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Abstract. The NP-complete graph problem Cluster Editing seeks
to transform a static graph into disjoint union of cliques by making the
fewest possible edits to the edge set. We introduce a natural interpreta-
tion of this problem in the setting of temporal graphs, whose edge-sets are
subject to discrete changes over time, which we call Editing to Tem-
poral Cliques. This problem is NP-complete even when restricted to
temporal graphs whose underlying graph is a path, but we obtain two
polynomial-time algorithms for special cases with further restrictions.
In the static setting, it is well-known that a graph is a disjoint union
of cliques if and only if it contains no induced copy of P3; we demon-
strate that there can be no universal characterisation of cluster temporal
graphs in terms of subsets of at most four vertices. However, subject to a
minor additional restriction, we obtain a characterisation involving for-
bidden configurations on five vertices. This characterisation gives rise to
an FPT algorithm parameterised simultaneously by the permitted num-
ber of modifications and the lifetime of the temporal graph, which uses
a simple search-tree strategy.

Keywords: Temporal graphs, cluster editing, graph clustering, parameterised
complexity

1 Introduction

The Cluster Editing problem encapsulates one of the simplest and best-
studied notions of graph clustering: given a graph G, the goal is to decide whether
it is possible to transform G into a disjoint union of cliques – a cluster graph – by
adding or deleting a total of at most k edges. While this problem is known to be
NP-complete in general [2,12,16,21], it has been investigated extensively through
the framework of parameterised complexity, and admits efficient parameterised
algorithms with respect to several natural parameters [1,3,7–9,13,17] (for more
details see Section 1.1).
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Motivated by the fact that many real-world networks of interest are subject
to discrete changes over time, there has been much research in recent years into
the complexity of graph problems on temporal graphs, which provide a natural
model for networks exhibiting these kinds of changes in their edge-sets. A first
attempt to generalise Cluster Editing to the temporal setting was made by
Chen, Molter, Sorge and Suchý [10], who recently introduced the problem Tem-
poral Cluster Editing: here the goal is to ensure that graph appearing at
each timestep is a cluster graph, subject to restrictions on both the number of
modifications that can be made at each timestep and the differences between
the cluster graphs created at consecutive timesteps. A dynamic version of the
problem, Dynamic Cluster Editing, has also recently been studied by Luo,
Molter, Nichterlein and Niedermeier [18]: here we are given a solution to a partic-
ular instance, together with a second instance (that which will be encountered at
the next timestep) and are asked to find a solution for the second instance that
does not differ too much from the first. One drawback of previous approaches
is that they require each snapshot to be a cluster graph. In the static case, the
notion of cluster graph is far too rigid for any meaningful application to commu-
nity detection [23], as it is unreasonable that all pairs in a community are linked
by an edge. For temporal graphs this assumption is even more restrictive.

We take a different approach, using a notion of temporal clique that already
exists in the literature [14, 22]. Under this notion, a temporal clique is specified
by a vertex-set and a time-interval, and we require that each pair of vertices is
connected by an edge frequently, but not necessarily continuously, during the
time-interval. An example could be emails within a company, where vertices
are employees and there is an edge at time t between two employees if they are
senders/recipients of an email at time t. Pairs of employees may correspond more
or less frequently, however each pair is included in regular company-wide circular
emails. We say that a temporal graph is a cluster temporal graph if it is a union of
temporal cliques that are pairwise independent : here we say that two temporal
cliques are independent if either their vertex sets are disjoint, or their time
intervals are sufficiently far apart (similar to the notion of independence used to
define temporal matchings [20]). Equipped with these definitions, we introduce
a new temporal interpretation of cluster editing, which we call Editing to
Temporal Cliques (ETC): the goal is to add/delete a collection of at most k
edge appearances so that the resulting graph is a cluster temporal graph.

