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Many photonic quantum information tasks employ single photons and linear transformations to
create and manipulate quantum states of light to process information. Integrated optical systems
have become useful platforms to perform these tasks. New technologies introduce new possible
processes available for multimode quantum operations.

Here we explore one such setup, motivated by current experiments, which is a nonlinear waveguide
array system operating in a regime of non-degenerate-frequency down-converted photons. This
allows one photon to act as a herald for the other photon, which is created in a superposition of the
individual waveguide channels. We demonstrate this setup’s ability to generate highly nonclassical
states, such as N-photon Fock states and NOON states.

I. INTRODUCTION

Photonic states are essential parts for many tasks in
quantum information processing (QIP) due to their ver-
satility in different tasks and ease-of generation and de-
tection [1–3]. In particular, single photons are useful due
to their highly non-Gaussian nature, a prerequisite for
many quantum computational tasks. Typically, single
photon Fock states are generated by Parametric Down-
Conversion (PDC), where the photons are created in
pairs, one of which is detected to herald the presence of its
twin photon. These heralded photons can then enter sub-
sequent optical elements that manipulate the information
contained in the photonic degrees-of-freedom. These op-
tical elements are generally linear transformations, with
nonlinear transformations difficult to enact upon photons
due to weak coupling between them, although the latter
are necessary for some quantum computational opera-
tions. One way to increase the available operations is
to include post-selection, where part of a quantum state
is measured and the remaining modes of the system are
kept (for future processing) only if the desired measure-
ment result was obtained (heralding photons is a simple
example of this).

To realise these photonic operations there are many
platforms that can create and transform quantum states
of light. One particular platform is integrated optics,
where miniaturized optical devices, such as beamsplitters
and phase-shifters, are built into chips, which minimise
losses and grant higher phase stability in the optical cir-
cuit and allow for many such components on a single
chip. Coupled waveguide arrays (WGA) are an example
of such an integrated optical device. These systems are
constructed by altering the refractive index of an under-
lying material, creating channels that confine light within
them and constrains it to travel along them. When these
channels are positioned close to each other, the light can
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couple evanescently between the channels, which can be
described by a tight-binding Hamiltonian [4, 5].

One version of the WGA combines the linear coupling
of the channels and the nonlinear PDC, such that both
processes happen concurrently (when a classical pump
laser is present in at least one channel) on a single optical
chip. The fundamental properties of these processes were
studied [6–8] in regimes where the down-converted pho-
tons are degenerate in frequency. Moreover, this platform
possesses the flexibility of waveguide sources which can
generate photons over a broad range of frequencies rang-
ing from two-colour pairs in different spectral regions [9]
to spectrally indistinguishable pairs in the telecom range
[10, 11]. It can be driven in either the low or high gain
regime, corresponding to the generation of probabilistic
single pairs or squeezed states and also allows for low-
loss photon operations and each mode is spatially sepa-
rated for easy detection setups. State generation in this
nonlinear WGA setup has been considered in the contin-
uous variable regime of quantum optics [12–17]. There
has also been experimental implementations of this setup
[10, 18, 19]

In this work we explore a nonlinear WGA, consisting
of many coupled channels, in a regime where the PDC
photon pairs are highly non-degenerate in frequency.
As the evanescent coupling is frequency dependent, this
means that one photon (per pair) couples to neighbouring
waveguide channels and will evolve into a superposition
of spatial modes. The other photon remains confined to
the channel where it was created and it used to herald
the creation of the photon pair.

We will show that this allows for the creation of nonlin-
ear photonic states through the combination of photon
generation and linear coupling and we will investigate
the properties of this transfer matrix and its ability to
generate states of light that are useful for QIP. We will
show that this combination of the state generation and
linear coupling allows for these states to be created with
greater efficiency than the traditional methods of single
photons entering a linear interferometer. Also, we will
show that combining state generation and linear coupling
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gives different states when compared to these traditional
methods. When compared against Gaussian states en-
tering a linear interferometer with postselection at the
output over all modes, this method does not need phase
stabilisation between the input modes.

