape parameter571

is modelled as a function of ‘time of the year’ only. As above, in both cases the ‘time of the year’ effect is captured using cyclic572

cubic splines, the ‘time overall’ effect is captured using i.i.d. 5-yearly Gaussian random effects, and the climate driver effects573

are represented by linear regression coefficients. Fewer effects are included in the model for the GPD shape parameter because574

this parameter is known to be more difficult to estimate. Including fewer effects here therefore improves the robustness of575

model fitting.576

577

The combination of temporal effects, characterised by seasonal splines and 5-yearly random effects, were chosen for each578

part of the model following a model selection process. This was focused on a subset of the 39 sites, representing a range579

of rainfall climatologies. The temporal effects were included one-by-one and the ability for the resulting model to simulate580

rainfall with accurate temporal variability in the proportion of zero rainfall days in each year and the rainfall variance in each581

year (compared to observations) was explored. The combination of temporal effects that minimised model complexity but582

adequately represented these rainfall characteristics was chosen as optimal.583

584

There is a wealth of literature on the relationship between UK rainfall and large scale atmospheric circulation patterns,585

consisting of established theory and emerging ideas (Wilby et al., 1997; Folland et al., 2009; Ossó et al., 2018). Within this case586
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study application of the AME, we include the effect of four climate drivers: WNAO, SNAO, EA pattern and SSTs, tailored to587

the region of interest, as described in Section 3.2. The climate drivers are each scaled by their mean and standard deviation588

to ensure they are on a consistent scale. A seasonal indicator variable is used to ensure that SNAO/WNAO is only included589

within the regression model in the summer/winter. Here, summer is defined as the 6-month period April-September (inclusive)590

and winter is defined as October-March. It was found that rainfall simulations from configurations of the model not including591

these climate drivers were less able to reproduce the most extreme meteorological drought events in the historical record. This592

indicates the added value of including these effects within the model.593

594

When fitting this HMM to each site in the region of interest, the same temporal effects are included in equations 3, 4, 5595

and 6, as it is expected that seasonal and annual variability in rainfall behaviour will be experienced throughout the region.596

The influential climate drivers of rainfall are, however, known to vary across the UK. For example, in the most easterly part597

of the Greater Anglian study region, the EA pattern is known to be important for representing rainfall conditions, while the598

WNAO has little influence. In the most westerly part of the region, however, WNAO is known to be a more important driver of599

rainfall behaviour. The Bayesian penalised regression method described in Section 2.3 is used to select which of these climate600

drivers is relevant in each location/site model during model fitting. This approach allows the model to ‘shrink’ away the effect601

of unimportant climate driver covariates leaving just those that are important at that location. This provides a generic model602

structure that can be fit to all sites (both in the East and West of the Greater Anglian region), but that allows for any combination603

of the four climate drivers to be included in the HMM at each site. The results of this penalised regression are presented in604

Section 5.2.1.605

606

This configuration of the HMM is fit to the 105 years (01/01/1914-31/12/2018) of daily rainfall data (as introduced in607

Section 3), separately for each of the 39 sites in the Greater Anglian region. This is done within a Bayesian statistical modelling608

framework. As such, prior distributions must be specified for each model parameter. The priors used in this application are609

presented and discussed in detail in the Supplementary Material.610

611

To ensure the desired three state structure (dry, wet, wetter), and avoid hidden state label switching (Jasra et al., 2005)612

during model fitting, a number of constraints are imposed upon the model parameters (as defined in equations 3 - 6) during613
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model fitting:614

ι(1)> ι(2); (1)615

η(dry)> max(η(wet),η(wetter)); (2)616

η(wet),η(wetter)< 0. (3)617

α(wetter)> α(wet); (4)618

γ(wet)< 0.25, (5)619
620

where ι(d) is the intercept term of the logistic regression model for the dry state persistence probability for clone dry state621

d = 1,2; and η(zt), α(zt), and γ(zt) are intercept terms for the regression models for the probability of zero rainfall, the rainfall622

distribution scale parameter and the rainfall distribution shape parameter (for hidden state zt : dry, wet or wetter) respectively.623

The first four constraints enforce that, on average (since they are applied to the regression intercept terms), clone dry state 1624

should be more persistent than clone dry state 2 (constraint 1); the probability of zero rainfall should be higher in the dry state625

than in the two wet states (constraint 2); it should be more likely to rain than not rain in the two wet states (constraint 3); and626

the rainfall variance is higher in the wetter state than the wet state (constraint 4).627

628

As well as these four state identifiability constraints, an additional constraint is placed on the shape parameter of the ‘wet’629

state rainfall distribution (constraint 5). This constraint is included to limit the upper tail of the GPD distribution. Due to the630

heavy-tailed nature of the empirical rainfall distribution (meaning that the distribution/histogram of the data goes to zero slower631

than the exponential distribution), the GPD shape parameters is predominantly estimated to be positive in order to capture the632

few higher daily rainfall amounts. When the GPD shape parameter is positive the associated GPD distribution has an infinite633

upper tail. This means that, although very unlikely, an infinitely high rainfall value can be simulated. When fitting this model634

and simulating daily rainfall from it within the Greater Anglian region, this was found to lead to (very infrequent) simulation635

of extremely high daily rainfall values, in excess of 1000 mm in one day. To overcome this, a realistic upper limit for daily636

rainfall within the region was explored, and used as a guide to tune the Bayesian model structure, leading to the specification637

of constraint (5). This constraint is consistent with the values resulting from the global multiple threshold method analysis638

reported in Serinaldi and Kilsby (2014a).639

640
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Taking a UK-wide historical context the highest 24-hour rainfall total in the UK was 341.4 mm commencing at 18:00641

GMT on 4 December 2015 at Honister Pass, Cumbria. The highest amount falling in a ‘rainfall day’ (0900-0900 GMT) in the642

UK is 279 mm, on 18 July 1955 in Martinstown, Dorset. In the Greater Anglian region, the 25-27 August 1912 extreme rainfall643

event is the largest observed storm, where over 200 mm was recorded (Brooks, 2012). It is difficult to argue that the Honister644

