
����������
�������

Citation: Anagnostopoulos, C.;

Aladwani, T.; Alghamdi, I.;

Kolomvatsos, K. Data-Driven

Analytics Task Management

Reasoning Mechanism in Edge

Computing. Smart Cities 2022, 5,

562–582. https://doi.org/10.3390/

smartcities5020030

Academic Editors: Thaier Hayajneh

and Ziqin Sang

Received: 14 February 2022

Accepted: 20 April 2022

Published: 24 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

smart cities

Article

Data-Driven Analytics Task Management Reasoning
Mechanism in Edge Computing
Christos Anagnostopoulos 1,* , Tahani Aladwani 1, Ibrahim Alghamdi 2 and Konstantinos Kolomvatsos 3

1 School of Computing Science, University of Glasgow, Glasgow G12 8QQ, UK; 2587711A@student.gla.ac.uk
2 Computer Science Department, Al-Baha University, Al Bahah 65731, Saudi Arabia; ia.alghamdi@bu.edu.sa
3 Department of Informatics and Telecommunications, University of Thessaly, 382 21 Volos, Greece;

kostasks@uth.gr
* Correspondence: christos.anagnostopoulos@glasgow.ac.uk

Abstract: Internet of Things (IoT) applications have led to exploding contextual data for predictive
analytics and exploration tasks. Consequently, computationally data-driven tasks at the network
edge, such as machine learning models’ training and inference, have become more prevalent. Such
tasks require data and resources to be executed at the network edge, while transferring data to Cloud
servers negatively affects expected response times and quality of service (QoS). In this paper, we
study certain computational offloading techniques in autonomous computing nodes (ANs) at the
edge. ANs are distinguished by limited resources that are subject to a variety of constraints that
can be violated when executing analytical tasks. In this context, we contribute a task-management
mechanism based on approximate fuzzy inference over the popularity of tasks and the percentage
of overlapping between the data required by a data-driven task and data available at each AN.
Data-driven tasks’ popularity and data availability are fed into a novel two-stages Fuzzy Logic
(FL) inference system that determines the probability of either executing tasks locally, offloading
them to peer ANs or offloading to Cloud. We showcase that our mechanism efficiently derives such
probability per each task, which consequently leads to efficient uncertainty management and optimal
actions compared to benchmark models.

Keywords: edge computing; task offloading; data-driven analytics tasks; tasks popularity; fuzzy
inference

1. Introduction

Autonomous driving, smart cities services, and augmented reality (AR) are just a few
of new computational-intensive and data-driven applications over the IoT infrastructure [1].
Many of these applications are delay-sensitive and necessitate predictive, analytics and
machine learning processes that are thought to be beyond the capability of end-user
devices [2]. Cloud computing has been considered as the main solution to reduce the
burden of data-driven tasks on edge devices. On the one hand, cloud computing is not the
ideal option for delay-sensitive applications because analytic tasks cannot be completed
in a real-time manner. This is owing to the fact that cloud data centers are typically
located in places far away from real data sources. As a result, data processing in the
cloud will eventually require increased communication activities via wide-area networks
(WANs). This increases traffic in the network, the probability of tasks failures, and evidently
results in relatively high response times [3,4]. Mobile Edge Computing (MEC), on the
other hand, has already been adopted as a middle layer between the Cloud layer and
the Sensing device layer, since various resources (e.g., computation and storage) could be
utilized through LAN (Local Area Network) in MEC architecture. Using MEC resources
to execute data-driven tasks (such as predictive modeling and analytic applications built
for Unmanned Vehicles on mobile computing nodes) has brought many benefits for the
end-users, such as reducing the pressure on the cloud, traffic bottleneck reduction, increase

Smart Cities 2022, 5, 562–582. https://doi.org/10.3390/smartcities5020030 https://www.mdpi.com/journal/smartcities

https://doi.org/10.3390/smartcities5020030
https://doi.org/10.3390/smartcities5020030
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/smartcities
https://www.mdpi.com
https://orcid.org/0000-0003-1517-6757
https://doi.org/10.3390/smartcities5020030
https://www.mdpi.com/journal/smartcities
https://www.mdpi.com/article/10.3390/smartcities5020030?type=check_update&version=1

Smart Cities 2022, 5 563

bandwidth availability, and executing data-driven tasks in real-time [5–7]. Therefore,
under MEC-Cloud computing paradigm, an entity called AN is introduced to provide
both computation and transmission services in dynamic environments. However, in an
MEC context, ANs have limited capacity and energy, making holistic task execution of all
users’ requests by these nodes infeasible or very time consuming, especially when these
tasks involve data processing and analytics (e.g., ML models training, outliers detection,
data clustering, and classification tasks) [5,8]. Therefore, implementing a data-driven
task management mechanism is critical for distributing tasks among ANs and the cloud
according to specific criteria such as task urgency in terms of delay, task demand rate, task
data accessibility, and the probability of re-using the same tasks in the future. All these
factors could dramatically increase the utilization of MEC resources effectively [9], reduce
the delivery delay, and improve QoS.

In this article, we propose a data-driven task-management mechanism based on the
popularity of each task, which is derived from monitoring the most recent historical task
demand rate within a sliding (time) window. According to task popularity, the mechanism
can identify which tasks have been recently requested by many applications (end-users)
and determine whether to locally execute or offload these tasks based on their statistical
popularity. Notably, identifying low-popular tasks could help the mechanism avoid execut-
ing these tasks locally in ANs; instead, these tasks could be either sent to the cloud or to
neighboring ANs (i.e., tasks have different popularity in different ANs), whereas highly
popular tasks can be executed locally. However, most, not to mention all, analytic tasks re-
quire direct access to the distributed datasets stored locally on ANs. Hence, task offloading
decisions should take into consideration the amount of data that need to be accessed by the
tasks. In this context, our mechanism further introduces the data availability constraint in
task-offloading decision making. The amount of data needed per task drives the decision
making on whether to offload a task to neighboring ANs (peer ANs) based on their data
availability or to the cloud.

What is noteworthy is that both of these factors (popularity of a task and amount
of required data) significantly affect the offloading decision making for analytical tasks.
However, in certain cases, these factors can possibly work in opposite directions, e.g., high
task popularity and low data availability or vice versa. This requires the ability of the
decision-making mechanism on an AN to swiftly balance between these factors by incor-
porating information from nearby ANs. This information includes the estimation of task
popularity and the amount of data being available per task in an AN. In order to efficiently
and effectively handle inherent uncertainties from these estimations (locally obtained from
ANs), we propose the adoption of the Fuzzy Inference to represent decision-making rules
based on the principles of Fuzzy Logic (FL). FL has been employed to determine the proba-
bility of offloading a task according to these factors. The main contribution of this work is
summarized as follows:

• An architecture of collaboration between ANs and cloud computing is introduced.
Furthermore, the design of ANs has been detailed.

• A novel offloading decision-making mechanism has been introduced based on tasks’
popularity, outliers, and data availability.

• A novel two-stages FL system has been developed to determine the probability of
offloading for each task.

• A comprehensive comparative assessment of the proposed method against alternative
mechanisms found in the literature showcase the applicability of our paradigm in
edge computing environments.

The remainder of this paper is organized as follows. Section 2 elaborates on the related
work in task offloading in EC environments, while Section 3 introduces an overview of the
meaning of data-driven tasks,and the design of service architecture. Section 4 provides the
problem formulation in our context and the task management factors. Section 5 explains
task management reasoning and Section 6 reports on our experimental evolution. Section 7
concludes this paper with our future research agenda on this direction.

Smart Cities 2022, 5 564

2. Related Work
2.1. Task Offloading

Due to resource, energy, and storage limitations in MEC, selecting the correct tasks
management mechanism is a crucial issue, since MEC nodes deal with a huge volume of
requests from end-users/applications [10]. Therefore, selecting the right tasks management
mechanism can improve computing performance, execute the tasks in real-time, lower
system costs, and maximize the use of available computing resources. With the deepening of
research, several mechanisms have been developed to manage data-driven task offloading
in MEC nodes.