Our paper is structured as follows: In section II we
briefly review state generation with linear optics. Next,
in section III, we describe the operation of the nonlinear
WGA in detail and derive the transfer matrix Υ that
connects the properties of the signal and herald photons.
Following that, in section IV, we describe how to create
states useful to QIP protocols. In section V, we comment
on a realistic experimental implementation in the lithium
niobate material platform and consider how scalable such
an approach is. We conclude the paper in section VI.

II. STATE CREATION THROUGH LINEAR
OPTICS

Currently one of the most successful method of creat-
ing quantum optical states is the combination of down-
converted photons and linear interferometers [20, 21].
The initial single photon state is created by two-mode
PDC, where in one mode a photon is detected which her-
alds the presence of a photon in the other mode. These
single photons then enter a linear interferometer that
transforms the input modes to output modes. This in-
terferometer is represented by unitary matrix and can
be physically realised by a network of beamsplitters and
phase shifters when the photons are encoded in a spatial
position. This process has been to used to create highly
entangled states of photons [22–24], which are useful for
various information processing tasks. Alongside this lin-
ear transformation, postselection is used in combination
with linear optics to increase the range of states or oper-
ations that can be realised. One major example of this is
the KLM scheme [25] to achieve the control-phase gate
using linear optics, ancilla photons and postselection.

In the next section we describe a process where we
combine the linear coupling of neighbouring waveguide
channels and nonlinear down-conversion. The result-
ing Hamiltonian is a multimode squeezing Hamiltonian
which can be controlled by pump-shaping and phase-
matching processes. This will allow us to generate mul-
timode entangled states that are not simply related by
linear optics without the need for postselection.

III. WAVEGUIDE ARRAY HAMILTONIAN

In this section we describe the Hamiltonian of the
WGA, which consists of linear and nonlinear terms that
describe the coupling between channels and the PDC pro-
cess respectively. This model is motivated by the avail-
ability of a current system in LiNbO3 [7].

The integrated WGA consists of M coupled waveg-
uide channels where the process of parametric down-

conversion is enabled due to the nonlinearity of the mate-
rial and the periodic poling of the structure [26–28]. Pho-
tons can evanescently couple to nearest neighbour waveg-
uide channels at a rate that depends upon their wave-
length and the distance between the channels. This array
coupling profile gives rise to a band structure of eigen-
frequencies with corresponding eigenmodes. The Hamil-
tonian can be studied by calculating these eigenmodes of
the linear terms (the coupling and free-rotating terms)
and then transforming the PDC terms to this eigenmode
basis. This results in a multimode squeezing Hamiltonian
in the eigenmode basis whose time-evolution can then be
solved. The evanescent coupling of light between neigh-
bouring waveguides is heavily wavelength dependent, as
shown experimentally in [7] (see Appendix A and refer-
ence therein). We will focus on a regime where the PDC

photons are at non-degenerate wavelengths (b̂-modes are
at approx. 810nm and â-modes are at 1550nm, as in de
Chatellus et al [29]). This means that the herald photons
remain confined to a single waveguide channel whereas
the signal photons couples coherently throughout the ar-
ray. This regime has already been demonstrated in a
single waveguide channel [9].

The Hamiltonian density of the WGA, which has been
studied extensively in[6–8], is,

Ĥ(ωa, ωb, z, t) =

M∑
j=1

βa(ωa)â†j âj +

M∑
j=1

βb(ωb)b̂
†
j b̂j

+ Ca

M−1∑
j=1

â†j âj+1 +

∫
dωp

M∑
j=1

dj(z)Γj(ωp, t)â
†
j b̂
†
j + h.c. .