Pass rainfall could have occurred in the Greater Anglian region, due to the lack of orography here, which was an important645

factor in enhancing the rainfall during the Honister Pass event. However, one could argue that a similar synoptic scenario to646

that observed in the Martinstown storm could also occur across the Greater Anglian region. This agrees well with extreme647

value studies and catalogues for the Greater Anglian region, giving long return period 1 in 10,000 year event estimates for daily648

extreme rainfall of around 300 mm (Francis, 2011). It was found that, for some locations, the daily rainfall simulated from649

the HMM without constraint (5) was very occasionally (approximately 0.01% of simulations) higher than this value. These650

very high simulations were found to all occur in the ‘wet’ state and when the wet state shape parameter was greater than 0.25.651

Imposing constraint (5) was subsequently found to greatly reduce the number of simulations in excess of this threshold. It652

should be noted, therefore that this 300 mm threshold was not used as a truncation, but as a guide for tuning the Bayesian model653

structure. Rainfall simulations in excess of this threshold are still feasible within the model, as is the case in the real world654

given that 300 mm does not represent a physical barrier. Indeed, rainfall maximum thresholds should be used with care to655

ensure environmental risk is not under- or over-estimated (Yevjevich, 1968).656

657

For each model fit, four MCMC chains were run in parallel, each for 30,000 iterations. Model exploration identified658

that this number of iterations were required to reach convergence. In each case the first 20,000 iterations were discarded as659

burn-in, and the remaining 10,000 were thinned by 40 (i.e. taking one sample in every 40), leaving 1000 samples in total from660

the four chains, representing 1000 samples from the posterior distribution of each model parameter. These 1000 samples are661

used to quantify parameter uncertainty in the model checking and validation (see Section 5).662

663

Due to the complexity of the model and the length of the data record being modelled (38,351 days), each of the 39 site664

models took approximately 40 hours to fit on a high-performance computer cluster using 8 Central Processing Units (CPUs)665

and 50 Gigabytes of memory. Convergence of the four MCMC chains was assessed by visual inspection of trace plots and by666

computing the Potential Scale Reduction Factor (Brooks and Gelman, 1998).667
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4.2 Modelling the dependence between sites668

Fitting a regular vine-copula model to the residual rainfall at the 39 sites in our study region, as described in Section 2.4, results669

in a 38-tree nested structure. This vine-copula model takes approximately 8 minutes to fit to the full 105 years of daily data at670

all sites. A majority of the time a Gaussian copula is selected, particularly in trees 2-38, with the Gumbel copula mostly being671

selected to represent sites in close proximity, represented by tree 1.672

673

Figure 5 shows the first two nested trees in the 38 tree regular vine-copula structure fitted to the daily residual rainfall674

at all of the 39 sites (note, the numbers on the tree are not the site numbers, how the tree values map to the site numbers is shown675

on the left of the plot). In tree 1, the 39 sites are linked together by 38 bivariate copula models. In all cases the dependence676

between each pair is modelled using a Gumbel copula. This is likely to be because all of these initial pairings are sites that are677

close together in location (and hence have stronger dependence in extreme rainfall, as seen in Figure 6 (a)). In tree 2, these 38678

pairs of sites are then paired with another pair of sites. The dependence between these pairs of pairs are all modelled using a679

Gaussian copula, capturing how the dependence structure is different for sites that are less close together. Although trees 1 and680

2 use the same copula (Gumbel and Gaussian respectively) for all pairings within, this is not always the case; predominantly681

pairings in the higher order trees use the Gaussian copula, but there are cases where one tree uses both Gumbel and Gaussian682

copulas for different pairs.683

684

This vine-copula model is able to flexibly and accurately capture the differing asymptotic dependence structures between685

different pairs of sites in the region, using a series of bivariate copula models. This can be seen in Figure 6, where the686

relationship between simulated residuals at sites V38 and V41 (close together) capture the asymptotically dependent (Gumbel)687

dependence structure seen in the observed residuals (Figure 6 (a)), while the relationship between simulated residuals at sites688

V38 and V7 (far apart) capture the more elliptical asymptotically independent (Gaussian) dependence structure seen in the689

observed residuals (Figure 6 (b)). This highlights how using a model that assumes a Gaussian dependence structure between all690

pairs of locations would not be suitable in this application.691

692

An additional plot is presented in the Supplementary Material (Supplementary Figure 2), comparing how the Gaussian693

copula (Multivariate Normal distribution) and the vine-copula capture the dependence in residual rainfall for site V38 paired694

with all other sites. This shows that for sites in close proximity to V38, the Gaussian dependence structure is inadequate, further695
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Figure 5. A graphical representation of the first two nested trees in the 38 tree vine-copula structure fitted to daily rainfall at
all of the 39 sites transformed to standard Uniform residuals using the HMM at each site and one posterior parameter sample
(chosen at random.) The nodes on the trees are numbered 1-39, and their associated site number (as shown in Figure 2) is
presented in the legend on the left side. Each bivariate copula model in each tree is represented by an edge linking together two
nodes. Each edge is labelled by the copula model used to represent that pairwise dependence, either the Gumbel copula (G) or
the Gaussian/Normal copula (N).
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Figure 6. Top row: scatter plots showing the relationship between observed residual rainfall transformed to standard Normal
margins (using one randomly chosen posterior sample of the HMM parameters) at pairs of sites within our study region (a)
close together in space (approximately 30 km apart), and (b) far apart (approximately 240 km apart). Bottom row: equivalent
for residual rainfall simulated from a vine-copula dependence model, fitted to all 39 sites, for the same pairs of sites (c) close
together, and (d) far apart. In both cases, the close together sites are represented by V38 (Ipswich) and V41 (Woodbridge), and
the far apart sites are V38 and V7 (Buxton).

supporting the use of the flexible vine-copula. Further, this additional figure and Figure 6 (b)/(d), show how the pairs of sites696

that are not explicitly modelled as pairs within the vine structure are still well represented by the vine-copula.697

4.3 Simulation and interpolation698

A single synthetic simulation of the 105-year historical period (1914-2018) is generated for each of the 1000 Bayesian posterior699

parameter samples from each site HMM, capturing stochastic and parametric uncertainty (see Section 4.1). This is achieved700

in a spatially coherent way across sites by following the steps in Figure 1, described in more detail in the Supplementary701
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Material. This approach of generating a single realisation for each MCMC parameter set is theoretically justified by Monte702

Carlo integration as a general approach for computing any posterior predictive quantify in Bayesian models, as described in703

chapter 1.9 of Gelman et al. (2014). This approach performs numerical integration to “integrate out" sampling uncertainty704

when producing predictions and is common practise in Bayesian modelling and Bayesian weather generators (see for example705