Wang et al. [11] suggested a management mechanism for investing similarity between
service requests. They have assumed similar tasks would require almost the same data
from the same sensors. Therefore, they have suggested reorganizing the original tasks
according to each related sensor in order to reduce the translation time and cost. However,
in this study, the fog layer was viewed as a relay layer between the application layer and
the cloud layer, despite this layer having some resources, and it can execute some tasks,
particularly data-driven tasks, that require data to be passed through this layer before
reaching the cloud. This work [12] suggests an offloading mechanism for computation-
intensive applications either in Vehicle Edge Computing (VEC) or in Roadside Units
(RSUs). While this work considers making offloading decisions for extensive computational
applications (e.g., autonomous driving and vehicular video stream), data access in each
node has not been considered. Nguyen et al. [13] focused on computation-intensive tasks
that are generated by vehicles. Offloading decisions have been made based on priority,
urgency, channel gain, and distance. However, the amount of data availability in each
node has been overlooked in this study. Li et al. [1] developed a theoretical contract-based
offloading paradigm from communication and computing perspectives. The paradigm
focuses on compute-intensive and delay-sensitive tasks. The results have shown that the
paradigm reduces system delay and energy consumption. However, tasks’ demands in each
node was not taken into account during offloading decisions. Zhang et al. [14] proposed a
theoretical contract approach to execution decisions. The goal of this study is to divide the
road into various segments, each with its own set of RSUs to help with task processing.

Ning et al. [13] concentrated on computation-intensive tasks generated by vehicles.
While offloading decisions are made based on the value of the utility function, which
comprised four factors: priority, urgency, channel gain, and distance; each one has its own
set of evaluation criteria. The results reveal that the suggested model outperforms the
benchmark approaches in terms of execution time. However, the types of tasks that are
dependent on a specific amount of data have been overlooked in this study.

Li et al. [1] developed a theoretical contract-based offloading paradigm. The proposed
paradigm has investigated from the communication and computing perspectives , with a
focus on compute-intensive and delay-sensitive tasks. The proposed model minimizes
system latency and energy usage, according to the results. However, the amount of data
required by each task has been ignored.

Zhang et al. [15] has built an efficient prediction model to make task processing deci-
sions either locally on the vehicle or remotely based on tasks’ length. However, this model
depends on the processing time, processing cost, and communication service providers.
Despite this work having covered the type of tasks that require certain files to be exe-
cuted, it has not discussed the amount of data in these files and how they could affect the
offloading decision.

Sonmez et al. [16] demosntratedn a two-stage FL interference model. This model
considers both application requirements and EC resource utilities. The first FL stage focuses
on system utilities (e.g., CPU utilization), while the second stage focuses on application
requirements (e.g., task length and sensitivity). The primary purpose of this research is
to improve the response time and extend the battery life of end-user devices. However,
this paper discussed the upload/download data rates for each task, but it has not studied
the percentage of data availability in EC. Overall, most of these studies have mentioned

Smart Cities 2022, 5 565

compute-intensive tasks, but the nature of these tasks has rarely been considered, e.g., their
popularity and tasks demands have been ignored, with the exception of [15]. As far as we
know, this is one of the few studies that have considered the common factors between tasks
and AN in the management mechanism design to fill the gaps left by the mentioned works.

2.2. FL Inference System

FL has been utilized in offloading decision making. It has been defined by Welstead
in [17] as set of rules and regulations which defines boundaries and tells us what to do to be
successful in solving problems within these boundaries ”. This type of logic tries to imitate
human behavior in making decisions by avoiding the strict boundaries between categories
in contrast to crisp logic. FL depends on studying the degree of membership and belonging.
Therefore, FL is considered as an excellent option to manage real-world uncertainty due to
the rapidly changing in different scenarios models [18]. Therefore, it has been employed for
solving online and real-time problems. Take for illustration, the decision-making process
for a heater according to the weather, defining a person relative to an age group, and
the security level in shopping or trad online. In our context, it has been applied in many
studies in order to make execution decisions in MEC Models. Nguyen et al. [19] adapted
FL to reduce the number of failed tasks resulting from transmission collisions and support
real-time applications. The proposed FL system aims to determine where each task should
be executed either by its own resources, a local edge server, or the cloud. The proposed
decision-making model is based on a two stages. The first stage focuses on where to place
the incoming task, while the second stage determines the task processing place. However
this study has focused primarily on the resources availability while data assessment and
task popularity are ignored.

Almutairi et al. [20] used the FL system to make the processing decisions for tasks
either in the edge or in cloud. This work has implemented an FL based on three parameters:
CPU utilization, WAN bandwidth, and delay sensitivity. This model provides much better
results in terms of the average unsuccessful tasks and resources utilization compared to
benchmark algorithms. However, even though the tasks sensitivities has been considered,
data accessing is excluded in this work. Generally, FL has been discussed in many studies in
order to improve MEC QoS. However, to the best of our knowledge, using tasks popularity
and data overlapping as inputs to FL systems to improve MEC performance has not been
studied yet for this domain.

3. System Model

This section provides an overview of the definitions of data-driven tasks, including
their applications and challenges. Then, the proposed architecture is presented.

3.1. Data-Driven Tasks

The concept of data-driven tasks has drawn increased attention in the last few years.
This term refers to tasks that rely heavily on raw data (e.g., text, photos, videos, medical
data, weather information, etc.) that is generated by smart devices such as sensors and
smartphones. These data are used by MEC/Cloud servers for knowledge building and
decision-making purposes. As mentioned in [21], the core of data-driven tasks is data
analysis. Noteworthy, data-driven analytic holds unlimited potential for assisting various
domains of real-world scenarios such as dealing with air pollution, climate change, oil spill
management, moving target tracking, healthcare monitoring, hazard analysis, real-time
monitoring of stochastic damage in aerospace structures, forest fire propagation prediction,
volcanic ash propagation, and traffic jams prediction could be precisely predicted according
to data that have been collected by edge devises. However, there are challenges related
to data-driven tasks. The data-driven tasks are considered to be compute-intensive and
very complicated for edge devices. Hence, offloading a task for unsuitable MEC nodes
would negatively affect QoS [22]. Additionally, in such types of tasks, the value of a subset
of sensors and data may vary quickly due to the dynamic nature of the environment.

Smart Cities 2022, 5 566

To overcome this issue, sampling rates methods should be considered. On the other side,
sampling rates result in load imbalance and bottleneck problems. To address this challenge,
we investigate data overlapping between tasks and nodes according to a query formulation,
as we will elaborate later.

3.2. Service Architecture

Our system under consideration consists of a three-layer service architecture for
data-driven tasks as shown in Figure 1: the sensing device layer, MEC layer, and Cloud
computing layer. In the Sensing/Device, data are generated by unlimited devices (e.g.,
sensors and smart devices). For example, sensors that are spreading around specific area
to collect data and transmit it to the MEC layer [11]. The MEC layer is a computing layer
that sits between the sensing device layer and the cloud layers, which includes a set of
collaborative ANs, such as vehicles, which are used to support dynamic environments pro-
viding, e.g., computing services for pedestrians (mobile users), traffic congestion services in
smart cities, and computationally intensive, real-time, and delay sensitive applications [16].
When ANs receive the data generated by the sensing device layer, they store them locally
until data accessing pattern (data overlapping) is required. Meanwhile, ANs also could
execute some data-driven tasks locally according to tasks’ size, time constraint, popularity,
data accessing, and resources availability and make a decision for other tasks, either to
execute them locally and offload them to another AN or the cloud [12]. The Cloud layer
has unlimited computation resources and, thus, tasks can be offloaded through, e.g., Base
Stations (BSs) from the MEC layers due to limited resources or failure in completing tasks.
However, determining the best layer for each task execution depends on the adopted task
management mechanism and certain analytic application criteria.