(1)
Here the first two summations (over all M waveguide
channels) describe the free rotation of the signal and her-
ald fields, the third summation describes the linear cou-
pling between nearest-neighbour waveguide channels of

the signal fields. The operators â†j , b̂
†
j(âj , b̂j) are the cre-

ation/annihilation operators for the signal/ herald modes
respectively. We already assume that the herald field
does not couple to the other waveguide modes to simplify
the Hamiltonian. The propagation constant of the light
in a single, uncoupled waveguide is denoted by βν(ων),
where ων is the frequency of that light, and Ca is the cou-
pling parameter of the signal modes (at approximately
ωa =1550nm). Γj(ωp, t) is the time-dependent amplitude
for the classical pump-field, where we assume a continu-
ous wave source with frequency ωp in waveguide j and is
thus a delta function δ(ωp). The full Hamiltonian then
involves all frequencies over the length of the crystal,

H(t) =

∫ L

0

dz

∫
dωa

∫
dωb Ĥ(ωa, ωb, z, t). (2)

The function dj(z) represents the periodic poling pat-
tern of the waveguide channel, which is the domains of
up- and down-poling regions. This enables the quasi-
phase matching process, which can readily be seen when
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d(z) is written as a Fourier series [30],

d(z) =

∞∑
n=1

dne
i2nπz/Λ (3)

where Λ is the period of the poling. Usually, as an ap-
proximation, only the 1st term is kept for subsequent
analysis. This poling pattern can be engineered to selec-
tively phase-match different eigenmodes by changing the
period of the poling and in principle can take different
patterns for each channel j [13]. We use this to create
NOON states, as described in a future section.

The linear Hamiltonian of the âj-modes can be diago-

nalized by unitary transform to the set of eigenmodes, Âk
(which are superpositions of the individual â operators),
with

Âk =

M∑
j=1

µk,j âj =

√
2

M + 1

M∑
j=1

sin

(
πjk

M + 1

)
âj , (4)

The corresponding eigenvalues for the k-th eigenmode are
given by

Ωa,k = βa(ωa) + 2Ca cos

(
kπ

M + 1

)
, (5)

which act as modified propagation constants for the
eigenmodes [31]. The Hamiltonian density transformed

to the Â-mode picture is then,

Ĥ(ωa, ωb, z, t) =

M∑
k=1

Ωa,kÂ
†
kÂk +

M∑
j=1

βb(ωb)b̂
†
j b̂j

+

M∑
j=1

dj(z)Γj(ωp, t)b̂
†
j

M∑
k=1

µ∗j,kÂ
†
k + h.c. ,

(6)

where µ∗jk the transformation from eigenmode to the

physical basis (âj =
∑M
k=1 µ

∗
k,jÂk). We then transform

the Hamiltonian to the interaction picture to remove the
free-rotating terms to arrive at,

Ĥint(ωa, ωb, z, t) =

M∑
j,k=1

Γj(ωp, t) exp [i (ωp,j − (ωa + ωb)) t]

× dj(z) exp [i (βp,j − (Ωa,k + βb)) z]µ
∗
k,jÂ

†
k b̂
†
j + h.c. .

(7)

We now integrate Ĥint(z, t) over the z-variable (from 0
to L, the length of the crystal) which leads to the phase-
matching function Φ(∆β). If we assume dj(z) can be

approximated with the first-order term ei2πz/Λ [30] this
integral will yield the phase-matching function,

Φ(∆β) =

∫ L

0

dz exp

[
i

(
βp,j − (Ωa,k + βb)−

2π

Λ

)
z

]
.

(8)

The phase-matching function can be written as,

Φ(∆β) ∝ sinc

(
∆β

L

2

)
e−i∆β

L
2 , (9)

where

∆βk(ωp, ωa, ωb) = βp(ωp)− Ωa,k − βb(ωb)−
2π

Λ
. (10)

Phase-matched terms have ∆β = 0 and yield a strong
signal as the light evolves through the WGA. Terms that
are phase-mismatched oscillate and decay in relative am-
plitude during evolution. The desired output state can
thus be created by altering the poling period Λ. We will
discuss this in the next section.

The time variable is integrated over, as in [32], by ex-
tending the limits to ±∞ and we ignore time-ordering
effects [33],∫ ∞
∞

dt exp [i (ωp − ωa − ωb) t] = 2π[δ(ωp − (ωa + ωb)].