Section 4.3 of Verdin et al. 2019).706

707

In each case, the same temporal (historical) pattern of climate drivers is used. This achieves good agreement between708

meteorological drought behaviour in the historical period and the simulations (as will be shown in the model validation in709

Section 5). An alternative pattern of climate drivers could, however, be used as discussed in Section 6. The subsequent dataset710

consists of 1000 alternative realisation of the 105-year period of daily rainfall, stochastically simulated spatially and temporally711

coherently at the 39 sites.712

713

The interpolation method described in Section 2.5 is applied to each of the 1000 simulations and 38,351 days in the 105-year714

period separately. The simulated rainfall at the 39 sites is interpolated to the 57 × 52 grid shown in the Supplementary Material715

(Supplementary Figure 3), with latitude extents of 51.50-53.70◦N and longitude extents of -2.39◦W-1.76◦E, where each grid716

box is 5 × 5 km in size. The 5 km grid is on the OSGB projection, the projection that is used in the NCIC interpolation scheme.717

These latitude and longitude extents transform to the nearest grid cell centres in northings of 177500-432500 and in eastings of718

372500-652500. Finally, any grid cells that contain no land area are masked out as sea.719

5 Model Checking and Validation720

This section illustrates the performance of the AME framework, when applied to the Greater Anglian region, through a series of721

model checking and validation metrics.722

5.1 Metrics723

Model checking is based on the exploration of a selection of HMM temporal effects and estimated parameters:724

1. The effect of ‘time of year’ on rainfall behaviour at site V38 (Ipswich). This site is used as an example because it is725

known to be one of the driest in the Greater Anglian region, and hence important to capture well when modelling drought;726

2. The effect of ‘time overall’ on rainfall behaviour at site V38 (Ipswich);727
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3. The Bayesian penalised regression results, showing which of the climate drivers are included/excluded from each site728

HMM.729

The spatially coherent rainfall simulations at the modelled sites, produced at step 5 of the methodology shown in Figure 1, are730

then compared with the observed rainfall record to validate how well the simulations capture key rainfall behaviour. This is731

done in terms of:732

4. Quantile-quantile plots of daily simulated and observed rainfall in each season;733

5. Quantile-quantile plots of monthly and annual total simulated and observed rainfall;734

6. A comparison of the proportion of zero rainfall days in the simulated and observed records in each season;735

7. Quantile-quantile plots the number of consecutive days with zero rainfall in the simulated and observed records;736

8. A comparison of the 36-month accumulated rainfall Deficit Drought Index (DDI) in the simulated and observed records,737

presented as a time series and a quantile-quantile plot. This index is calculated by accumulating rainfall (observed or738

simulated) over each 36-month moving window within the 105-year period, and scaling this accumulated series by its739

long-term average and standard deviation (Burke et al., 2010);740

9. Comparison scatter plots of monthly total simulated and observed rainfall at pairs of locations;741

10. A comparison of the observed and simulated pairwise cross-correlation in daily (non-zero), monthly total and annual742

total rainfall as a function of separation distance.743

For metrics 4-9, these plots are shown for four sites: V7 (Buxton), V16 (Ruthamford), V20 (Lincolnshire) and V38 (Ipswich).744

These sites are chosen to represent a range of rainfall climatologies within the regions (e.g. the Buxton site is characteristic of745

the wetter part of the study region in the west, while the Ipswich site is one of the driest). Equivalent plots for all 39 sites are746

available in the supplementary material (Supplementary Figures 6-12).747

748

Finally, the gridded simulations, produced at step 6 of the methodology shown in Figure 1, are validated. This is done749

in terms of:750

11. A comparison of the 36-month accumulated rainfall DDI in the simulated and observed records for the Greater Anglian751

region as a whole;752
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12. A comparison of the 36-month accumulated rainfall DDI, and subsequent drought duration, magnitude and severity, in753

the simulated and observed records for six independent rainfall sites (not included within the model fitting), with an754

emphasis on sub-regions that are not well represented by the 39 sites;755

13. A qualitative assessment of the simulation performance in dry/wet periods and summer/winter seasons based on756

animations of rainfall maps.757

To carry out the validation at the six independent rainfall sites, site data was retrieved from the Met Office Integrated Data758

Archive System (MIDAS) dataset, consisting of quality controlled rain gauge sites that form part of the UK rain gauge network,759

including official Met Office observation sites. The MIDAS data is used as an independent check on the simulated, gridded data760

that was produced using data extracted for 39 sites across the Greater Anglian region from HadUK-Grid (Section 3). While a761

number of checks can be undertaken, here the emphasis is again on the ability to simulate observed meteorological drought762

characteristics.763

764

A number of regions were carefully selected, through an understanding of where there might be weaker performance of765

the simulated gridded output, namely where there are sub-regions not well covered by the existing 39 sites. This could be either766

because of gaps in the coverage or because they lie beyond the extents of the coverage; for example, coastal areas. Gaps exist767

because good quality, long records were not available in these areas. The location of the six independent rainfall sites is shown768

in Supplementary Figure 14. They cover three areas that were targeted for validation, in order of priority:769

• Essex (in the southeast of the Greater Anglian region), which is not well represented by the 39 sites. This is arguably the770

most important area for validation, since it is one of the driest in both the Greater Anglian region and the UK as a whole.771

The sites Writtle and Shoeburyness are used for this validation. Shoeburyness also serves as a validation at a coastal site772

(see next point);773

• Coastal sites, since these are not represented by the 39 sites. The expectation is that rainfall in coastal areas is not as774

robustly simulated as, for example, inland areas in close proximity to (and surrounded by) a number of sites. Cromer is775

used for this validation;776

• Areas across Suffolk and Cambridgeshire that are not as well represented by the 39 sites. The sites Wattisham, Brooms777

Barn and Monks Wood are used for this validation;778
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Long, daily and digitised rainfall records are difficult to find in the MIDAS dataset. Most digitised records start in the 1960s779

and this is the case here, with the exception of Shoeburyness, for which extracted data starts in 1931. The sites were chosen as780

those that fell broadly in the sub-regions listed above, while having a record beginning in the 1960s or earlier and having nearly781

complete records. Where daily measurements were missing, those days were in-filled using the measurements from a nearby782

station.783

784

Rather than using the standardised DDI, a fairer comparison in this part of the validation is likely to be achieved through use of785

the DDI without standardisation, reflecting absolute deficits (and surpluses). This is to ensure that the full month-to-month786

rainfall variability is represented at these sites and they do not simply tend to climatology (the interpolation scheme uses787

long-term average rainfall as a starting point, as detailed in Section 2.5). If they were to tend towards climatology with788

dampened variability, the absolute deficits would be underestimated.789

5.2 Results790

5.2.1 Model Checking791

Figures 7 and 8 present the effect of ‘time of year’ and ‘time overall’ respectively, on rainfall behaviour at site V38 (Ipswich).792