Figure 1. A three-layer architecture of EC ecosystem [11].

Smart Cities 2022, 5 567

4. Problem Fundamentals

In this section, we present the problem statement as follows: how do we efficiently assign
data-driven analytic tasks to MEC/Cloud to minimize the task execution delay and increase MEC
resource utilization . Then, we introduce the tasks’ management factors that have been
adopted in this study.

4.1. Problem Statement

We consider the ANs-enable MEC system with a set of N ANs, denoted by N =
{n1, n2, . . . , nN}. Each AN ni collects Ni real-valued contextual data points denoted by
x = [x1, x2, . . . , xd]

> ∈ Rd, with d -dimensional points, where each dimension refers to a
specific feature (e.g., temperature, humidity). The ni node stores them locally in dataset
Di = {xk}

Ni
k=1 . Each node ni has a neighborhoodNi ⊂ N of directly communicating nodes

nj ∈ Ni. Moreover, node ni communicates with the end-users/applications and the cloud.
ANs can execute locally certain analytic tasks because they are equipped with specific
computing resources. However, such resources might be limited for some tasks; thus, any
decision of executing locally or offloading the tasks should be made carefully. Therefore,
each node ni needs to obtain certain information regarding the analytic tasks based on
the following essential factors. First, the rate of tasks requests: A node ni monitors the
number of requests for each analytic task (Tk) coming with different request rate (λk) from
end-users (applications). Based on this request rate λk per task, node ni can assess which of
the requested tasks is most popular. Evidently, popular tasks are preferred to be locally
executed, hence avoiding further delays. This also helps to predict future tasks requests
based on the current demands and their popularity. Moreover, node ni can store the popular
tasks in order to re-use them in the future thus potentially reducing the response time
and resource consumption for future requests, while less popular tasks could be offloaded
to node’s neighborhood ni or to the cloud. Second, according to the task request rate λk,
some tasks are either extremely popular (in comparison to other tasks) or extremely rare.
These are referred to as outlier tasks. Each node ni can locally identify its own outlier
tasks as it will be elaborated later. Generally, outlier tasks with high popularity (i.e., tasks
are highly demanded) will be locally executed. On the other hand, outlier tasks with
very low popularity can be offloaded to the available neighboring node ni or, if none are
available, they are offloaded to the cloud. The non-outlier tasks have all three options (local
execution, offloading to available neighbor(s), or to the cloud). Third, as previously stated,
each node ni collects real-valued data and stores it locally in Di . It is worth noting that
the type and amount of data in each node ni significantly impacts whether a task should
be locally executed or offloaded. Since we primarily focus on analytical tasks (e.g., ML
model training and inference), such tasks require a specified amount of data from Di to
be executed. Specifically, consider a series of tasks T1, T2, · · · , Tn arrive in node ni , which
are treated in a queue until their execution or offloading decision is made. Such tasks have
specific demands including the amount of data being accessed in order to be executed.
Imagine for instance an analytic task as a series of value-range queries, which define a
specific data subspace over the node ni’s availability data in Di. In these cases, analytic task
Tk might need a huge amount of the available data (e.g., >90% of the data) found in node ni,
while only few data (e.g., >10%) are available in another node nj. Consequently, offloading
such data-driven task to node nj may demand extra time, resources, and the transmission
of the required amount of data from ni to nj. Therefore, our mechanism considers the
amount of accessible data required for a given task to make the offloading decision.

Hence, given an incoming task Tk at node ni, the node locally estimates the probability
of this tasks to be outlier (based on a recent history of demand rates) and the percentage
of available data required. This information is used by node ni to come up with the first
two decisions/actions: a0 = ‘local tasks execution’ or a1= ‘task offloading’, and if action a1
is selected, then node ni should swiftly make decisions in terms of in which neighboring
node nj ∈ Ni task Tk should offload (action a11) or whether to offload that Tk to the cloud
(action a12).

Smart Cities 2022, 5 568

4.2. Task Management Factors

In this section, we elaborate on the basic factors for the proposed task management
mechanism to be used for inferring the right execution decision for each task Tk on each
node nk based on the factors introduced in the previous section, including the popularity
of tasks and the corresponding data access availability.

4.2.1. Task Popularity

We first elaborate on a methodology that determines the popularity of a task Tk in a
specific node ni within a sliding time window of size W. Specifically, assume a discrete time
domain t ∈ T = {1, 2, . . .}. At each time instance t, node ni observes a number of demands
from each task coming from end-users or applications. The demand of task Tk is linked
with a request rate λk as requested by end-users (applications) and monitored within the
time window (horizon) W. Hence, given node ni, a series of tasks {T1, T2, . . . , Tk, . . .} arrive
with rate λk. The demands for each task Tk in W recent time instances are recorded in
the task requests vector vk = (vt−1+W , vt−2+W , . . . , vt), where vt−l+W element indicates
the number of the incoming requests of task Tk by end-users to node ni at time instance
l = 1, . . . , W. The requests vector vk over time window W plays a significant role in storing
the recent historical trends of each task Tk’s demands which will be used for estimating the
popularity of Tk task in a node ni.

To derive such popularity for Tk, node ni groups the corresponding task demands
within the time window adopting lightweight unsupervised clustering. The clustering
algorithm divides the task demands of vk into groups (clusters). Each cluster contains a
set of demands that have similarities between them according to the tasks’ arrivals within
the time window. Specifically, we adopt the Subtractive Clustering [23] since the number
of the clusters derived cannot be known beforehand neither is the same over different
time windows. Subtractive clustering derives a set C of |C| clusters over the demands
of task Tk across the most recent W time instances. Each cluster is represented by a task
demands clusterhead C` ∈ C, ` = 1, . . . , |C|. The clusterhead will help us in estimating
the demands density for the arriving task Tk during time window W and the amount of
requests per cluster as will be elaborated below. Given these (recently historical) statistics,
we can define the popularity of the task Tk based in its demanding behavior within the
time window. If the task is associated with relatively many clusters within the specific time
horizon W, then it is (statistically) considered more popular than other tasks associated
with less clusters. Moreover, the more clusters are derived from clustering, the higher the
variability and amount of task demands with different rates occur during the time window.

Therefore, we define the cluster density, which indicates the amount of demands of the
Tk within a specific time duration. Specifically, consider the `-th cluster C`, which maintains
the demand values vj ∈ C` and is represented by the clusterhead demand c`. We then
define cluster variance σ2

` = 1
|C` | ∑vj∈C`(vj − c`)2. Hence, in turn, we introduce the cluster

density d` as the amount of the task demand values being within a squared distance of the
cluster variance from the corresponding clusterhead (centroid).

d` = |vj ∈ C` : (vj − c`)2 ≤ σ2
` |. (1)

Density d` depicts the number of task demands that are in a distance from the centroid
less than the deviation. The deviation σ` is adopted to define our strategy concerning
whether we want to be very ‘strict’ and requires many demand values to be very close to
the centroid in order to conclude a high density. Within a cluster, there are historical demand
values for task Tk observed recent W time instances. We pay significant attention on the
clusters exhibiting a high density around the centroid. This density is strong evidence that
multiple task demand values are realized around the centroid. For aggregating the demand
information that clusters convey, we define a weighting scheme delivering a high weight
for clusters with a high density. Specifically, based on the derived clusters, the popularity

Smart Cities 2022, 5 569

index pk for tasks Tk is the linear combination of the derived clusters weighted by their
normalized densities:

d̃` =
d`

∑
|C|
j=1 dj

(2)

and, thus, the popularity demand index pk for task Tk within recent W time instances across
all the derived clusters is defined as follows.

pk =
|C|

∑
`=1

d̃`c`. (3)

4.2.2. Outlier Tasks

We introduce the concept of task outlier, which will support the decision-making
process in our mechanism. The classification of a task as an outlier is used to determine
the statistical extreme (non usual) demands of this task within recent W time instances.
Such mechanism undertakes the responsibility of annotating some of the tasks as outliers
according to the popularity compared with the other tasks on a node.