(11)
which then yields the energy conservation factor [34].
This leads to perfect correlation between the signal and
herald photon frequencies and modifies the pump spec-
tral function to Γ(ωa + ωb). As we consider a spectral
function with narrow width and filter at the output at
a specific frequency we can assume that only two fre-
quencies take part in the dynamics. This simplifies the
Hamiltonian as we can consider the dynamics of only two
specific matching frequencies.

The combination of Γj and Φ will determine which

pairs of modes (Âk, b̂j) are created within the device and
this can be controlled by pump shapes and periodic pol-
ing patterns. After these integrals are taken, the evolu-
tion operator, and the state at the output of the WGA,
can now be written as,

|ψ〉 = exp

[
− i

2~
(M̂† + M̂)

]
|0〉 (12)

where M̂† =
∑
j,kMj,kÂ

†
j b̂
†
k . If we were only interested

in low photon numbers we could simply expand the ex-
ponential operator perturbatively to first-order. As we
wish to go beyond first-order terms, we will use operator-
ordering techniques [35] to allow us to write the unitary
evolution operator in (12) in a normally ordered form.
This means that the created state that is a multimode
squeezed vacuum state, which can be written as,

|Ψ〉out = exp

− i
~

M∑
k=1

M∑
j=1

Υj,kÂ
†
k b̂
†
j

 |0〉 (13)

As the exponent is a quadratic operator it can be written
as,

1

2

[
Â† b̂†

] [ 0 Υ
Υt 0

] [
Â†

b̂†

]
=
[
Â† b̂†

]
T

[
Â†

b̂†

]
(14)
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FIG. 1. System Sketch. Photons from different pump frequen-
cies ωp,j decay into a non-degenerate pair of herald (800nm)
and signal (1550nm) photons. The photons are then split
at a dichroic mirror, whereafter the signal photons have to
pass a narrow-band filter (ωfilter = ω0). Finally the near-
infrared photons are used as a herald for photons in the tele-
com regime.

we note that T is a symmetric matrix, as is neces-
sary for the operator-ordering techniques and

[
Â† b̂†

]
=

[Â†1...Â
†
M b̂
†
1... b̂

†
M ] is a vector of the creation operators.

The matrix T is related to M through the operator-
ordering techniques [35].

At the output of the WGA we separate the signal and

herald photons via a dichroic mirror. Photons in the b̂
-mode(s) can then be measured to herald the presence

of the photons in the Â modes, thereby creating states
to be used for QIP. In an experimental realisation we
can readily implement this scheme using standard op-
tical components. Afterwards the photons in the visible
regime pass the narrow-band filter (ωfilter = ωb) to ensure
that they are indistinguishable in the frequency domain
and interfere accordingly. In the end, we record the click
patterns of the visible-spectrum photons as a heralding
for the coupling photons in the telecom band.

This arrangement allows for a compact device with no
interfacing losses because both processes are combined in
a single chip. In addition the shorter overall length also
reduces losses, as typically these scale with length.

IV. QUANTUM STATES CREATED BY WGA

In this section we describe various states that can be
created from this process, starting with the direct rela-
tion to linear optics.

1. Single eigenmode per channel

The first case we consider is one designed to recreate
the operation of linear optics, where we generate single
photon Fock states that are then coupled into different
spatial modes of an interferometer. To do this, we phase-
match a single eigenmode per waveguide channel, which

means that the poling period in the jth channel, Λj ,is
channel dependent,

Λj = 2π(βp − Ωa,j − βb)−1, (15)

which serves to phase-match the jth eigenmode to the jth

channel. This means that Υ is a diagonal matrix,

Υ =


Υ1,1 0 . . . 0

0 Υ2,2 . . . 0
...

...
. . .

