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A B S T R A C T

Hydro-fracture geometry prediction is of great practical importance for optimizing construction pa-
rameters and evaluating stimulation effects. Existing physical simulation methods are computationally
intensive. Deep learning-based methods offer fast model inference, yet typically require a large amount
of field data for accurate model training and lack model interpretability in explaining the complex
physical processes. This work presents a physics-informed surrogate modeling method for hydro-
fracture geometry prediction. The proposed method encodes the hydro-fracture physical laws, in the
form of partial differential equations, as a loss term to govern the training process of the surrogate
model, aiming to alleviate the data requirement for model training. Experimental studies demonstrate
that the proposed modeling method effectively reduces the training data requirement and improves
model accuracy and interpretability.

1. Introduction
The unconventional hydrocarbon resources, such as

shale oil/gas, tight oil/gas and coal bed gas, cannot naturally
produce oil/gas due to low reservoir permeability. Hydraulic
fracturing is an indispensable technique for economically
exploiting these resources through creating hydro-fractures
and increasing the contact area between the wellbore and the
reservoir [20]. Hydraulic fracturing is a high-cost process
during oil and gas well development, as nearly ten thousand
cubes of liquid and one thousand cubes of proppant need to
be injected into the reservoir to create hydraulic fractures in
each horizontal well. Thus hydro-fracture geometry (HFG)
prediction is of great practical significance for optimizing
construction parameters and evaluating stimulation effects
[1]. The injection process during hydraulic fracturing and
the HFG are illustrated in Figure 1.

HFG refers to the length, width, and height of hydraulic
fracture. The length of hydraulic fracture determines the
stimulated volume after hydraulic fracturing. Longer frac-
tures increase the oil/gas production rate. On the other hand,
longer fractures increase the fluid volume and raise the fluid
cost. Therefore, accurate prediction of fracture length is
of great value for the optimization of injection fluid. The
width of hydraulic fracture determines the difficulty in trans-
porting proppant. For fractures with small widths, proppant
tends to bridge and settle down, which largely increases the
construction risk of high injection pressure and decreases
the conductivity along with the entire hydraulic fracture.
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Figure 1: The left shows the fluid injection process during
hydraulic fracturing in practical engineering, and the right
shows the characteristics of a hydro-fracture. 𝐿 denotes the
fracture half-length, ℎ𝑓 denotes the constant height, and
𝑤(𝑥, 𝑡) denotes the width of the hydro-fracture corresponding
to the distance along the fracture 𝑥 at injection time 𝑡.

Thus, accurate prediction of fracture width is crucial to
the optimization of proppant concentration. Effort on HFG
prediction has been focusing on physical simulation and
machine learning methods.

1.1. Physical Simulation Methods
Physical simulation methods for HFG prediction mainly

include classical fracture models and modern numerical
methods. Perkins and Kern [19] and Nordgren [17] were
the first to propose the PKN model to predict the length and
width of hydraulic fractures with injection time as a variable.
Geertsma and De Klerk [8] proposed the KGD model to
predict HFG at the early injection time. PKN and KGD
establish the theoretical basis of the hydraulic fracturing
process simulation and open the door to simulation methods.
Chen et al. [6] applied the finite element method (FEM) to
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predict the HFG when a hydraulic fracture interacts with
a natural fracture. FEM simulates hydro-fracture propaga-
tion through setting cohesive elements or re-meshing, thus
the propagation path is pre-defined or the computational
cost is prohibitively high. Wang et al. [28] applied the
extended finite element method (XFEM) to predict the HFG
when several hydraulic fractures propagate simultaneously.
XFEM can simulate hydro-fracture propagation along arbi-
trary paths free from the mesh, but it cannot deal with com-
plex fractures due to the computational cost. Wu and Olson
[29] applied the boundary element method (BEM) to predict
the complex HFG in naturally fractured reservoirs. When
using BEM, only the fracture paths need to be discretized
and the fracture element number determines the dimension
of the solution equations. The drawback of BEM is that
it can only deal with a homogeneous reservoir. Zou et al.
[31] applied the discrete element method (DEM) to predict
the HFG in the reservoirs containing weak bedding planes.
Based on DEM, the formation is an assembly of bonded
particles or deformable blocks which is interfaced by several
sets of joints, and hydro-fracture growths are not allowed
beyond the joint trajectories.