Figure 7 (a) shows how the model captures the expected seasonal variation in the persistence of the dry state, with this per-793

sistence being higher in the drier late-spring and summer months. This trend is also seen in the other 38 site HMMs (not shown).794

795

The rainfall distribution parameters, shown in Figure 7 (b)-(d), vary throughout the year in a different way in each state.796

In summer, in the dry state, the zero rainfall probability is slightly lower, combined with a lower rainfall variance (scale797

parameter) and higher rainfall distribution tail (shape) parameter. This suggests that, due to the increased persistence and798

hence more frequent occurrence of the dry state in the summer, summer-time rainfall occurs within this state, and that this799

rainfall is either relatively low (low scale parameter) or extreme (high shape parameter). This could be linked to the known UK800

summer-time rainfall behaviour associated with convective storms which bring short heavy downpours in summer. Interestingly,801

wet state 2 (the ‘wetter’ state) also has a higher shape parameter in summer, combined with a higher scale parameter, suggesting802

this states is also capturing summer-time extreme rainfall. In wet state 1 (the ‘wet’ state), the probability of zero rainfall is803

higher in summer, leading to drier conditions in this state in this season. The rainfall variance and tail behaviour have more of a804

spring-autumn dipole, with the rainfall variance being higher in spring and lower in autumn, and vice-versa for the rainfall tail805

parameter. This suggests that, as well as it being less likely to rain in the spring compared to the autumn in this state, when806
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Figure 7. Graphical representations of the cyclic cubic regression spline fit to site V38, capturing the seasonal variation in
each time-varying part of the HMM: (a) logit of the dry state persistence probability (Equation 3), (b) the logit of the zero
rainfall probability in each state (Equation 4), (c) the log of the rainfall Generalised Pareto Distribution scale parameter in each
state (Equation 5), and (d) the rainfall Generalised Pareto Distribution scale parameter in each state (Equation 6). The solid lines
show the posterior median of the cubic regression splines, and the shaded regions show the 95% Bayesian credible intervals.

it does rain, the rain is more moderate, whereas in autumn it is more extreme. This state could therefore be thought to be807

representing the synoptic storm rainfall behaviour more associated with autumn and winter rainfall.808

809

The 5-yearly random effects presented in Figure 8 show a reasonable amount of variability in the dry state persistence810

and rainfall scale parameter over the 105-year period. For example, the dry state persistence is shown to increase over the 1940s811

and then decrease again over the 1950s and 60s, peaking again in the early 1990s, while the GPD scale parameter experiences a812

considerable dip in the 1970s and 80s in wet state 1. These random effects are essentially ‘mopping up’ any variability in these813
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Figure 8. Graphical representations of the ‘time overall’ 5-yearly random effects fit to site V38, capturing the non-smooth
temporal variability in (a) the logit of the dry state persistence probability (equation 3), and (b) of the log of the rainfall
Generalised Pareto Distribution scale parameter in each state (equation 5). Each 5-yearly random effect is represented by a box
and whisker plot, showing the 0, 0.25, 0.5, 0.75 and 1 quantiles of the posterior random effect parameter distributions as the
lower whisker, lower box edge, middle box edge, upper box edge and upper whisker respectively.

rainfall characteristics, not captured by the climate drivers.814

815

Figure 9 shows which of the possible 24 regression coefficients, representing the relationship between climate drivers and816

HMM model parameters π (the probability of no rain) and σ (the rainfall distribution scale parameter) in each state, are retained817

and which are ‘shrunk’ in each of the 39 site models in this application. This table shows how at a majority of sites, the EA818

pattern and SNAO have a non-zero effect on both π and σ in all three states, whereas the inclusion/exclusion of WNAO and819

SSTs varies more across sites. Figure 9 also shows the direction of each climate driver effect (i.e. positive or negative). These820

show how the models represent known relationships between climate drivers and rainfall behaviours. Namely how a positive821

EA index value is associated with wetter conditions, and hence a lower probability of zero rainfall and higher rainfall variability,822

while a positive SNAO index is associated with drier conditions, and hence a higher probability of zero rainfall and lower823

36/61



−3

−2

−1

0

1

2

3

V
1

V
2

V
3

V
4

V
6

V
7

V
8

V
10

V
11

V
12

V
13

V
14

V
15

V
16

V
17

V
18

V
19

V
20

V
21

V
22

V
23

V
25

V
26

V
27

V
28

V
29

V
30

V
31

V
32

V
33

V
34

V
35

V
36

V
37

V
38

V
39

V
40

V
41

V
42

D

W1

W2

D

W1

W2

D

W1

W2

D

W1

W2

D

W1

W2

D

W1

W2

D

W1

W2

D

W1

W2

SST : σ

SST : π

WNAO : σ

WNAO : π

SNAO : σ

SNAO : π

EA : σ

EA : π

Figure 9. Table showing the posterior distribution mean of each of the 24 climate driver regression coefficients (y axis) in
each of the rainfall HMMs fitted to the 39 sites (x axis). The colours indicate the direction and strength of the effect in each
case, and those effects that are left blank/white are those that have been ‘shrunk’ away to zero by the Bayesian penalised
regression when applied to that site (see Section 2.3). The red labels on the left side identify the relationship that each group of
three rows is representing (e.g. EA:π represents the relationship between the EA pattern and π , the probability of zero rainfall),
and each of the three rows is labelled as either D=Dry, W1=Wet or W2=Wetter, representing each state. For example, the box
labelled (V1, W2, SST:σ ) shows the posterior distribution mean of the regression coefficient explaining the relationship
between SSTs and the rainfall distribution scale parameter (σ ) in the ‘wetter’ state (W2) at site V1.

rainfall variability.824

5.2.2 Validation of spatially coherent rainfall simulations825

Figure 10 shows how, for all four sites and across all seasons, the distribution of observed daily rainfall is well represented by826

the associated simulated rainfall from the AME framework. The observed and simulated mean quantiles of the daily rainfall827

distributions lie close to the line of y = x, particularly for lower quantiles. In most cases, this line of y = x falls within the828