...
0 0 . . . ΥM,M


This means that each eigenmode only couples to one her-
ald mode and thus after measuring the herald photons in
the set of modes {k} we have prepared the state of tele-
com photons,

|ψ〉 =
1

N
∏
{k}

Υk,kÂ
†
k|0〉 →

∏
{k}

Â†k|0〉 (16)

where N is a normalization constant. The magnitude of
each Υk,k is not important, as the postselection effect is
to remove these factors after normalization. However, we
assume that the Υ should be within an order of magni-
tude of each other to ensure suitable postselection rates.

The signal photons here are created in the eigenmode
basis and not the usual physical basis and are therefore
already in a superposition of physical modes, which may
be useful for QIP depending upon the transformation µ.

2. N-photon Fock states

We next show how this process can be used to cre-
ate N -photon Fock states. These states can be created
with linear optics albeit with a probability that decreases
exponentially, either due to the nature of singe photon
generation or interfering multiple non-interacting pho-
tons such that exit in the same mode [36–38]. Here we
present a method that avoids the latter cost, simply leav-
ing the generation probability of N photons, which can
be increased by pumping multiple waveguide channels.

We can create N-photon Fock states by phase-

matching the same eigenmode, say Â†1, in each channel
i.e. the poling period is channel independent, Λj ≡ Λ
This may not be possible in every channel due to zero
overlap between some channels and the desired eigen-
modes, i.e. µj,k = 0, which is a function of the coupling
configuration. The state at the output is

|ψ〉 = exp

− i
~
Â†1
∑
j

Υj b̂
†
j

 |0〉 (17)

where Υ is,

Υ =


Υ1,1 Υ1,2 . . . Υ1,N

0 0 . . . 0
...

...
. . .

...
0 0 . . . 0
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When we measure photons in any of the b̂-modes we will
have created a photon in the eigenmode Â1 and due to
the nature of the phase-matching all the photons created
are in this eigenmode. Photon number resolving detec-
tors may be necessary to properly distinguish the output
states and increase the fidelity of the device, and will

also allow for b̂-photons in the same mode to contribute
to the N -photon Fock state. Placing a multimode inter-
ferometer that enacts the transformation µ at the output
of the WGA, the state will be converted from the eigen-
mode basis, {Â}, to the physical basis, {â}, yielding the
N-photon Fock state in that basis.

N-photon Fock states can also be created probabilisti-
cally by multiplexing single photon sources [39] from lin-
ear optics. Using the optimal interferometer [36], it was
shown that the probability to create such a state scales
as Pr(N) ≈ N !/NN ≈ e−N for large N . This ignores the
probability to generate the initial N single photon states,
which will scale as pN , where p is the probability to gen-
erate a photon pair from PDC. The total probability to
generate the output state is therefore ≈ (p/e)N .

We create our desired state after coherent, unitary time
evolution and herald only on photon detection events as
opposed to both pair creation events and the correct mul-
tiplexed output of photons from the device. The main
benefit of this is that it eliminates the probabilistic cre-
ation of the N-photon state from the N single photons
(with e−N scaling), leaving the generation probability of
the N photons. This can be seen from the Bloch-Messiah
decomposition of the matrix T (that describes the state),
which shows that it is equivalent to a two-mode squeezed
state, which can create an N -photon Fock state when
conditioned on measuring N herald photons in the other
channel. The difference in our state is that the N herald
photons are spread over more channels.

As the operator, (17), is quadratic we can decom-
pose it using the Bloch-Messiah decomposition into a set
of initial single-mode squeezed states followed by a lin-
ear interferometer, see fig.2. When we decompose this
Hamiltonian we find that it is equivalent to two sin-
gle mode-squeezed states (with identical squeezing pa-
rameters) followed by a linear interferometer. This in-
put state can also be written as a two-mode squeezed
state (TMSS), which has recently been used to create
N-photon Fock states [38]. The probability to generate
2N photons (herald and signal photons) is then given by
the photon number distribution from a TMSS, which is
Pr(2N) = sinh2Nr [40].