Existing physical simulation methods can predict HFG
accurately. However, they suffer from high computation
cost due to the large scale of the simulation problem as
well as the complexity of the physical process, e.g., fluid
flow, fluid partition, rock deformation, stress shadow effects,
and fracture propagation. For example, the XFEM method
can simulate hydro-fracture propagation along an arbitrary
path free from the mesh, which requires several hours of
simulation time to predict the geometry of a single 2D field-
scale hydro-fracture. When more complex fracture structure
is considered, the simulation time further increases by one
or two orders of magnitude. Such high computation cost be-
comes even more unbearable for supporting infield hydraulic
fracturing operation, where onsite engineers often need to
adjust the construction parameters on the fly. In summary,
how to reduce the computation cost is a fundamental chal-
lenge when predicting HFG.

1.2. Machine Learning Methods
The application of machine learning methods in hy-

draulic fracturing has drawn significant attention in the
recent past. Deep neural network (DNN) is known for its
universal approximation and fast inference capabilities, of-
fering a promising alternative to support efficient hydraulic
fracturing modeling, analysis and prediction [12, 11, 7, 4, 2].
Tamez et al. [26] utilized a DNN to timely predict the prob-
lem of a screen out and assist in making intelligent decisions
throughout each stage. Their work is based on large sets of
data as each monitored variable on a well is measured every
second. Ben et al. [5] adopted the idea of continual learning
to provide real-time prediction of wellhead pressure during
hydraulic fracturing, which assists engineers in monitoring
and optimizing the pumping schedule. For each hydraulic
fracturing stage, the first model is trained on the data from
the first couple of minutes and used to predict the wellhead

pressure for the next several minutes; the second model is
then trained after adding the data from the next couple of
minutes and again used to predict the pressure for the next
several minutes; the process continues until there is no more
data. The best model among them is selected for prediction.
Lapin et al. [11] used a DNN to predict the fracture aspect
ratio (the ratio of the larger half-axis of the fracture to the
smaller one) during hydraulic fracturing. The network is
trained on a large amount of training samples generated from
numerical simulation. Kim et al. [13] used a DNN to deter-
mine completion methods and fracturing fluids in shale gas
reservoirs. The network architecture is designed by employ-
ing three types of training algorithms and adjusting the num-
ber of hidden layers and hidden layer neurons. Wang et al.
[27] predicted the first-year well production after hydraulic
fracturing by using four supervised learning approaches,
namely random forest, adaptive boosting, SVM, and DNN.
He et al. [10] built a spatial-temporal database from field
data including information on reservoir characteristics, com-
pletion, stimulation, and production, and used four DNNs
to model different hydraulic fracturing design scenarios and
predict well production. One common drawback of machine
learning methods is the lack of interpretability. It is difficult
to analyze how the output of these methods changes when
varying the physical parameters of the hydraulic fracturing
process, which consequently hamper their applicability for
onsite construction.

Hybrid modeling improves interpretability by integrat-
ing physical models and machine learning methods. Bangi
et al. [3] proposed a deep hybrid model. Specifically, a DNN
is used to predict the unknown fluid leak-off rate and the
predicted parameter is then used in three physical models
describing three subprocesses of the hydraulic fracturing
process. While the method is interpretable, it requires a large
amount of process data to train an accurate DNN.

In general, another drawback of existing machine learn-
ing methods is that these surrogate models are all completely
data-driven and require a large number of training samples.
However, the field data of hydraulic fracturing is expensive
and even scarce for a given oil field. New methods should be
proposed to train a reliable and robust surrogate model from
a small data set.

1.3. Physics-Informed Neural Network Methods
In summary, accurate prediction of HFG is of great

value for hydraulic fracturing optimization and until now it
mainly relies on time-consuming physical simulation meth-
ods. Recently, machine learning methods demonstrate great
potential, but most of them, in particular DNNs, require a
large amount of field data and lack interpretability.

Recent advances in physics-informed neural networks
offer the capability to embed domain knowledge, in the
form of a set of PDEs, into the loss of the neural network
using automatic differentiation. They potentially help reduce
the required amount of training data and improve model
interpretability. Raissi et al. [22] encoded the physical infor-
mation in the form of PDEs as a loss term into the DNN
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and demonstrated through experiments that the proposed
method, termed PINN, can reduce the data required for train-
ing. Meanwhile, PINN is interpretable owing to the inclusion
of physical information. Since then, PINN has been adopted
to solve different types of PDEs. Guo et al. [18] extended
PINNs to solve space-time fractional advection-diffusion
equations. Lu et al. [16] improved the computational effi-
ciency of PINNs and developed a Python library for PINNs
applicable to forward and inverse problems in computational
science and engineering. However, the library can only solve
simple physical problems associated with PDEs. Recent re-
searches on PINNs are exploring applications in the complex
engineering field. Kissas et al. [14] employed PINN for
cardiovascular flows modeling and constrained the output of
DNN to satisfy the physical conservation laws by using one-
dimensional models of pulsatile blood flow. Zhang et al. [30]
applied PINNs for solving inverse identification problems
of nonhomogeneous materials in elasticity imaging. Two
DNNs are used for solving the forward problem and infer-
ring the distribution of material parameters, respectively. In
this work, we propose a PINN-based method to tackle the
HFG prediction problem. Specifically, the proposed model
encodes the physical principles of the hydraulic fracturing
process described in the form of PDEs into DNN.