Bayesian 95% credible interval of the simulated quantiles. Subsequently, when the observed and simulated daily rainfall are829

accumulated over each month within the 105-year period, a similar good consistency is seen between the simulations and830

observations at each of the four sites, as show in Figure 11. In order to also assess the performance of the model in the lower831

quantiles, plots equivalent to Figures 10 and 11, with log scale axes, are included in the Supplementary Material (Supplementary832

Figures 4 and 5). These plots show how the driest conditions are generally captured well, particularly on the daily scale, but833

that simulated monthly accumulations have a tendency to be too wet in the lower quantiles at site V16.834
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Figure 10. Quantile-quantile plots of the observed daily rainfall and AME simulated daily rainfall at four sites within the
study region, spanning a range of rainfall climatologies, separated by season. The points in each plot show the observed
quantile against the median of the quantile from the 1000 simulations from the AME framework, the shaded regions show the
95% Bayesian credible intervals for the quantiles from the 1000 simulations, and the solid black line is the line of y=x.
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Figure 11. Quantile-quantile plots of the observed accumulated monthly rainfall and AME simulated accumulated monthly
rainfall at four sites within the study region, spanning a range of rainfall climatologies. The green points show the observed
quantile against the median of the quantile from the 1000 simulations from the AME framework, the green shaded region
shows the 95% Bayesian credible interval for the quantile from the 1000 simulations, and the solid black line is the line of y=x.

835

In many of the plots in Figure 10, the upper bound of the 95% credible interval extends beyond the most extreme rain-836

fall in the observed record. This is due to the heavy tailed shape of the observed rainfall distribution, such that most values are837

low with only a few much higher values. This means that the rainfall is best represented by a GPD distribution with a positive838

shape parameter, leading to an infinite upper tail to the fitted distribution and hence the potential for the simulation of high839

rainfall values. However, the daily rainfall simulations are all less than the realistic upper limit identified for the region (i.e. less840

than 300 mm), suggesting these simulated high rainfall days could plausibly occur.841

842

Figure 12 shows good agreement between AME simulated and observed annual total rainfall quantiles (accumulated October-843

September) at these four sites. This is consistent across all 39 sites, as shown in Supplementary Figure 8. These plots are844
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Figure 12. Quantile-quantile plots (on log scale axes) of the observed and AME simulated accumulated annual
(October-September) rainfall at four sites within the study region, spanning a range of rainfall climatologies. The purple points
show the observed quantile against the median of the quantile from the 1000 simulations from the AME framework, the purple
shaded region shows the 95% Bayesian credible interval for the quantile from the 1000 simulations, and the solid black line is
the line of y=x.

presented on a log scale to accentuate the lower quantiles (the driest years). Previous models developed and used within the UK845

water industry have been shown to systematically sample slightly wetter conditions on average in this lower tail, as noted in846

Section 1. These figures indicate that, while the AME framework shows this tendency in some locations (e.g. V16), for many847

others there is very good agreement (median points lying close to the line of y=x). This indicates that the AME framework is a848

step in the right direction in overcoming this, based on sound statistical theory.849

850

The same good agreement between the observations and simulations can be seen in the proportion of zero rainfall days851

over the 105 years, as presented in Figure 13. In all sites and seasons, the median (0.5 quantile) of the 1000 simulations is very852

close to the observed proportion. This shows how the AME framework is able to faithfully capture the frequency of non-rainy853

days in the observed record, and how this varies with season, at each site.854
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Figure 13. A comparison of the observed proportion of zero rainfall days in each season within the 105-year study period
(black cross) and the same proportion in the 1000 AME simulations of the period (box and whisper plot), for four sites within
the study region, spanning a range of rainfall climatologies. In each case the box and whisker shows the 0, 0.25, 0.5, 0.75 and 1
quantiles of the 1000 AME simulations as the lower whisker, lower box edge, middle box edge, upper box edge and upper
whisker respectively.

855

Figure 14 shows how, for a majority of the range of observed dry period lengths, the distribution of the AME simulated dry856

period lengths matches closely to the equivalent distribution within the observed record. This is particularly true from sites V7,857

V16 and V20, and for the shorter dry period lengths. The AME simulated rainfall has a tendency to underestimate longer dry858

spells, particularly those greater than 20 days long. However, the line y = x is just within the 95% credible interval of the AME859

simulations for the longest dry period observed at V38, showing how the AME is able to simulate such events, even if rarely.860

This component of the validation specifically tests short-duration (weekly to monthly) characteristics of the simulated rainfall.861

862

Considering long-duration characteristics of rainfall, the observed and simulated rainfall behaviour is compared in terms of the863

36-month accumulated rainfall DDI in Figures 15 and 16. Figure 15 shows how, at all four sites, the observed DDI is within the864
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Figure 14. Quantile-quantile plots of the length of periods of zero rainfall days within the observations, and AME simulated
rainfall series at four sites within the study region, spanning a range of rainfall climatologies. The black crosses show the
observed quantile against the median of the quantile from the 1000 simulations from the AME framework, the blue shaded
region shows the 95% Bayesian credible interval for the quantile from the 1000 simulations, and the solid black line is the line
of y=x.

simulated range throughout the period. Indeed, the simulations are able to capture, and exceed, known very extreme drought865

periods such as those in the 1920s and 1930s at site V38. This is further shown in Figure 16, where the most extreme observed866

DDI values (associated with the greatest 36-month drought periods) are well captured by the median of the AME simulations.867

This figure and the equivalent plots for all 39 sites (Supplementary Figure 12) indicate that there is no systematic under- or868

over-estimation of long-duration drought severity.869

870

While developing the model, it was found that extreme drought events were noticeably better captured when SSTs were871

added into the framework, highlighting the importance of their inclusion when aiming to represent long duration drought in the872

Greater Anglian region. As well as the observed DDI being within the simulated range, at all sites, the mean DDI from the873

simulations closely follows the variation seen in the index in the observed record. Again, this good agreement is thought to874
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be due to the inclusion of relevant climate drivers, as well as the use of the most likely state sequence during simulation (see875

details of the simulation process presented in the Supplementary Material).

Figure 15. A comparison of the DDI time series based on 36-month running monthly rainfall accumulations from observed
and from AME simulations for four sites within the study region, spanning a range of rainfall climatologies. The observed DDI
is shown in blue, the range of the 1000 simulations is shown in grey and the mean of the simulations in black.