The outlier tasks are divided into two classes: outliers that have relatively very high
popularity than the usual trend and outliers that have relatively very low popularity.
Classify them into these two classes based on adapting a lightweight process and using
the Median Absolute Deviation (MAD) around the Median (MAD) across the popularity
indices of the tasks in T requested in node ni in the least W time instances.

The median of the popularity indices p̃ is used as a separating point between the high
and low popularity tasks. Based on the popularity median p̃ over the popularity values
{p1, . . . , pM}, we can then calculate the MAD of the tasks T .

MAD(T) = mediank=1,...,M(|pk − p̃|) (4)

Given this statistic, we define the outlier indicator Ik for task Tk based on its popularity
pk as follows.

Ik =
|pk − p̃|

MAD(T) . (5)

Task Tk is an outlier, if Ik is greater than the empirically derived threshold φ = 2.5,
i.e., the outlier indicator is described as follows.

ok =

{
1 (outlier) if Ik ≥ φ
0 (non-outlier) if Ik < φ

(6)

Based on the outlier tasks identification and the associated popularity indices of these
tasks, node ni can obtain more certain decisions, either locally executing a very popular
(outlier) task or offloading a very low popular (outlier) task. Nonetheless, the amount
of data required for those outlier tasks (and of course of all the tasks) will further help
the node to proceed with a right offloading decision as it will be elaborated later. As an
informal guideline, the outliers filter selects those tasks with high popularity while having
high data overlap with nodes can select action a0. In contrast, very low popular tasks with
low data overlapping will select action a12.

4.2.3. Task’s Data Overlapping

Given an analytic task Tk on a node ni, we introduce the concept of the data over-
lapping, which indicates an estimation of the percentage of data (out of the entire dataset
Di) required for executing analytic task Tk. We concentrate on analytics tasks such as
training machine learning models for applications such as federated learning, which has
become increasingly popular and helpful in recent years. In this context, for instance, data
points x in a node represent real-values, e.g., sensed data that have been collected from
IoT devises. These data are the basis to determine how much is suitable for a task Tk to

Smart Cities 2022, 5 570

be executed locally in node ni. Meanwhile, the availability of data that each task requires
varies from node to node. Therefore, if a task Tk offloaded to ni has only 20% of data that
it needs to be executed, this means we need to bring 80% of data in order to execute this
task locally. This could lead to increases in resource consumption and the response time
growing up. Given the representation of an analytic task Tk via a (range) selection query
qk = [qmin

1 , qmax
1 , . . . , qmin

d , qmax
d] over a data sub-space defined be the dataset Di, we define

data overlapping as the ratio of the data points satisfying task query qk out of the data
points stored in node’s dataset. That is, a data point x ∈ Di satisfies the range query qk if
the following statement S(qk, x) holds true.

S(qk, x) ≡ (qmin
1 ≤ x1 < qmax

1) ∧ . . . ∧ (qmin
d ≤ x1 < qmax

d) (7)

Hence, the degree of data overlapping uk of task Tk represented via query qk is defined
as follows.

uk =
|x ∈ Di : S(qk, x) ≡ TRUE|

|Di|
(8)

5. Task Management Reasoning
5.1. Fuzzy Linguistic Modeling

Given a node ni receiving demands for the analytics task Tk over the node’s dataset
Di, we obtain the corresponding popularity pk, outlier ok and data overlapping uk. In this
section, we are introducing a reasoning mechanism that takes into consideration the above-
mentioned factors to proceed with task offloading decisions by balancing between the task
demands, nodes’ capability, and nodes’ data availability. In order to deal with decision
making reasoning, FL inference has been adapted to handle the inherent uncertainty and
approximation of these factors in dynamic environments. Since it is the most prevalent strat-
egy for dealing with rapid change in uncertain systems [24]. This is achieved by adapted
fuzzy inference rules over linguistic variables that can model this type of uncertainty. There
are many advantages for such inference performed locally on a node. First, it can easily
cope with multi-criteria decision-making models by incorporating multiple factors in the
same model. Second, it is capable of dealing with uncertainty in a dynamic context without
complex mathematical models. Third, its lightweight computational complexity provides
an explainable decision-making methodology [16]. This explainability is based on linguistic
variables that reflect the uncertainty derived from the values of the factors pk, ok, and uk.
In this context, popularity (fuzzy variable) is associated with three linguistic fuzzy values
{High, Medium, Low} reflecting a high, medium, and low value of popularity for a specific
task. Similarly, data overlapping (fuzzy variable) is associated with the linguistic values
{High, Medium, Low} reflecting a high, medium, and low values of data overlapping
derived from the task’s query data subspace over node’s data space. The outlier indicator
ok (as a fuzzy variable) takes two linguistic values {Yes, No} reflecting whether Tk is an
outlier or not, as depicted in Figure 2. Given a linguistic value linked to a fuzzy variable,
a membership function µ : R→ [0, 1] is defined in order to indicate the possibility that a
value of the variable belongs, at certain degree, to the linguistic value. Specifically, given
a data overlapping value uk = x, we associate this value with the linguistic value high
via membership function µH

u (x) ∈ [0, 1]. For instance, if the data overlapping uk = 0.7
for task Tk, then this can possibly be considered as high data overlapping with possibility
µH

u (0.7) = 0.88. We similarly define these membership functions for the rest of the linguistic
values for all factors.

Smart Cities 2022, 5 571

There are different membership functions forms that can be adapted for fuzzy based
reasoning, such as trapezoidal, piecewise linear, singleton, triangular, and Gaussian [25].
In our context, we consider the triangular form to represent membership functions, which
is considered as the most common form according to [19]. To summarize, we obtain the
next sets of membership functions of the fuzzy linguistic values for task popularity pk, data
overlapping degree uk, and outlier indicator ok, respectively.

Fuk (x) = {µL
uk
(x), µM

uk
(x), µH

uk
(x)} (9)

Fzk (x) = {µL
zk
(x), µN

zk
(x), µH

zk
(x)}

Fsk (x) = {µL
sk
(x), µM

sk
(x), µH

sk
(x)}

Low Medium High

0 10 20 25
80 40

0

M
e
m

b
e
rs

h
ip

 F
u

n
c
ti

o
n

30

Low Medium High

0 0.2 0.4 0.6
80 1

0

M
e
m

b
e
rs

h
ip

 F
u

n
c
ti

o
n

0.8

11

Average of data overlapping (%)

(c) Data Overlapping.

Task popularities values (Out of 40)

(a) Tasks Popularities.

Figure 2. Implementation of FL on our three factors.

5.2. Two-Stage Fuzzy Logic-Based Reasoning

Given the set of membership functions, we introduce a novel two-stage FL reasoning
engine that makes the decision of task execution locally (actions a0), offloading to another
node nj ∈ Ni (action a11) or offloading to the cloud (action a12), as in Algorithm 1. Handling
all these decisions in a single-stage FL is a complicated operation [16]. Therefore, we
have adapted a two-stage FL system in order to reduce the system’s complexity The first
inference stage S1 deals with the decisions (actions) a0 = ‘local task execution’ and a1 = ‘task
offloading’. The output of S1 is the offloading probability for a task Tk given input pk, uk,
and ok, as will be elaborated later in this section. The second inference stage S2 is based on
S1’s output. In particular, if a1 action is selected (having the highest probability), then node
ni swiftly decides in which neighboring node nj ∈ Ni task Tk should be offloaded (action
a11), or it offloads Tk to the cloud (action a12).