This work presents a physics-informed surrogate mod-
eling method to support HFG modeling, analysis and pre-
diction. The proposed work aims to address the aforemen-
tioned modeling challenges, i.e., the high computation cost
of physical simulation, the need of a large amount of training
data, and the lack of interpretability of DNN-based surrogate
modeling methods. The proposed work is motivated by
recent research on physics-informed neural network (PINN)
[22, 25, 21]. Recent studies have shown that PINN can learn
and encode underlying physical laws described by a set of
partial differential equations (PDEs), thereby reducing the
data requirement for model training [22, 25]. In this work,
we devise a multilayer fully-connected neural network to
approximate the dynamic process of hydraulic fracturing as
a function of the reservoir and construction parameters. We
introduce PKN, a PDE-based classical hydraulic fracturing
physical model, as a loss term of the physics-informed sur-
rogate model, driving network parameter learning towards
satisfying the PDE conditions during model training. Ex-
perimental studies demonstrate that introducing the phys-
ical laws into the surrogate model effectively reduces the
requirement of pre-labeling data for training, and improves
the model accuracy and interpretability.

In summary, this work makes the following contribu-
tions:

1. To the best of our knowledge, we are the first to present
a physics-informed surrogate modeling method based
on physics-informed neural network for HFG model-
ing, analysis, and prediction. Compared with existing
computation-intensive physical simulation methods,
the proposed surrogate modeling method significantly
reduces the computation cost. More importantly, the
proposed method encodes domain knowledge as the

PDE loss to facilitate model learning. The PDE loss
regularizes the model learning towards satisfying the
underlying physical knowledge during training. Thus
it is more than existing DNN data-efficiency without
PDE loss.

2. Experimental results show the proposed surrogate
modeling method achieves the best performance among
the baseline methods when using the same training
samples. Also, the proposed method is more robust to
the variation of the training sample size. Specifically,
when the training sample size is 50, the scaled mean
squared error (𝑠𝑀𝑆𝐸) of the proposed method is
83.0% lower than support vector machine (SVM)
and 24.6% lower than DNN; when the sample size
decreases to 5, the performance gain further increases
to 92.3% for SVM and 46.3% for DNN.

3. This work pays special attention to model inter-
pretability by introducing key HFG parameters as
the input of the surrogate model, aiming to support
onsite experts to conduct efficient and accurate infield
exploration and optimization of construction during
hydraulic fracturing.

The remainder of this paper are organized as follows.
Section 2 covers the data generation method used in this
study, and the dataset accuracy validation. Section 3 presents
our proposed method for HFG prediction. Section 4 presents
the experiments and results. Finally, section 5 concludes this
work.

2. PKN and Accuracy Validation
This work applies the PKN model, a classical fracture

model, to generate the ground truth data samples due to its
low computation cost. And a numerical model with FEM is
established to verify the accuracy of the PKN model and the
reliability of the data set.

2.1. PKN Model
The PKN model [17] is a classical 2D model, founded

on physical principles, and considers core components of
hydraulic fracturing processes, such as the fluid flow within
the hydro-fracture, the rock deformation, and the hydro-
fracture propagation. Without loss of generality, the follow-
ing discussion focuses on the fracture width, a key attribute
of HFG.