876

877

Note that Figures 10 - 16 validate the marginal distributions at each site, and not the spatial coherence. This spatial co-878

herence is explored in Figures 17 and 18. Figure 17 shows how the observed between-site spatial dependence in monthly rainfall879

is generally well captured by the simulations, with low/high monthly rainfall at site V38 generally associated with low/high880

rainfall at other sites, as seen in the observations. The strength of the observed relationship between sites is less well captured881

by the simulations for sites that are closer together. For example, the bottom row of Figure 17 compares this relationship in the882

observed and simulated monthly rainfall at site V38 and the neighbouring site V41 (Woodbridge), showing a stronger correlation883

in the observations. This is further demonstrated in a systematic way in Figure 18, where the cross-correlations in daily and884

monthly rainfall for sites within approximately 150 km of each other are shown to be consistently slightly underestimated by885
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Figure 16. Quantile-quantile plots of observed and simulated DDI (based on 36-month running monthly rainfall
accumulations) for four sites within the study region, spanning a range of rainfall climatologies. The blue points show the
observed quantile against the median of the quantile from the 1000 simulations from the AME framework, the grey shaded
region shows the 95% Bayesian credible interval for the quantile from the 1000 simulations, and the solid black line is the line
of y=x. Note that the upper tail of the DDI distribution relates to dry conditions.

the AME simulations.886

887

It may be hypothesised that this misrepresentation of the dependence between locations could be due to the regular vine (rather888
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Figure 17. A comparison of the observed (left column) and 1 AME simulated (right column) pairwise relationship between
monthly accumulated rainfall at site V38 and four other sites separated by varying distances in space (V38-V7:243km,
V38-V20:182km, V38-V16:122km, V38-V41:30km).

than fully cross-correlated) dependence structure of the vine-copula used within the AME framework. This is, however negated889

by observing that the pair of sites shown to be most misrepresented in Figure 17 (V38 and V41), are a pair that are explicitly890

modelled using a bivariate Gumbel copula in Tree 1 of the vine-copula (nodes 35 and 38 in Figure 5). Rather, this small891

inconsistency in the simulations is concluded to be a result of the methodology necessitating the independent modelling of892
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Figure 18. A systematic comparison of the observed and AME simulated pairwise cross-correlations in (non-zero) daily,
monthly total and annual total rainfall, plotted as a function of separation distance. Within the observations and each of the
1000 AME realisations, the mean cross correlation in each 25km separation distance ‘bin’ is calculated. The black crosses show
this mean value against the mid-point of the separation bin for the observed data. The shaped region shows the range of
equivalent values calculated from the 1000 AME realisations.

hidden state sequences at each site, as discussed in Section 2.4. Hence, even if the spatial dependence in the residual rainfall is893

represented perfectly by a copula, using non-spatially coherent hidden states across the sites will result in the residual rainfall894

being transformed to the rainfall scale incoherently. For example, suppose a rainfall residual value of 0.8 is simulated at a895

location, this could be transformed to say 10mm in the wet state or 25mm in the very wet state because of the differences896

in the rainfall distributions in the two states. If the model is not explicitly capturing how nearby sites’ states co-vary, this897

could result in a mismatch in the subsequent simulated rainfall, as shown in Figures 17 and 18. As described in Section 2.4,898

this methodological compromise is necessary to achieve a computationally feasible modelling framework, and these figures899

demonstrate that this compromise has only a small impact on the model’s performance. Further, this is found to have very little900

impact on the final gridded simulated output (see Section 5.2.3).901

5.2.3 Validation of gridded rainfall902

An important next step in the validation process is to extend on the work of Section 5.2.2 and validate the gridded datasets903

produced at step 6 of the methodological diagram shown in Figure 1. Three key tests are covered (metrics 11-13 in Section 5.1),904

the results of which are presented here.905

906

Greater Anglian region validation907

908
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Calculating the monthly mean rainfall (across all months in the 1914-2018 period) and comparing the observed and simulated909

spatial variability in the Greater Anglian region serves as an initial validation. Note that this is a simple check of AME910

performance. This does not, for example, test the spatial dependence structure. Any simple model, or interpolation technique,911

should be able to reproduce the spatial variability of annual mean rainfall and that is the purpose of this check. The model is912

able to simulate the observed spatial gradients, clearly depicting the driest and wettest sub-regions within the simulated domain913

(Figure 19). Reassuringly, errors in the climatology across the region are small (typically less than 5%) and show no clear914

tendency towards positive or negative values in a particular sub-region (Supplementary Figure 13). The fact that errors are small915

is expected given that the extension to a grid (Section 2.5) uses gridded long-term average rainfall in its approach. Note that916

although two AME realisations are chosen at random, these results are robust to any selection of AME realisations (not shown).917

918

The Greater Anglian region average DDI is calculated using 12-, 24- and 36-month rainfall accumulations. The 36-month DDI919

is shown in Figure 20, which indicates that the observed variability in this drought index is well captured by the AME model.920

Where the AME model mean DDI (the thick black line) deviates slightly from the observed HadUK-Grid DDI (thick blue line),921

the observed behaviour is still captured by the range of the 1000 AME realisations (thin grey lines). The same is true for both922

12- and 24-month DDI (not shown).

Figure 19. Annual mean rainfall (mm) (using a 1961-1990 climatology period) across the simulated domain in HadUK-Grid
and two (of 1000) randomly chosen AME realisations. The 39 sites are labelled.

923
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Figure 20. DDI using 36-month running monthly rainfall accumulations for the Greater Anglian region. The thin grey lines
represent all 1000 AME simulations, the thick black line represents the average of the 1000 AME simulations and the thick
blue line represents HadUK-Grid.