The proposed tow-stage reasoning mechanism runs on a specific node ni, which plays
the role of the ‘leader’ in neighborhood Ni. This role is periodically assigned to nodes
from the neighborhood when certain criteria are met, e.g., remaining energy, computational
capacity, and communication availability. This assignment is achieved via certain leader
election mechanisms. We do not elaborate on these mechanisms, since it is beyond of the
scope of this paper. In the remainder, for the simplicity of notation, we assume that node
ni is assigned with this leadership role to execute the two-stage reasoning engine, where
all neighboring nodes nj ∈ Ni directly communicate with their leader ni. Both FL system
stages essentially follow the same steps, with the number of tasks varying. In particular,
the first stage deals with all tasks, while the second stage only works with the set of tasks
that could not be executed locally.

Smart Cities 2022, 5 572

Algorithm 1 Two-stage FL inference system pseudocode
Input: TN with their parameters (pk, ok, uk)
Output: Select the right Computational Resources (locally ni, nj ∈ Ni, The cloud)

1: for All task in TN do
2: Read all nj ∈ Ni
3: Execute S1 ⇒ F= FuzzyLogicSystem(pk, ok, uk)
4: if rk ≤ fLow then
5: Allocate tk on ni
6: else
7: for All task tk ∈ T1 do
8: Execute S2 ⇒ F2 =FuzzyLogicSystem(pk, ok, uk)
9: if rk≤ fLow then

10: Allocate tk in nj ∈ Ni
11: else
12: if rk ≤ fMedium AND nj ∈ Ni (available) then
13: Allocate tk on nj ∈ Ni
14: else
15: Allocate tk to the cloud
16: end if
17: end if
18: end for
19: end if
20: end for

5.2.1. First Stage Reasoning S)

The S1 reasoning engine on ni for each task Tk goes through the following steps: The
first step of FL is fuzzification of the inputs (pk, ok, uk) into their fuzzy linguistic terms via
the membership functions as in Figure 3 . It takes all these factors as numerical values (crisp
values), then it assigns each value to the corresponding fuzzy values (e.g., Low, Medium,
High) [19,20]. The second step is the activation of the Fuzzy Inference Rules (FIRs), which
interpret the logic behind the decision making for the offloading probability. The obtained
fuzzy values are then used to activate a set of FIRs, a.k.a., fuzzy knowledge base. Each FIR
is represented via an IF-THEN statement [16]. The antecedent part (‘IF’ part) is a set of
logical conjunctions over fuzzy linguistic variables. The consequent part (‘THEN’ part) of
FIR is a fuzzy term from the set of linguistic terms {Low, Medium, High} that expresses
offloading probability rk. The generic format of FIR statements used in our S1 engine is
as follows:

IF pk IS X1 AND ok IS X2 AND uk IS X3 (10)

THEN rk IS X4

where the linguistic terms are X1, X3, X4 ∈ {Low, Medium, High} and X2 ∈ {No, Yes}.
For instance, the following FIR is described.

IF pk IS HIGH AND ok IS YES AND uk IS HIGH

THEN rk IS LOW.

This rule expresses the decision of task Tk to be offloaded with low probability, i.e., ac-
tion a0 is preferred more than action a1, due to the fact that this task has very high popularity
(thus being also an outlier) and the data required by this tasks can be fully available to
node ni (high degree of overlapping). Hence, in this case, Tk can be locally executed on
node ni and not be offloaded (i.e., low offloading probability). Our S1 engine requires
18 FIRs in the fuzzy knowledge base in order to cover the entire decision space; there are
3 × 2 × 3 = 18 membership functions involved in three fuzzy variables: popularity, outlier,

Smart Cities 2022, 5 573

and data overlapping. The FIRs of S1 engine are provided in Table 1, which reflects the
reasoning behind the decision on actions a0 or a1 represented via the offloading probability.

Figure 3. Fuzzy logic system working mechanism.

Table 1. FL rules inputs and the expected outputs.

Ri pk ok uk rk

1 Low Yes Low High
2 Low Yes Medium Medium
3 Low Yes High Medium
4 Low No Low High
5 Low No Medium High
6 Low No High Medium
7 Medium Yes Low Medium
8 Medium Yes Medium Medium
9 Medium Yes High Low
10 Medium No Low High
11 Medium No Medium Medium
12 Medium No High Medium
13 High Yes Low Medium
14 High Yes Medium Low
15 High Yes High Low
16 High No Low Medium
17 High No Medium Low
18 High No High Low

The last step of S1 is the defuzzification of all the offloading probability values of
the activated FIRs ([16,19]), which results in a scalar probability rk = P(a1) for the task
Tk. There are certain defuzzification operators for deriving scalar output over activated
FIRs. We adapt the centroid defuzzifier, which not only is considered as the most common
operator but also the defuzzified value that directly represents probability, which is aligned
with the notion of rk and calculated as follows:

rk =

∫
x∈[0,1] xµν

rk
(x)∫

x∈[0,1] µν
rk
(x)

, (11)

where ν represents the {Low, Medium, High} linguistic terms of the offloading probability.
The defuzzified offloading probability rk ranges between 0% and 100%. In order to trans-
form this probability to a decision, as Figure 4 depicts, we define the decision threshold to
be 30%; that is, if rk = P(a1) ≤ 0.3 (i.e., P(a0) > 0.7), then node ni locally executes task Tk.
This means Tk will be processed locally by leader ni.

Smart Cities 2022, 5 574

Average of offloading probabilities (%)

Offloading Probabilities .

M
e

m
b

e
rs

h
ip

 F
u

n
c

ti
o

n

Low Medium High

Figure 4. The probability of offloading.

5.2.2. Second Stage Reasoning S2

The second stage of inference is introduced to deal with decision making on those
tasks which have been determined to be offloaded as suggested by the S1 inference engine,
i.e., their probability of offloading rk > 0.3. After finishing S1, leader node ni has two types
of tasks: those that should be locally executed belonging to the set T0 ⊂ T (associated with
the action a0), and tasks belong to set T1 ⊂ T (associated with the offloading action a1).
The aim of the S2 inference engine is to proceed with decisions over the tasks in T1 under
the following actions: a10 (offload to another node) or a11 (offload to the cloud). Hence, S2
passes through two steps: tasks information updating and determine offloading probability.
If leader node ni has not had enough resources for S2 inference, then another node nj ∈ Ni
can be elected as a leader according to specific leader election mechanisms. In this case,
the old leader ni just sends only the tasks T1 to the new leader nj in order to make offload
decisions. Tasks information updating:

Leader node ni collaborates with its neighbors to update the information regarding
tasks in T1 based on the S2 engine. For each task, a neighboring available and suitable
node can be assigned based on the following reasoning. Firstly, leader ni considers the task
contextual information (pk, ok, uk) for each task Tk ∈ T1 from each neighboring nj ∈ Ni.
The goal is to determine how popular a task Tk ∈ T1 is and how much data access it requires
in node nj. Once nj receives the request from leader ni, it sends over (pk, ok, uk) for each task
in T1 according to its dataset Dj. In turn, ni makes comparisons between tasks information
and neighbor’s tasks information. When ni receives information from nj, it then has two
tables: the main table that it obtains from S1 and a new one that it receives from nj. It then
updates the T1 tasks information from nj based on the following rule given a task Tk ∈ T1.

IF pk.j > pk.i OR uk.j > uk.i THEN (12)

(pk.i, ok.i, uk.i)→ (pk.j, ok.j, uk.j)

The rule states that task Tk’s information (pk.i, uk.i) in the leader node will be updated
if the corresponding values from the neighbouring nj are greater; otherwise, the task’s
information will not be updated. The rationale behind updating tasks information is based
on achieving lower rk. Therefore, if pk and uk are not greater than the ones in the leader
node, this means that rk will increase, and this leads to an increase in the probability of
offloading the task to an unsuitable node or to the cloud. In order to avoid this, they will
not be updated. This process will be repeated for all tasks obtaining information form each

Smart Cities 2022, 5 575

neighboring node nj ∈ Ni sequentially. Hence, with each received task information from
the next node nj+1 ∈ Ni, if the rule is fired, the leader’s task information keeps updating.
By the end of this process, leader ni will have updated all the required information as
shown in Table 2 according to the most suitable node.