Generally, there is an inter layer above and below the tar-
get fracturing layer. The height of hydraulic fracture nearly
equals the thickness of the target layer. The PKN model is
built on the assumption that a vertical hydraulic fracture
propagates in a lateral direction with a constant height ℎ𝑓 , as
shown in Figure 1. According to the model, at the injection
time t, the width of the hydro-fracture w(x,t) corresponding
to the distance along the fracture x can be defined by Eq. (1):
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𝑤(𝑥, 𝑡) =

𝑤(0, 𝑡)

{
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}
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(1)

where 𝑤(0, 𝑡) denotes the width of the hydro-fracture when
𝑥 equals to 0 and is defined by Eq. (2):

𝑤(0, 𝑡) = 4

(

𝜇𝑞2

𝜋3𝐸′𝐶𝐿ℎ𝑓

)
1
4

𝑡
1
8 ; (2)

𝐿(𝑡) denotes the fracture half-length and is a function of 𝑡
given by

𝐿(𝑡) =
𝑞𝑡

1
2

2𝜋𝐶𝐿ℎ𝑓
; (3)

𝜇 is fluid viscosity, 𝑞 is the flow rate, 𝐶𝐿 is the leakoff
coefficient, and 𝐸′ is the plane strain modulus defined by
Eq. (4), where 𝐸 is Young’s modulus and 𝑣 is the Poisson’s
ratio:

𝐸
′
= 𝐸

1 − 𝑣2
. (4)

Eq. (5) defines the PDE that represents the dynamic
variation of the hydro-fracture width:

𝑓 (𝑥, 𝑡) ∶= 𝜕𝑤
𝜕𝑡

− 𝜆1
𝜕2𝑤4

𝜕𝑥2
+ 𝜆2, (5)

where 𝜆1 =
𝐸′

128𝜇ℎ𝑓
and 𝜆2 =

8𝐶𝐿

𝜋
√

𝑡
cos

(

𝑥
𝐿(𝑡)

)

.
The initial and boundary conditions of the PDE are

defined by Eq. (6) and Eq. (7), respectively:

𝑤(𝑥, 0) = 0, (6)

{

𝑤(𝑥, 𝑡) = 0, for 𝑥 > 𝐿(𝑡),
𝜕𝑤4

𝜕𝑥
|

|

|𝑥=0
= 128(1−𝑣)𝑞

𝜋𝐺 ,
(7)

where 𝐺 is the shear modulus and its relationship to 𝐸′ and
𝑣 is defined by Eq. (8):

𝐺 =
𝐸′ (1 − 𝑣)

2
. (8)

2.2. Dataset Accuracy Validation
Now, we verify how accurate the PKN model is in

predicting HFG. This work uses the FEM method to prove
the accuracy of the surrogate modeling because FEM is one
of the modern numerical methods commonly used to predict
the ideal and indoor HFG. Compared with other modern nu-
merical methods, including DEM, BEM, and XFEM, FEM

is the most accurate method when predicting HFG because
of its high capabilities in solving non-linear and fluid-solid
coupling problems. However, the FEM method cannot be
directly used to generating the ground truth data samples
when predicting the fracture width under varying fracture
length conditions. Establishing these FEM hydro-fracture
models is technically demanding because simulation results
are sensitive to the element size and element type. Also,
the astringency of the model is highly influenced by the
boundary and initial conditions of the model. Therefore,
we use the FEM model to predict the fracture width when
varying the fracture length and observe its predicted results.
If the PKN model predicts similar results, then it can be
regarded as an accurate model.

For this purpose, a FEM model with a single hydraulic
fracture is established. In general, the reservoir properties
can be characterized clearly through well logging tech-
nology. The target layer is rich in oil/gas resources. Field
engineers fractured the target layer and developed the oil/gas
resources. During the process of formation deposition,
the interlayers were formed, which can protect the oil/gas
from dissipating. Therefore, hydro-fracture was vertically
restricted by two interlayers during lateral propagation. This
work further considers the following hypothesis or scenario
setting: the target layer is between a top layer and a bottom
layer; the height of the hydro-fracture equals the thickness
of the target layer; the rock of the target layer generates pure
elastic deformation; total injection rate and fluid leak-off rate
remain constant; the injection time should be long enough
to generate a hydro-fracture with a large length. Figure 2a
shows the prediction results from the FEM model. When the
fracture length increases from 0𝑚 to 160𝑚, the fracture width
decreases from 4.5𝑚𝑚 to 0𝑚𝑚; the value of fracture width is
indicated by the color grid at the bottom of the figure. Figure
2b presents the prediction results from both models. We can
see that the general trend of the PKN model is consistent
with the FEM model. Also, the difference between the two
models is small. For example, when the fracture length is
100𝑚, the FEM predicts the fracture width to be 3.08𝑚𝑚
and the PKN model predicts the value to be 2.99𝑚𝑚. This
suggests that the PKN model is accurate in predicting the
HFG and simulating from it can generate high-quality data.