924

Independent site validation925

926

At Writtle, the observed 12-, 24- and 36-month non-standardised DDIs are well captured by the AME model (Figure 21).927

Recall that this validation is more a test of the interpolation technique that produces the gridded dataset, rather than the direct928

simulation of data at the 39 sites (see metrics 12 in Section 5.1). There is a slight tendency to underestimate the magnitude of the929

most extreme meteorological droughts. This is also illustrated in Figure 22, which shows that there is a slight underestimation of930

the magnitude of 36-month meteorological drought events. However, all but the most extreme observed droughts (in magnitude,931

severity and duration) are within the range of AME model simulations. This represents good performance for an independent932

site that is some distance from the nearest modelled sites. Further, the agreement between simulated and observed 12- and933

24-month meteorological droughts is greater (relative to 36-month droughts) (indicated by Figure 21). Very similar results are934

found for the Shoeburyness site.935

936

For Cromer the results are slightly different. The AME mean DDI generally closely tracks the observed DDI, although937

some variability later in the period is not as well represented, such as the wetter period prior to 2010 (Supplementary Figure938

15). This wet period seems to be restricted to the northeast of the Greater Anglian region and is not so apparent in observations939
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Figure 21. The non-standardised DDI for Writtle using (a) 12-, (b) 24-, and (c) 36-month running rainfall accumulations. The
thin grey lines represent all 1000 AME simulations, the thick black line represents the mean of the AME simulations and the
thick blue line represents the observations, using HadUK-Grid.

elsewhere. If it was a local feature it may not be captured by the 39 sites. Generally, there is greater variability across the 1000940

AME simulations, relative to, for example, Writtle (cf. Figure 21 and Supplementary Figure 15). In turn, the range across the941

1000 AME simulations encompasses the observed meteorological drought characteristics. Very similar results are apparent for942

Wattisham, Brooms Barn and Monks Wood (not shown).943
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Figure 22. Comparing 36-month meteorological drought characteristics of magnitude (mm) duration (month) and severity
(mm × month) for observed rainfall at Writtle (blue circles) and 1000 AME model simulations (red circles). Meteorological
drought events are identified as periods that exceed the 90th percentile of the DDI, with an event terminating once it drops
below this threshold.)

944

All sites demonstrate improved performance of simulated meteorological droughts at 12- and 24-month durations com-945

pared to 36-month durations (not shown), tending to slightly underestimate the absolute magnitude of rainfall accumulation946

deficits and surpluses (likely due to locally significant events that are not captured by rain gauges at the nearest of the 39 sites).947

Overall, this slightly dampened month-to-month rainfall variability away from the modelled sites is an issue with interpolated948

gridded datasets that are generated with a finite number of sites. Improving the representation of rainfall at a location further949

away from one of the 39 sites is difficult because the true rainfall is not always known (only limited additional site data beyond950

the long daily rainfall records at the 39 sites is available).951
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952

Validation in seasons and key periods953

954

Considering maps of daily rainfall (aided through the production of animations) many features appear in both HadUK-955

Grid and the AME model. For example, runs of both dry and wet days are apparent in both, with occasional days of very wet956

weather across the region. The lack of seasonality in rainfall across the region prohibits strong comparisons between summer957

and winter. There does not appear to be a noticeable difference in the average pattern of rainfall in summer and winter in either958

HadUK-Grid or the AME model; it is not possible to clearly differentiate predominantly frontal or convective rainfall days (this959

is a limitation of the simulating at daily frequency, but a relatively minor one for the purpose of drought investigation).960

961

The daily rainfall simulated by the AME model often appears “spotty”. This is related to the fact that spatially coher-962

ent rainfall is simulated at the 39 sites and then interpolated. As a consequence, rainfall does not always appear as homogeneous963

as it might be in reality. Clearly, rainfall is a heterogeneous meteorological variable, especially at the daily time-scale. Therefore,964

it is difficult to pinpoint exactly how much of this “spotty” behaviour is due to this inherent feature of rainfall and how much is965

due to a limited number of sites that the AME model is fitted to. Indeed, this “spotty” behaviour is still apparent in HadUK-Grid,966

even in winter when frontal rainfall is more common, suggesting it does not purely represent convective rainfall but rather a967

potential limitation of all gridded rainfall datasets. However, this feature is arguably less pronounced in HadUK-Grid relative to968

the AME model, which is expected given that more than 39 sites will underpin the daily rainfall across the region on most days969

in HadUK-Grid; the exact number of sites available will vary in time and, unlike in the AME model, will not be fixed at a970

particular number of sites.971

6 Discussion and Conclusion972

A novel stochastic rainfall model, named the Advanced Meteorology Explorer (AME), has been presented, and its ability to973

capture observed rainfall and meteorological drought behaviour in the Greater Anglian region of the UK has been validated. In974

particular, the AME framework was developed to overcome the limitations of the current UK water industry standard stochastic975

rainfall model, as described in Section 1. This framework provides daily rainfall simulations on a high-resolution grid, capturing976

the effect of important climate drivers in a flexible way, within a Bayesian hierarchical framework.977

978
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The AME represents daily rainfall behaviour at a number of individual locations using a series of advanced HMMs, al-979

lowing for complex rainfall patterns to be capture through the hidden state structures which include clone dry states. Improved980

model performance is achieved by conditioning the HMM parameters on both temporal and climate driver effects. This is done981

in a flexible way, whereby different climate drivers are able influence rainfall at different sites, selected based on Bayesian982

penalised regression. The dependence between sites at different locations in space is modelled using a vine-copula, able to983

capture both asymptotic extremal dependence and independence between locations. The resulting spatially and temporally984

coherent rainfall simulations at the modelled sites are then interpolated to a 5 km grid using the same terrain dependent985

inverse-distance weighting approach used to create the HadUK-Grid data set (Hollis et al., 2019).986

987

The AME framework is fit to daily rainfall data from the HadUK-Grid dataset in 39 1 km grid cells, representative of988

rain gauge sites in the Greater Anglian region of the UK, during the period 01/01/1914-31/12/2018. The resulting model is used989

to simulate 1000 alternative synthetic realisations of this 105-year period at the 39 sites, which are subsequently interpolated to990

a 5 km grid over the region of interest.991

992

The validation of these stochastic simulations showed how, at the modelled sites, the AME framework is able to capture993

well the distribution of dry period lengths; seasonal and annual variation in occurrence and intensity of rainfall; and the994

distribution of rainfall intensity when aggregated to monthly and yearly resolutions. This is shown to be true for both very995

dry (V38) and relatively wet (V7) sites within the region. In addition, the simulated rainfall is shown to be within a realistic996

range. Subsequently, the AME framework is shown to represent long-duration (36-month) meteorological drought behaviour997

at modelled sites well. The mean DDI, calculated over the 1000 stochastic simulations, is shown to follow the variations in998

the observed index closely, and a number of stochastic simulations provide more extreme values than those seen in the most999

extreme meteorological droughts at the driest sites (V38).1000

1001

There are three key limitations of the AME framework. Firstly, the high computational cost associated with applying the1002

complex HMM within a Bayesian modelling framework. Secondly, the desired close match to the observed rainfall behaviour1003