Table 2. Tk Information updating according to suitable node.

Task Old Information Update to New Information

T1 8.37, Yes, 15% n2 9.64, No, 31.5%
T3 2.69, Yes, 45.5% n4 2.01, Yes, 85.4%
T4 14.8, Yes, 67.8% n2 13.71, No, 52.89%
T6 7.563,Yes, 31.8% n3 5.88, No, 52.88 %
T7 14.848, Yes, 15.67% n2 26.45, No, 70%

T10 8.5, Yes, 21.3% n4 7.25, No, 66.2%

Determine offloading probability: Even though the leader has updated with the
most suitable node for each task, there is still a need to execute the S2 fuzzy inference
engine for those tasks in T1, since this updating process only determines the best place
for a task across neighboring nodes nj ∈ Ni regardless of rk. Meanwhile, S2 is applied in
order to obtain a specific rk for each task in T1. If rk is low, (action a11) is decided, otherwise,
(action a12) is preferred.

Finally, the updated task information will be treated as input for S2, and it will pass
through the same steps as in S1, i.e., fuzzification, the activation of FIR and defuzzification.

By introducing S2, it helps leader ni to decide clearly where each task Tk should be
executed according to the corresponding rk comparing with S1 inference engine.

6. Experimental Evaluation

In this section, we used synthetic datases to simulate tasks’ popularities, while the
data overlapping experiment has been carried out on real datasets using analytics queries.
Finally, the CloudSim Plus simulator has been used to measure the impact of our mechanism
on upload/download data rate for each task and resource utilization.

6.1. Tasks’ Popularities and Data Overlapping Experimental Setup

In this context, we deal with two types of datasets: real datasets and synthetic datases.
The real datasets are collected by four Unmanned Surface Vehicles (USVs) working as nodes
ni to collect data from sensors in a coastal area (http://www.dcs.gla.ac.uk/essence/funding.
html#GNFUV, accessed on 20 October 2020). Each USV node ni has a neighborhood
Ni ⊂ N of directly communicating nodes nj ∈ Ni. Moreover, node ni communicates
end-users/applications in order to collect data and store them locally in their datasets Di
for predictive analytic tasks. These data includes two features: sea surface temperature
and humidity, i.e., x = [x1, x2]

> ∈ Rd. There is one node ni ∈ N acting as the leader that
receives a set of analytic tasks Tk and follows a specific mechanism in order to decide the
following: whether Tk should execute locally (action a0) or offload (action a1). We have
assumed that leader ni has received ten analytic tasks and is investigating three factors
(pk, ok, and uk) for each task Tk. Regarding popularity (pk), we have generated a synthetic
dataset of task demands for each task Tk according to different rates (λk) during a time
window of size W = 150 by using Poisson distribution. Poisson distribution is considered
as common tool to generate set of requests according to specific rate. After constructing
the requests vector vk = (vt−1+W , vt−2+W , . . . , vt) for each task Tk, we have adapted the
Subtractive clustering algorithm over tasks Tk demands in order to group the demands
according to the similarity between them. Then, the cluster density d` for each cluster C has
been calculated according to Equation (1). The leader ni obtains Tk’s popularity, as shown
in the second column Table 3.

http://www.dcs.gla.ac.uk/essence/funding.html#GNFUV
http://www.dcs.gla.ac.uk/essence/funding.html#GNFUV

Smart Cities 2022, 5 576

Table 3. Tasks Tk information.

Tk pk ok uk

T1 8.37 No 67.8%
T2 28.31 No 15.67%
T3 2.69 Yes 15.46%
T4 14.848 No 22.88%
T5 29.977 No 81%
T6 7.563 Yes 6.8%
T7 26.848 No 31.8%
T8 39.49 Yes 21.3%
T9 34.399 Yes 69%
T10 8.5 No 45.5%

Regarding the outliers indicators ok, we use the statistical threshold φ = 2.5, where ni
can generate the two sets of outliers and not outliers, as shown in the third column in Table 3.
In order to obtain the task’s data overlapping uk, we have defined for each local dataset Di,
the feature boundaries max and min values: Di = [xmin

1 , xmax
1 , xmin

2 , xmax
2]. Then, we gener-

ated queries qk uniformly at random ten tasks such that qk = [qmin
1 , qmax

1 , . . . , qmin
d , qmax

d]
for each task Tk in order to obtain the data subspace needed for the execution of analytic
task Tk, as shown in Table 4.

Table 4. Queries generation and percentages of data overlapping .

Task qmin
1 qmax

1 qmin
d qmax

d Points Including Percentage

T1 19 32 49 57 130/899 14.46%
T2 19 29 44 46 164/899 18.24%
T3 26 28 43 58 75/899 8.3%
T4 22 32 42 53 160/899 17.79%
T5 20 32 38 58 885/899 98.44%
T6 20 29 41 55 310/899 34.48%
T7 21 25 48 53 48/899 5.33%
T8 22 33 38 55 600/899 66.74%
T9 20 32 50 57 470/899 52.28%
T10 19 28 36 50 251/899 27.91%

Evidently, there are some tasks Tk with high data overlapping (e.g., T5); uk reaches
98%, while there are tasks with low uk, such as T3 and T7. Therefore, by executing tasks with
high uk such as T5 locally, it is expected to reduce the percentages of data offloading from
100% to 2%. In contrast, by executing tasks with low uk locally such as T7, it is expected to
increase data offloading percentages to almost 95%, which is obviously inefficient.

The FL engine has been developed in MATLAB considering the popularity pk of tasks
Tk between [1, 40] and outlier ok either 0 or 1, while the percentages of data overlapping
uk are between [0%, 100%]. All these are inputs to the FL system, while the probability of
offloading rk is the output in [0%, 100%]. As shown in Figure 5A, increasing pk and uk for
task Tk leads to a decrease in the probability of offloading rk. This implies an increase in the
probability of executing this locally (action ao). On the other hand, in Figure 5B, decreasing
pk and uk for task Tk leads to increasing the probability of offloading rk. This means that
increasing the probability of offloading Tk either to another node (action a11) or to the cloud
(action a12).

Smart Cities 2022, 5 577

Figure 5. The effect of (pk, ok, uK) on the probability of offloading (rk).

For task information update, we deal with ten tasks Tk, six of them should be offloaded
(action a1) according to Table 5. In order to determine the most suitable node nj ∈ Ni for
each task Tk, information (pk, ok, and uk) is updated.

During S2, leader ni will have the task information as shown in Table 5. The output
of S2 is rk for each task in T1. S2 is applied with the same steps as in S1. According to
the results, T1, T3, T6, and T7 will offload to nj ∈ Ni (action a11), while T4 will offload to
nj ∈ Ni (action a11), if there are available resources. However, task T4 and T10 have almost
very high offloading probability; therefore, they will be offloaded to the cloud (action a12).

Table 5. S2 decision making based on three factors.

Task Node Pk ok uk rk Rule

T1 n2 Low No Low 82%, High rule 4.
T3 n4 Low Yes High 49%, Medium rule 3.
T4 n3 Medium No medium 58%, Medium rule 11.
T6 n2 Low No Medium 84.4%, High rule 5
T7 n3 High No Medium 44%, Medium rule 11.
T10 n2 Low No Medium 51%, Medium rule 5.