3. Methodology
This section presents the proposed method for HFG

prediction. It first introduces the overall architecture of the
proposed method. Then, it presents a general framework for
integrating the physics laws into a DNN-based surrogate
model. Next, it presents a concrete physics-informed surro-
gate model design for predicting a specific HFG attribute. Fi-
nally, it details the network architecture and training process
of the proposed model.

3.1. Architecture Overview
Figure 3 shows the overall architecture of the proposed

DNN-based physics-informed surrogate modeling method
for HFG prediction. It consists of a DNN-based surrogate
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(a) FEM model prediction results
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(b) Variation of fracture width along fracture length

Figure 2: (a) Graphical representation of prediction results from the FEM model; (b) Comparison of prediction results between
the FEM model and the PKN model.

PDE Loss

Loss

minimize

DNN:

Regression Loss

Figure 3: Architecture of the proposed model.

model to approximate the functional relationship between
input and output of the simulated data. The surrogate model
is enforced to satisfy the governing physical laws of the hy-
draulic fracturing process, which is achieved by constructing
a loss term relating to the PDEs of the HFG problem. The
network training process is driven by a ground truth dataset
collected from highly accurate yet time-consuming physical
model-based numerical solvers collocated with sampling
methods, and aims to minimize the loss function on the
approximation error and PDE residuals.

In summary, the proposed surrogate model for predicting
HFG consists of the following steps:

1. Collect the ground truth data using highly accurate
yet time-consuming physical model-based numerical
solvers, and collocation data points using Latin hyper-
cube sampling [24].

2. Build a surrogate model based on DNN and enforce
it to satisfy the physical laws of the hydraulic fracture
process described in the form of PDEs.

3. Train the surrogate model.

The collocation data generated in the first step are used
to compute the PDE loss, which will be explained in
Section 3.3. The adopted Latin hypercube sampling tech-
nique [24] is a sampling method which can be used to
generate input values in the sample space and estimate
expectations of functions of output variables.

3.2. DNN-based Physics-Informed Surrogate
Model

We formulate HFG physical laws using nonlinear PDEs
𝑓 (𝑥, 𝑡) parametrized by 𝐯 with the latent solution 𝑤(𝑥, 𝑡) as
in Eq. (9) [22]:

𝑓 (𝑥, 𝑡) ∶= 𝜕𝑤
𝜕𝑡

+(𝑤; 𝐯), (9)

where 𝑤 is an attribute of HFG to be predicted, which
depends on the distance along the fracture 𝑥, the injec-
tion time 𝑡, and the reservoir and construction parameters
𝐯; (𝑤; 𝐯) denotes differential operator consisting of the
potential solutions 𝑤(𝑥, 𝑡) and parameters 𝐯. As 𝑤 can be
represented by 𝑥, 𝑡 and its partial derivatives, Eq. (9) can be
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equivalently written as follows [22]:

𝑓 (𝑥, 𝑡; 𝜕𝑤
𝜕𝑥

, 𝜕𝑤
𝜕𝑡

, 𝜕
2𝑤
𝜕𝑥2

,⋯ , 𝐯) = 0 (10)

with boundary conditions (𝑤, 𝑥, 𝑡) = 0 and initial condi-
tions (𝑤, 𝑥, 0) = 0.

Since there is no analytical solution for 𝑤 and numerical
solvers are time-consuming, we propose to employ DNN to
solve 𝑤 for its fast inference capabilities. We adopt a fully-
connected multi-layer neural network as the surrogate model
to approximate the functional relationship between 𝑤 and 𝑥,
𝑡, 𝐯:

𝑤̂ = 𝑔(𝑥, 𝑡, 𝐯; 𝜃), (11)

where 𝑔 denotes the DNN, and 𝜃 denotes parameters of the
network.

3.3. HFG Prediction via Physics-Informed
Surrogate Model

We now give a specific example of HFG prediction by
using the DNN-based physics-informed surrogate model.
Sp-ecifically, the fracture width 𝑤 is the attribute of HFG
to be predicted, which, as explained before, depends on
the distance along the fracture 𝑥, the injection time 𝑡, and
reservior and construction parameters 𝐯. Ideally, a well-
trained network can accurately model how the fracture width
𝑤 varies with the geometric and physical parameters 𝑥, 𝑡, 𝐯.