and subsequent high dependence of the simulations on the observations (which are just one single realization of the process),1004

which might ultimately lead to the underestimation of the true variability of the stochastic process. Thirdly, the underestimation1005

of spatial correlation in rainfall, particularly for locations in close proximity. To allow for computational feasibility when1006
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applying the AME framework to a large number of sites (here 39), the spatial dependence between sites is modelled separately1007

from the magnitude and occurrence of rainfall, following a copula approach. The copula is fit to the residual rainfall, left after1008

transforming the rainfall at each site to the uniform scale using the HMM distribution function at that site, and integrating out1009

the hidden state sequence. Since the state sequence must be integrated out, this part of the modelling framework is represented1010

independently at each site, and hence the dependence between hidden states at different sites is not explicitly captured. As a1011

result, the correlation between daily, and monthly rainfall accumulations at nearby sites is shown to be slightly less strong in the1012

simulations from the AME framework compared to the observations. As described in Section 2.4, methods based on coupled1013

HMM have been proposed, but as currently formulated they are not computationally feasible for our use case, where the number1014

of sites would result in the estimation of a huge number of additional state transition parameters, limiting the modelling to just a1015

few sites. The approach taken in this study could, instead, be applied to even more sites. Further exploration would be required1016

to determine an upper limit to the number of sites, but the computationally efficient fitting of the vine-copula model (taking just1017

8 minutes in this 39-dimensional example) suggests that more than 100 sites could be comfortably modelled together in this1018

AME framework. Further, the way in which the AME models state sequences at each site conditional on the same temporal1019

covariates, and based on spatially coherent rainfall data, means that some dependence in the state sequences is indirectly in-1020

ferred. As such, this necessary compromise in the framework is shown to have little impact on the final gridded simulated output.1021

1022

Indeed, the gridded output is shown to validate convincingly at both the regional scale (taking regional averages) and at1023

several independent rainfall sites, representing sub-regions not covered by the 39 modelled sites (e.g. Essex). While the absolute1024

magnitude of meteorological droughts at these independent sites is shown to be slightly dampened, tending towards climatology1025

(common feature of gridded rainfall datasets), key characteristics of observed droughts are simulated. In addition, the AME is1026

shown to produce plausible, more severe droughts than seen in the observed record.1027

1028

The AME approach presents multiple improvements over the current industry approach (described in Section 1), draw-1029

ing upon the advantages of many similar models in the literature and extending them to enhance model flexibility. The use of a1030

spatial interpolation method to extend to a high-resolution 5 km dataset also represents a significant advancement on previous1031

industry work. Although there is some relaxation towards climatology and an underestimation of monthly rainfall variance1032

at independent sites, this is a common feature of gridded rainfall datasets. The interpolation scheme used here is designed1033

specifically for daily rainfall and allows for direct comparisons with the observed HadUK-Grid dataset, since it uses an identical1034
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approach (Hollis et al., 2019). These features represent an improved ability to produce faithful hydrological modelling in the1035

Greater Anglian region, particularly so at the catchment scale.1036

1037

In this application, the simulations from the AME framework are constrained by the observed behaviour of the climate1038

drivers during the historical 105-year simulation period. That is, the same values of SNAO, WNAO, EA and SST are used in1039

the simulations as are observed in the model fitting period. This means that the simulated rainfall time series may not sample1040

the full range of plausible climate scenarios. To increase this range, a synthetic or climate model simulated sequence of these1041

climate drivers could also be used for simulation. This would allow the AME framework to sample a larger range of plausible1042

climate variability, and hence plausible droughts.1043

1044

In addition, the AME framework has the potential to be extended in a number of ways, similar to comparable models1045

in the literature. For example, the same method could be used to model rainfall in another region of interest. The flexi-1046

bility of the model in capturing climate driver effects, and its success in modelling both dry (V38) and wet (V7) sites in1047

the Greater Anglian region, suggests that the AME framework could successfully represent locations and regions with very1048

different rainfall climatologies to those seen in this application. Interpolation to the grid, may however be less successful in1049

very hilly regions, where the terrain adjustment in the interpolation method may not be able to capture steep changes in elevation.1050

1051

Further, while in this application the focus of the validation has been on characterising meteorological drought, the sim-1052

ulations from the AME framework could be used to explore infrastructure flooding in the insurance industry, waste water1053

management, and any industry or application that is impacted by rainfall. While further model validation would be required to1054

explicitly verify the AME’s ability to realistically capture the rainfall characteristics relevant for each application, the overall1055

good performance of the model in representing the full distribution of rainfall at different sites (including high rainfall values)1056

shows good promise in its transferability to other applications.1057

1058

The framework also has the potential to be extended to represent and simulate additional meteorological variables, such1059

as Potential Evapotranspiration (PET) or temperature. This could be done in a similar way to modelling multiple locations,1060

using a copula to represent the dependence between residual rainfall and (say) PET at each modelled location. Alternatively, a1061

2-dimensional HMM could be implemented at each location if found to be computationally feasible.1062
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1063

Finally, since the AME framework has been developed to assess environmental risk, to inform future infrastructure planning in1064

the water industry, a quantification of the effect of future climate change on rainfall behaviour is also important. In future work1065

we plan to extend the AME framework to incorporate information from the latest UK climate projections (UKCP), released1066

by the Met Office in 2018 (Lowe et al., 2018). These projections indicate that, in general, summers will become drier while1067

winters will become wetter, impacting on both drought and flood risk. This extension of the AME framework will aim to use1068

an approach similar to Brown et al. (2014), and model both historical observations and climate model projections together,1069

capturing how the rainfall behaviour (i.e. HMM parameters) changes with climate change at each site by regressing on global1070

mean temperature. This will allow for stochastic simulations of rainfall, representative of any global mean warming level of1071

interest.1072

1073

In conclusion, the AME framework has been shown to be able to meet the needs of the UK water industry in simulat-1074

ing spatially and temporally coherent synthetic daily rainfall on a high-resolution grid, with no post-processing required to1075

faithfully represent the observed characteristics of rainfall and resulting meteorological drought even when aggregating over1076

spatial domains, as is the current industry approach. Indeed, the simulations are able to capture and exceed the extreme drought1077

conditions experienced in historical record. The framework has the potential to be extended in many different ways, such as1078

to include the effect of climate change, and rainfall simulations from the model can be used for a wide range of applications1079

beyond water resource management.1080

1081
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