6.2. Simulation Setup

CloudSim Plus has been utilized to create the considered scenarios and to evaluate
the performance of our mechanism. In this experiment, two types of parameters have
been considered: data-driven task characteristics and MEC/cloud parameters. Data-driven
tasks characteristics vary according to the nature of tasks. Some tasks are affected by
delays, while others are not; some tasks could execute on MEC nodes, while others are
beyond MEC node’s capabilities and should be offloaded to the cloud. To simulate real-life
scenarios, ten different data-driven tasks (applications) have been used. To decide the
application types, we looked at the most common data-driven tasks (weather prediction, air
pollution prediction, traffic jam prediction, compute-intensive tasks, and health apps, etc.).
Table 6 contains tasks information chosen based on [16]. The upload/download data size

Smart Cities 2022, 5 578

represents the type of data sent/received from EC/Cloud since it could increase or decrease
according to data overlapping percent, and this is what distinguishes our mechanism
against other task offloading mechanisms. For instance, (50,000 MB, 100 MB) denotes the
size of uploaded data (humidity, temperature, wind, etc.) that will be used to build a ML
model, and downloads depict the model that the application will receive as a result of data
collection and training in EC/cloud computing. According to our mechanism, if the data
overlapping percentage is high (e.g., 90% or more) the uploading data could be reduced
from 50,000 MB to 10 MB. Task length determines the number of Million Instructions (MI)
and the required CPU resource to complete a data-driven task. We considered ten tasks
arriving at ni with specific features, which include task length and upload/download data.
According to data overlapping, we made the range of this parameter fluctuate from low
values with some tasks to high values with others, while resource consumption and task
delay sensitivity have been set up according to the applications indicated in [16].

Table 6. Application types used in the simulation.

Task Application Task Length Upload/Download Data

T1 Deep learning 10,000 50,000/100
T2 Traffic jam prediction 20,000 200,000/300
T3 Air pollution prediction 15,000 200,000/400
T4 Healthcare diagnosis 30,000 80,000/100
T5 Weather prediction 8500 50,000/50
T6 Compute-intensive task 20,000 300,000/500
T7 Fraud detection 18,000 300,000/250
T8 Virtual assistants 25,000 20,000/50
T9 Alerting And Monitoring 14,000 100,000/300

T10 Social Media Analysis 21,000 60,000/80

Other simulation parameters that reflect the computational capabilities of MEC/Cloud
servers, such as bandwidth, the number of Virtual Machines(VM), and host MIPS, are listed
in Table 7.

Table 7. Simulation parameters.

Parameters EC Cloud

Bandwidth WAN 500 MB/s LAN 10 GB/s

Number of VM 2 8

Number of cores 2 8

VM CPU speed 10 MB 100 MB

HOST MIPS 1000 10,000

6.3. Comparative Assessment

In this section, we present two types of results that reflect our mechanism’s performance:
First, in terms of considering both factors (tasks polarities pk and data overlapping uk),

we compare the suggested mechanism’s efficiency to the effectiveness of two alternative
mechanisms that deal with the same tasks and datasets. The first mechanism (M2) takes
only tasks popularity pk and outlier ok into consideration when it makes the offloading
decision. The second mechanism (M3) only takes the percentages of data overlapping uk
between the tasks Tk and nodes nj ∈ Ni. The experimental results in Table 8 show the
performance of the mechanism, coined here as (M1), which is the highest according to the
optimal solution (OS) in the last column at the same table. As we can see, (M2) focuses
on investigating task popularity pk in each node, while data overlapping uk is completely
ignored. That means M2 mechanism will distribute tasks Tk among nj ∈ Ni regardless of
whether task Tk is offloaded to the suitable node nj ∈ Ni that could reduce the response time

Smart Cities 2022, 5 579

and resource consumption or not. On the other hand, (M3) only focuses on the percentages
of data overlapping uk. (M3) uses the node’s data in an efficient manner regardless of
whether tasks Tk are popular or not. As a consequence, the popular/urgent tasks Tk could
offload to the cloud (action 12) or could wait in the execution queue, because they have
lower data overlapping uk with nj ∈ Ni. (M1) attempts to balance between the both sides of
popularity pk and data overlapping uk. Based on the results, (M1) can provide an accurate
offloading probabilities rk close to 95% according to OS boundaries, while (M2) and (M3)
provide accuracies reaching 90% and 60%, respectively.

Table 8. The probability of offloading uk for each task Tk according to our mechanism compared to
the other two mechanism.

Pk ok uk rk M1 M2 M3 OS

T1 Low Yes Low 83% 84% 57% High

T2 Med No High 30.4% 32% 42% Med

T3 Low No Low 85% 86% 72.92% High

T4 Med No med 65% 68.9% 53% Med

T5 High No High 23% 17.6% 35% Low

T6 Low Yes Low 85% 86.5% 72.7% High

T7 Med No Med 44.7% 37% 47% Med

T8 High Yes High 14.4% 14.5% 17.7% Low

T9 High Yes High 15% 15.8% 27.1% Low

T10 Low Yes Low 83% 85% 67.2% High

- - - - 10/10 8/10 6/10 -

Second, in terms of resource utilization: We compare the effectiveness of our mech-
anism against two alternative mechanisms over the same task’s simulation conditions.
The first one, cloud-based mechanism [11], where the MEC nodes have been used to collect
sensors data and sent them to the cloud to reduce sensors’ energy consumption that would
happen if data have been sent directly to the cloud. The second mechanism, a MEC-based
mechanism, has been suggested in many studies, such as [16,20], where the tasks are sent
to the MEC node that has the highest availability, bandwidth, and task delay sensitivity.
Simulating our mechanism resulted in a high data uploading speed between one to ten
minutes, while the uploading speed in the cloud-based model is between 28 to 60 min.
whereas the uploading speed in MEC-based mechanisms, which has not considered data
overlapping, is almost double the speed we obtained with our mechanism (see Figure 6a).

In terms of execution time, we have considered data offloading time in addition to
the main execution time because, in the data-driven tasks, data are considered an integral
part of the task execution. Figure 6b shows that the execution time is extremely minimized
compered to the cloud-based model. Moreover, we can observe that the bandwidth is
reduced as well. The results of cloud (WAN) and MEC (MAN) bandwidth measurements
are shown in Figure 7. The blue line represents the bandwidth usage percent according to
our mechanism, which is considered to be very low compared to the other mechanisms.
The red line represents the bandwidth usage according to the MEC-based mechanism,
which is considered almost double our mechanism usage. Meanwhile, the black line shows
bandwidth usage in order to execute these ten tasks on the cloud, which is very high usage
compared to ours and MEC-based (see Figure 7a).

Smart Cities 2022, 5 580

(a) Data uploading speed. (b) Data-Driven tasks execution time.

Figure 6. Data uploading speed and tasks execution Time.

(a) Data-Driven tasks bandwidth usage. (b) Data-Driven Tasks RAM Usage.

Figure 7. Data-Driven tasks bandwidth and RAM usage.

According to resource usage, Cloud-based mechanism produced the best performance
compared to our mechanism and EC-based mechanism as it has unlimited resources
(Figure 7b).

7. Conclusions

In this work, we introduced a mechanism for data-driven analytics tasks in an AN-
enabled MEC environment to exploit their resources efficiently and reduced the response
time. In particular, the core of this mechanism focuses on three factors: task popularity,
outlier, and data overlapping to make execution decisions for each task. Task popularity
concentrates mainly on investigating each task’s demands, while the outlier determines the
statistically extreme (non-usual) demands of tasks. Meanwhile, data overlapping studies
the percentages of data overlapping between tasks and ANs. These three factors are treated

Smart Cities 2022, 5 581

as input to a two-stage FL interference system to make the final decision for each task. Our
mechanism performance has been evaluated according to the probability of offloading
data-driven analytics tasks to the right nodes according to the optimal solution and against
two other mechanisms. As evidenced by the results, our mechanism significantly outper-
forms the benchmark mechanisms in terms of decision-making accuracy. Furthermore, this
mechanism can reduce the probability of a task being offloaded to an unsuitable node by up
to 90%. Then, our method has been evaluated in terms of resource utilization, showing that
it provides higher data uploading speeds compared to EC-based and cloud-based methods.
In addition, bandwidth usage has been reduced dramatically compared to benchmark
mechanisms. As a consequence, data-driven analytic task execution times have been mini-
mized. Our future agenda include methods that are expected to improve our mechanism
by considering the tasks’ delay sensitivity, energy consumption, and nodes’ mobility.