To learn 𝜃, we propose to minimize the following loss
function:

𝐿𝑜𝑠𝑠 = 1
𝑁𝑤

𝑁𝑤
∑

𝑖=1
(𝑔(𝑥𝑖𝑤, 𝑡

𝑖
𝑤, 𝑣

𝑖
𝑤; 𝜃)−𝑤

𝑖)2+ 1
𝑁𝑓

𝑁𝑓
∑

𝑖=1
𝑓 (𝑥𝑖𝑓 , 𝑡

𝑖
𝑓 )

2,

(12)

where {𝑥𝑖𝑤, 𝑡
𝑖
𝑤, 𝑣

𝑖
𝑤}

𝑁𝑤
𝑖=1 denotes the initial and boundary

data generated from the HFG numerical solver [17], and
{𝑥𝑖𝑓 , 𝑡

𝑖
𝑓}

𝑁𝑓
𝑖=1 denotes the collocations data points generated

using Latin hypercube sampling. The first term of Eq. (12)
is the commonly used mean square error (MSE) for encour-
aging a good data fit. The second term is a newly introduced
MSE derived from the PDE 𝑓 (𝑥, 𝑡) (Eq. (10)). As 𝑓 (𝑥, 𝑡)
describes the physical processes of HFG, minimizing this
loss will drive the model toward learning parameters that
adhere to the encoded physical laws. In other words, we
use prior domain knowledge to regularize the training of
DNN. Consequently, the network could be learned from few
training samples with good generalization ability. Further-
more, we take the reservior and construction parameters
𝐯 as additional input to the DNN, which allows domain
experts to examine the results of HFG prediction in practical
engineering.

3.4. Network Architecture and Training Process
In this work, the DNN 𝑔 is chosen as a 𝑘-layer fully-

connected neural network architecture with 𝑛 neurons per
hidden layer (𝑘 = 6, 𝑛 = 300 in the experimental settings).

The L-BFGS [15] algorithm is adopted for optimizing the
parameters 𝜃.

Algorithm 1 details the training process of the proposed
physics-informed surrogate model.

Algorithm 1 Physics-Informed Surrogate Model Training
Require: the maximum number of iterations 𝐾 , threshold

𝜏
1: Generate 𝑁𝑤 ground truth data using Eq. (1)
2: Generate 𝑁𝑓 data points using Eq. (5)
3: Construct a fully-connected multi-layer neural network

𝑔 (𝑥, 𝑡, 𝐯; 𝜃) with initialized parameters 𝜃
4: 𝑖𝑡𝑒𝑟 = 0
5: while 𝑖𝑡𝑒𝑟 < 𝐾 and 𝐿𝑜𝑠𝑠 > 𝜏 do
6: Train 𝑔 (𝑥, 𝑡, 𝐯; 𝜃) by minimizing 𝐿𝑜𝑠𝑠 in Eq. (12)
7: 𝑖𝑡𝑒𝑟 = 𝑖𝑡𝑒𝑟 + 1
8: end while
9: return 𝑔(𝑥, 𝑡, 𝐯; 𝜃⋆) with minimized 𝐿𝑜𝑠𝑠.

4. Experiments and Results
This section describes the experimental evaluation of the

proposed method.

4.1. Dataset Generation
In this work, data were generated based on the real

hydraulic fracturing scenario. The values of the key param-
eters (i.e. the injection rate, the injection time, the fluid
viscosity et, al.) were specified among the common ranges.
The dynamic change of the fracture width was captured by
varying the injection time while fixing the fracture position.
Specially, using the PKN model, we generate the ground
truth data samples. Fig. 4 shows the selected training sam-
ples and the ground truth solution 𝑤(𝑥, 𝑡) over the range
of 𝑥 and 𝑡. 𝑥 denotes the fracture length and 𝑡 represents
the injection time. In this work, 𝑡 ∈ [3000, 7200] and
𝑥 ∈ [0, 𝐿(3000)]. The injection time of a common field
fracturing ranges from 3600 seconds to 5400 seconds. We
enlarge the range to [3000, 7200] thus fully covering all of
the field cases; 𝐿(3000) is the initial fracture length, and we
can capture the dynamic change of the fracture width along
with the initial fracture length 𝐿(3000) during the following
fracturing fluid injection. We randomly select 𝑁𝑤 samples
from the boundary or initial data as the training samples,
marked using a cross sign; 𝑁𝑤 = 50 unless stated otherwise.
We also generate 𝑁𝑓 = 10, 000 collocation points using the
Latin hypercube sampling technique [24] to regularize the
DNN training. For the test set, we generate 21, 100 samples
by meshing 𝑥 and 𝑡, where 𝑥 ∈ [0, 𝐿(3000)] with an interval
of 0.01𝐿(3000) and 𝑡 ∈ [3000, 7200] with an interval of 20.