3. NOON states

Another class of states that can be created in a similar
fashion are the NOON states,

|φ〉 = |N, 0〉+ |0, N〉 =
(
Â†N1 − Â†N2

)
|0〉, (18)

Û {Ŝ12

{ Herald 

N-photon Fock 
state 

|0⟩⊗M−2

FIG. 2. Schematic of the Bloch-Messiah decomposition into
a set of single mode squeezers followed by a linear interferom-
eter. Ŝ12 is the operator for the SMSS, which have identical
squeezing parameter, r.

which can be factorized, into N -terms, as,

Â†N1 − Â†N2 =

N−1∏
j=0

(Â†1 + eij2π/N Â†2) (19)

where the phases correspond to the N th roots of unity.
This state can be created in the WGA by changing

the periodic poling, dj(z), during the waveguide chan-
nel [13]. One way to achieve this is to phase-match the

first eigenmode, Â1, and then change the poling period
to phase-match the second eigenmode Â2. This changes
the phase-matching condition and therefore what eigen-
modes are created in the PDC process. The relative
phase between each eigenmode, eiφj , can be adjusted by
shifting the patterns relative to each other and is differ-
ent in each channel. The relative phase of terms between
channels (i.e. terms in the expansion (19)) is not impor-
tant, in the same way it is not important between single
Fock states entering an interferometer. The shape of the
Υ matrix is,

Υ =


Υ1,1 Υ1,2 0 . . . 0
Υ2,1 Υ2,2 0 . . . 0

...
...

. . .
...

ΥN,1 ΥN,2 0 . . . 0


with Υj,1 = 1 and Υj,2 = eiφ

′
j .

M̂ =
∑
k,j

Υk,jÂ
†
k b̂
†
j

=
∑
j

(Â†1 + eiφj Â†2)b̂†j
(20)

When we decompose the matrix Λ via the Bloch-
Messiah decomposition we find that this requires four
single mode squeezed states with identical squeezing pa-
rameters. As before with the N-photon states, the NOON
state is created in the eigenmode basis and so we must
transform the photons back to the physical basis.

V. PROSPECTS FOR EXPERIMENTAL
IMPLEMENTATION/ SOURCES OF ERROR

The main challenge for the experimental implementa-
tion of state generation with a nonlinear waveguide ar-
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FIG. 3. Challenges for the experimental implementation. In
(a), we sketch a schematic of the phase-matching conditions
for the nonlinear waveguide array. The finite width of the
single phase-matching conditions causes an overlap between
different eigenmodes. This limits the possibility to pump
single eigenmodes in different waveguides. In (b), we com-
pare the spectral eigenmode separation (top) to the expected
phase-matching widths (bottom). Consequently, (c) shows
the expected overlap between the M

2
-th and the M

2
+ 1-th

eigenmode phase-matching in Gaussian approximation. The
5%-limit gives a measure how much we can pump different
eigenmodes separately. For details concerning calculation pa-
rameters, see text.

ray is the requirement on the involved pumping scheme,
which we need to create the correct output state. The
unique source of error in the state creation process de-
scribed above is the production of other, unwanted eigen-
modes of the system that can occur as these terms
have low, non-zero, phase-mismatch. These non-phase
matched terms oscillate in amplitude, which may not be
zero at the output of the device, due to the finite length
of the WGA. This will create extra terms in the Hamil-
tonian and thus the matrix Υ, in addition to the desired
phase-matched terms. These errors stem from the spec-
tral width σp of the pump function, Γ(ωp), and the width
of the phase-matching functions Φ(ka, ωa) for the various
eigenmodes. In this section we investigate the necessary
requirements to realise this scheme using current tech-
nology.

To illustrate the source of errors in state creation, we
will consider a WGA chip with constant coupling be-
tween nearest neighbour waveguides i.e. Cj,j+1 = C and
9 WGA channels. We filter at a particular frequency
ωb. The eigenfrequencies are given by (5), and the spa-
tial, quasi-momentum part that defines the eigenmodes
is given by,

2C cos

(
kπ

M + 1

)
(21)

To ensure that we only pump the desired combination
of signal, herald frequencies (ωa, ωb) and eigenmode(s) in
each waveguide, the width of the phase-matching func-
tion, ∆ωPM has to be lower than the frequency gap be-
tween neighbouring eigenmodes, ∆j,j+1 = |Ωj − Ωj+1|.
This can be realised by having a sufficiently long crystal,
as the phase-matching function Φ decays with length, as
can be seen in eq. 9. This condition coupled with a nar-
row spectral pump function gives two constraints on the
three variables and finally filtering selects the desired set.