Author Contributions: Conceptualization, T.A., K.K., C.A.; investigation, T.A., I.A., C.A.; writ-
ing—original draft preparation, T.A., C.A., I.A.; writing—review and editing, T.A., C.A. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data can be accessed at, http://www.dcs.gla.ac.uk/essence/funding.
html#GNFUV.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

Tn Set of analytic tasks;
t Time instance;
Vk The task requests vector;
di Historical demand observations vector, d = d1, d2, , ..., dW ,;
W Time window of size;
C Cluster;
C` Clusterhead;
λk Task demands rate;
vj The demand values;
σj The deviation;
d` The cluster density;
d̃` Densities normalization;
pk Popularity;
p̃ The median of the popularity;
MAD Mean absolute deviation;
Ik The outlier indicator;
φ An empirically derived threshold;
ok Outliers;
pk The degrees of popularity;
ν Linguistic terms of the offloading probability;
T0 Set of task will execute locally;
T1 Set of task will offload;
uk Data overlapping;
D Dataset in each AN;
x Data point;
FL Fuzzy logic;
qk Selection query ;
qmin

1 , qmax
1 Maximum and minimum value for the temperature in a D;

http://www.dcs.gla.ac.uk/essence/funding.html#GNFUV
http://www.dcs.gla.ac.uk/essence/funding.html#GNFUV

Smart Cities 2022, 5 582

qmin
d , qmax

d Maximum and minimum value for the humidity in a D;
uk Data overlapping;
ok Outlier.

References
1. Li, S.; Hu, X.; Du, Y. Deep Reinforcement Learning for Computation Offloading and Resource Allocation in Unmanned-Aerial-

Vehicle Assisted Edge Computing. Sensors 2021, 21, 6499.
2. Budhiraja, I.; Kumar, N.; Tyagi, S.; Tanwar, S. Energy Consumption Minimization Scheme for NOMA-Based Mobile Edge

Computation Networks Underlaying UAV. IEEE Syst. J. 2021, 15, 5724–5733.
3. Cheng, J.; Guan, D. Research on task-offloading decision mechanism in mobile edge computing-based Internet of Vehicle.

EURASIP J. Wirel. Commun. Netw. 2021, 2021, 101.
4. Jodelka, O.; Anagnostopoulos, C.; Kolomvatsos, K. Adaptive Novelty Detection over Contextual Data Streams at the Edge using

One-class Classification. In Proceedings of the 2021 12th International Conference on Information and Communication Systems
(ICICS),Valencia, Spain, 24–26 May 2021; pp. 213–219.

5. Cui, K.; Lin, B.; Sun, W.; Sun, W. Learning-based task offloading for marine fog-cloud computing networks of USV cluster.
Electronics 2019, 8, 1287.

6. Anagnostopoulos, C. Edge-centric inferential modeling & analytics. J. Netw. Comput. Appl. 2020, 164, 102696.
7. Kolomvatsos, K.; Anagnostopoulos, C.; Koziri, M.; Loukopoulos, T. Proactive amp; Time-Optimized Data Synopsis Management

at the Edge. IEEE Trans. Knowl. Data Eng. 2020.
8. Kolomvatsos, K.; Anagnostopoulos, C. A deep learning model for demand-driven, proactive tasks management in pervasive

computing. IoT 2020, 1, 240–258.
9. Kong, F.; Li, J.; Jiang, B.; Zhang, T.; Song, H. Big data-driven machine learning-enabled traffic flow prediction. Trans. Emerg.

Telecommun. Technol. 2019, 30, e3482.
10. Kolomvatsos, K.; Anagnostopoulos, C. Proactive, uncertainty-driven queries management at the edge. Future Gener. Comput.

Syst. 2021, 118, 75–93.
11. Wang, P.; Yu, R.; Gao, N.; Lin, C.; Liu, Y. Task-driven data offloading for fog-enabled urban IoT services. IEEE Internet Things J.

2020, 8, 7562–7574.
12. Nguyen, V.; Khanh, T.T.; Tran, N.H.; Huh, E.N.; Hong, C.S. Joint offloading and IEEE 802.11 p-based contention control in

vehicular edge computing. IEEE Wirel. Commun. Lett. 2020, 9, 1014–1018.
13. Ning, Z.; Dong, P.; Wang, X.; Rodrigues, J.J.; Xia, F. Deep reinforcement learning for vehicular edge computing: An intelligent

offloading system. ACM Trans. Intell. Syst. Technol. (TIST) 2019, 10, 1–24.
14. Zhang, K.; Mao, Y.; Leng, S.; Vinel, A.; Zhang, Y. Delay constrained offloading for mobile edge computing in cloud-enabled

vehicular networks. In Proceedings of the 2016 8th International Workshop on Resilient Networks Design and Modeling (RNDM),
Halmstad, Sweden, 13–15 September 2016; pp. 288–294.

15. Zhang, K.; Mao, Y.; Leng, S.; He, Y.; Zhang, Y. Mobile-edge computing for vehicular networks: A promising network paradigm
with predictive off-loading. IEEE Veh. Technol. Mag. 2017, 12, 36–44.

16. Sonmez, C.; Ozgovde, A.; Ersoy, C. Fuzzy workload orchestration for edge computing. IEEE Trans. Netw. Serv. Manag. 2019,
16, 769–782.

17. Welstead, S.T. Neural Network and Fuzzy Logic Applications in C/C++; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1994.
18. Khoshkholgh, M.G.; Navaie, K.; Yanikomeroglu, H.; Leung, V.C.; Shin, K.G. Randomized caching in cooperative UAV-enabled

fog-RAN. In Proceedings of the 2019 IEEE Wireless Communications and Networking Conference (WCNC), Marrakesh, Morocco,
15–18 April 2019; pp. 1–6.

19. Nguyen, V.; Khanh, T.T.; Nguyen, T.D.; Hong, C.S.; Huh, E.N. Flexible computation offloading in a fuzzy-based mobile edge
orchestrator for IoT applications. J. Cloud Comput. 2020, 9, 66.

20. Almutairi, J.; Aldossary, M. A novel approach for IoT tasks offloading in edge-cloud environments. J. Cloud Comput. 2021, 10, 28.
21. Samea, F.; Azam, F.; Rashid, M.; Anwar, M.W.; Haider Butt, W.; Muzaffar, A.W. A model-driven framework for data-driven

applications in serverless cloud computing. PLoS ONE 2020, 15, e0237317.
22. Chen, Q.; Zheng, Z.; Hu, C.; Wang, D.; Liu, F. On-edge multi-task transfer learning: Model and practice with data-driven task

allocation. IEEE Trans. Parallel Distrib. Syst. 2019, 31, 1357–1371.
23. Rao, U.M.; Sood, Y.; Jarial, R. Subtractive clustering fuzzy expert system for engineering applications. Procedia Comput. Sci. 2015,

48, 77–83.
24. Sharma, N.; Magarini, M.; Jayakody, D.N.K.; Sharma, V.; Li, J. On-demand ultra-dense cloud drone networks: Opportunities,

challenges and benefits. IEEE Commun. Mag. 2018, 56, 85–91.
25. Chen, Z.; Xiao, N.; Han, D. Multilevel task offloading and resource optimization of edge computing networks considering UAV

relay and green energy. Appl. Sci. 2020, 10, 2592.

	Introduction
	Related Work
	Task Offloading
	FL Inference System

	System Model
	Data-Driven Tasks
	Service Architecture

	Problem Fundamentals
	Problem Statement
	Task Management Factors
	Task Popularity
	Outlier Tasks
	Task's Data Overlapping

	Task Management Reasoning
	Fuzzy Linguistic Modeling
	Two-Stage Fuzzy Logic-Based Reasoning
	First Stage Reasoning S)
	Second Stage Reasoning S2

	Experimental Evaluation
	Tasks' Popularities and Data Overlapping Experimental Setup
	Simulation Setup
	Comparative Assessment

	Conclusions
	References