The accuracy of the PKN model can be guaranteed when
the length𝐿(𝑡) is much greater than the height ℎ𝑓 . Generally,
in order to obtain a hydro-fracture with a large length, the
injection time 𝑡 of one fracturing stage is between 3600 and
5400 s. In this work, to expand the sample space, the range
of the injection time is extended to 3000 to 7200 s, i.e., 𝑡 ∈
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Figure 4: Visualization of training samples and solution 𝑤(𝑥, 𝑡) with varying 𝑥 and 𝑡. Training samples are indicated by the cross
sign, and value of 𝑤(𝑥, 𝑡) is indicated by color.

[3000, 7200]. Other parameters are set as: 𝑥 ∈ [0, 𝐿(3000)],
𝐶𝐿 = 1 × 10−5 (with unit 𝑚∕𝑠0.5), 𝐸 = 2 × 1010 (with unit
𝑃𝑎), 𝜇 = 0.01 (with unit 𝑃𝑎 ⋅ 𝑠), 𝑞 = 1∕30 (with unit 𝑚3∕𝑠),
𝑣 = 0.2, and ℎ𝑓 = 20 (with unit 𝑚).

4.2. Experiment Setting
4.2.1. Evaluation Metrics

We compare the generalization performance of different
methods by using the scaled mean squared error (𝑠𝑀𝑆𝐸) as
the evaluation criterion, which is defined as follows:

𝑠𝑀𝑆𝐸 = 1
𝑁𝑡𝑒𝑠𝑡

𝑁𝑡𝑒𝑠𝑡
∑

𝑖=1

(𝑤𝑖 − 𝑤̂𝑖)
2

𝑤2
𝑖

, (13)

where 𝑤𝑖 denotes the actual value, 𝑤̂𝑖 denotes the predicted
value, and 𝑁𝑡𝑒𝑠𝑡 is the number of test samples. A smaller
value of 𝑠𝑀𝑆𝐸 indicates better generalization ability.

This work also investigates the robustness of the pro-
posed surrogate model when learning from nosiy training
data. The relative absolute error (𝑅𝐴𝐸), defined in Eq. (14),
is used as the evaluation criterion:

𝑅𝐴𝐸 =
|𝑠𝑀𝑆𝐸∗ − 𝑠𝑀𝑆𝐸|

𝑠𝑀𝑆𝐸
, (14)

where 𝑠𝑀𝑆𝐸∗ denotes the 𝑠𝑀𝑆𝐸 obtained by training on
the noise-contaminated data. 𝑅𝐴𝐸 reflects the relative dif-
ference of the prediction accuracy when using noisy training
data and the training data without noise. The smaller the
𝑅𝐴𝐸, the more robust the model’s prediction capability.
In other words, a small value of 𝑅𝐴𝐸 indicates that the
method does not deteriorate much under noise conditions
and is robust.

4.2.2. Baselines
We compare the proposed method with two baseline

methods: (1) a DNN-based method without the PDE-associated
loss. The DNN architecture is same as that of the proposed
surrogate model; and (2) SVM method. SVM [23] is a
supervised learning method which has been applied to
various tasks, e.g., regression and classification, and is one
of the widely used methods for HFG prediction [9].

4.3. HFG Prediction Evaluation
4.3.1. Overall Performance

Fig. 5 shows the HFG prediction accuracy of the two
baseline methods and the proposed surrogate modeling
method under the varying number of training samples. We
can see that the proposed method achieves higher prediction
accuracy, i.e., lower 𝑠𝑀𝑆𝐸, than the baseline methods for
all training sample sizes. Despite the fluctuations, the rel-
ative performance gain further increases when the training
sample size decreases. For instance, when the sample size
decreases to 5, the proposed method makes the maximum
performance gain, which improves SVM by 92.3% and DNN
by 46.3%. In addition, the proposed method is more robust to
the variation of the training sample number. The vertical bars
in Fig. 5 indicate the standard deviation of 𝑠𝑀𝑆𝐸 estimated
from five different models trained on the randomly selected
data from the ground truth data samples. The proposed
method has less variation than the baselines methods for the
same training sample size. Also, the proposed method is less
impacted by the training sample number. For example, when
the number of training samples is 10, the standard deviation
of the proposed method is 0.008. In contrast, it is 0.024 and
0.055 for DNN and SVM, respectively.