The spectral gap between nearest-neighbour eigen-
modes is,

∆j,j+1 = |βj − βj+1| = 4C sin

(
(2j + 1)π

2(M + 1)

)
sin

(
1

2

π

M + 1

)
≈ 2Cπ

M + 1
sin

(
(2j + 1)π

2(M + 1)

)
(22)

The amplitude of the phase-matching term for the sec-
ond eigenmode is then given by sinc(∆1,2L/2), where L
is the length of the crystal. The sinc function can be
approximated by a Gaussian ≈ exp(−0.193(∆1,2L/2)2)
[41]. It can be seen that when the number of waveguides,
M , is increased then ∆1,2 decreases and the length of the
crystal must be increased to maintain the phase gap at
a constant value.

We illustrate these ideas in a series of figures. We con-
sider an implementation in lithium niobate [10, 42], using
the relevant refractive indices and an experimentally fea-
sible coupling parameter of Cs = 350 m−1.

In figure 3(a) we show the phase-matching curves
(equ. (10), ∆βj = 0∀j) for each of different eigenmodes.
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Also shown is a sketch of the spectral width ∆ωPM of the
phase-matching functions for each eigenmode. We then
filter at the frequency ωfilter which takes a cross-section
of the eigenmodes phase-matching functions, shown in
3(b). The spectral separation of the different eigenmodes
∆1,2 is primarily dependent on the number of channels in
the WGA and secondarily on the band structure of the
array, which is determined by the coupling parameters of
the array. The width of a single phase-matching function
∆ωPM, is then determined by this separation ∆j,j+1 and
the length of the array, L.

In figure 3 we have plotted the different eigenmode
phase-matching functions for an array of L = 0.04 m and
the above-mentioned array parameters. From this figure
it becomes clear that we should expect a significant over-
lap at least for the outer phase-matching functions. To
quantify this effect for the inner phase-matching condi-
tions (i.e. the best-case scenario), we have calculated the
overlap between neighbouring phase-matching function
(i.e. the black and violet curve of figure 3(b)) using the
Gaussian approximation above.

To illustrate the scalability of our system, we have var-
ied both the length L of the WGA, as well as the num-
ber of waveguides M , to calculate the overlap, as shown
in figure 3(c). As can be seen from the 5%-isoline, we
have to increase the length of the sample linearly with
the number of waveguides to keep the overlap between
two phase-matching functions fixed to below a certain
value. As current technology restricts the maximum pos-
sible length of the WGA to Lmax ≈ 10 cm, this analysis
suggests 15-20 waveguides could be utilised in an exper-
imental implementation.

Another factor that contributes to the error of un-
wanted mode creation is given by the transformation ma-
trix µ. Ideally the matrix elements µj,k, which relates
the pumped waveguide channel k to the eigenmodes j,
would be zero for those unwanted modes. Different cou-

pling configurations of the waveguide channels (Cj,j+1)
will have different transformations matrices µ and thus
this is parameter that can be optimised for any particular
experiment.

VI. CONCLUSION

In conclusion, we have proposed the use of a novel ar-
rangement of coupled waveguide array channels with an
intrinsic nonlinearity to create quantum states of light.
We do so by using the nonlinear behaviour of the phase-
matching process that occurs during the generation of
light in each channel to create states that are not sim-
ply created with linear optics alone. We showed that
our setup has several advantages compared to previous
schemes. The classes of states that can be generated
with our scheme cover higher order Fock states as well as
NOON states. The experimental implementation at least
for moderate number of waveguides, is possible with cur-
rent available technology. In addition, the idea of using
phase-matching with post-selection will be applicable to
other nonlinear optical systems and platforms.
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