The following investigation further explains why the
proposed method outperforms the DNN-based method. Fig-
ures 6a, 6b, 6c, and 6d show the prediction accuracy of the
proposed method and the DNN-based method when 𝑡 =
3000, 𝑡 = 4000, 𝑡 = 5000, and 𝑡 = 6000, respectively.
We can see that 𝑠𝑀𝑆𝐸 of the proposed method is lower
than the baseline for most values of 𝑥. This suggests that
incorporating the physical laws into DNN regularizes the
network and leads to more accurate prediction.

4.3.2. Robustness Analysis
The proposed method is more robust against noisy data

than the two baseline methods. To better understand the ro-
bustness of the proposed method, we evaluate the prediction
accuracy of the three methods when learning from noisy
training data. More specifically, we first add noise to the
training data 𝑤. The noise value equals the product of the
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Figure 5: Variation of 𝑠𝑀𝑆𝐸 with training sample size 𝑁𝑤.
The vertical bars indicate the standard deviation of 𝑠𝑀𝑆𝐸
estimated from five different trained models.

noise factor 𝛼 and a random value sampled from the Gaus-
sian distribution  (0, 𝑠2), where 𝛼 ∈ {0.025, 0.05,… , 0.2}
and 𝑠2 is the sample standard deviation estimated from the
training samples. Then, we evaluate the robustness of the
three methods regarding the above-defined metric 𝑅𝐴𝐸.

Fig. 7 shows how 𝑅𝐴𝐸 varies with the noise factor
𝛼. We can see that he proposed method outperforms the
baselines over the range of 𝛼, and its improvement is more
pronounced when the noise factor increases. More specifi-
cally, when 𝛼 = 0.2, the 𝑅𝐴𝐸 of the proposed method is
0.005, compared with 0.052 for DNN and 0.349 for SVM,
respectively. This positive result matches the expectation
as the proposed model is trained to meet the underlying
physical laws described by PDEs during the training process,
which makes it more robust to noise compared with the
baselines trained only based on data.

4.3.3. Interpretability Analysis
To evaluate the interpretability, we investigate how the

model performance varies with one of the most important
construction parameters – the flow rate 𝑞. According to
domain experts, variation in 𝑞 will significantly affect the
fracture width𝑤 in practical engineering. Therefore, domain
experts desire a surrogate model that could accurately pre-
dict HFG under varying 𝑞. Fig 8 shows how the prediction
accuracy varies with 𝑞. Given that 𝑞 ∈ [0.5∕60, 4∕60], we
first generate the data set by varying 𝑞 from 0.5∕60 to 4∕60
with an interval of 0.5∕60. Then, we select𝑁𝑤 samples from
the boundary and midpoint of 𝑞 to form the training set, i.e.,
𝑞 ∈ {0.5∕60, 2∕60, 2.5∕60, 4∕60}. The remaining values of
𝑞 are used to generate the test set. The proposed method
consistently outperforms the baseline DNN and SVM in
terms of 𝑠𝑀𝑆𝐸 when 𝑞 changes. For example, when 𝑞 =
1∕60, i.e. 0.067, the 𝑠𝑀𝑆𝐸 of the proposed method is
0.135. In contrast, it is 0.263 for DNN and 0.556 for SVM,
respectively.

4.3.4. Sensitivity Analysis
To further analyze the performance of the proposed

method, we conduct the following sensitivity analysis to
quantify HFG prediction accuracy for different neural net-
work architectures. Table 1 shows 𝑠𝑀𝑆𝐸 for different num-
ber of hidden layers and different number of neurons per
layer. We can observe that 𝑠𝑀𝑆𝐸 tends to decrease as the
number of hidden layers and neurons increases.

4.3.5. Efficiency Analysis
The proposed surrogate model is implemented on a

3.60GHz 16-core computer. The computation time is in
the range of seconds. Compared with physical simulation
methods that typically take hours to days, the proposed
method is much more computationally efficient, making
onsite hydraulic fracturing support feasible.

5. Conclusion
In this paper, we present an interpretable and data-

efficient surrogate model for HFG prediction. We propose a
physics informed deep neural network architecture, leverag-
ing the physical laws in the form of PDEs to drive the model
training. Experiments demonstrate that the surrogate model:
obtains lower scaled mean squared error than that of DNN
without the PDE-associated loss when changing construc-
tion parameters; and achieves higher prediction accuracy
given fewer training samples. This work demonstrates the
benefit of physics informed surrogate modeling method on
data efficiency, model accuracy, and model interpretabil-
ity. Future work includes the investigation of applying the
physics-informed surrogate model to support hydraulic frac-
turing field work.
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Figure 7: Variation of 𝑅𝐴𝐸 with noise factor 𝛼.
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