We prove that ETC is NP-hard, even when the underlying graph is a path;
this reduction, however, relies on edges appearing at many distinct timesteps,
and we show that, when restricted to paths, ETC is solvable in polynomial
time when the maximum number of timesteps at which any one edge appears
in the graph is bounded. It follows immediately from our hardness reduction
that the variant of the problem in which we are only allowed to delete, but
not add, edge appearances, is also NP-hard in the same setting. On the other
hand, the corresponding variant in which we can only add edges, which we
call Completion to Temporal Cliques (CTC), admits a polynomial-time
algorithm on arbitrary inputs.
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In the static setting, a key observation – which gives rise to a simple FPT search-
tree algorithm for Cluster Editing parameterised by the number of modifi-
cations – is the fact that a graph is a cluster graph if and only if it contains
no induced copy of the three-vertex path P3 (sometimes referred to as a conflict
triple [6]). We demonstrate that cluster temporal graphs cannot be fully char-
acterised by any local condition that involves only sets of at most four vertices;
however, in the most significant technical contribution of this paper, we prove
that (subject to a minor additional restriction on the relationship between the
spacing parameters that define temporal cliques and independence) a temporal
graph is a cluster temporal graph if and only if every subset of at most five
vertices induces a cluster temporal graph. Using this characterisation, we ob-
tain an FPT algorithm for ETC parameterised simultaneously by the number of
modifications and the lifetime (# of timesteps) of the input temporal graph.

1.1 Related Work

Cluster Editing is known to be NP-complete [2, 12, 16, 21], even for graphs
with maximum degree six and when at most four edge modifications incident
to each vertex are allowed [15]. On the positive side, the problem can be solved
in polynomial time if the input graph has maximum degree two [5] (recently
improved to degree three [3]) or is a unit interval graph [19]. Further complexity
results and heuristic approaches are discussed in a survey article [6].

Variations of the problem in which only deletions or additions of edges re-
spectively are allowed have also been studied. The version in which edges can
only be added is trivially solvable in polynomial time, since an edge must be
added between vertices u and v if and only if u and v belong to the same con-
nected component of the input graph but are not already adjacent. The deletion
version, on the other hand, remains NP-complete even on 4-regular graphs, but
is solvable in polynomial time on graphs with maximum degree three [15].

Cluster Editing has received substantial attention from the parameterised
complexity community, with many results focusing on the natural parameterisa-
tion by the number k of permitted modifications. Fixed-parameter tractability
with respect to this parameter can easily be deduced from the fact that a graph
is a cluster graph if and only if it contains no induced copy of the three-vertex
path P3, via a search tree argument; this approach has been refined repeatedly in
non-trivial ways, culminating in an algorithm running in time O(1.76k +m+n)
for graphs with n vertices and m edges [7]. More recent work has considered
as a parameter the number of modifications permitted above the lower bound
implied by the number of modification-disjoint copies of P3 (copies of P3 such
that no two share either an edge or a non-edge) [17]. Other parameters that have
been considered include the number of clusters [13] and a lower bound on the
permitted size of each cluster [1].
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1.2 Organisation of the Paper

We begin in Section 2 by introducing some notation and definitions, and for-
mally defining the ETC problem. In Section 3 we collect several results and
fundamental lemmas which are either used in several other sections or may be of
independent interest. In Section 4 we restrict to temporal graphs which have a
path as the underlying graph: in Section 4.1 we show that ETC is NP-hard even
in this setting, however in Section 4.2 we then show that if we further restrict
temporal graphs on paths to only have a bounded number of appearances of
each edge then ETC is solvable in polynomial time. In Section 5 we consider a
variant of the ETC problem where edges can only be added, and show that this
can be solved in polynomial time on any temporal graph. Finally in Section 6 we
present our main result which gives a characterisation of cluster temporal graphs
by induced temporal subgraphs on five vertices. We prove this result in Section
6.1 before applying it in Section 6.2 to show that (subject to minor additional
restrictions) ETC is in FPT when parameterised by the lifetime of the temporal
graph and number of permitted modifications. Due to space constraints, many
proofs are omitted but can be found in the full version of the paper [4].

2 Preliminaries

In this section we first give basic definitions and introduce some new notions
that are key to the paper, before formally specifying the ETC problem.

2.1 Notation and Definitions

Elementary Definitions. Let N denote the natural numbers (with zero) and Z+

denote the positive integers. We refer to a set of consecutive natural numbers
[i, j] = {i, i + 1, . . . , j} for some i, j ∈ N with i ≤ j as an interval, and to the
number j − i + 1 as the length of the interval. Given an undirected (static)
graph G = (V,E) we denote its vertex-set by V = V (G) and edge-set by
E = E(G) ⊆

(
V
2

)
. We work in the word RAM model of computation, so that

arithmetic operations on integers represented using a number of bits logarithmic
in the total input size can be carried out in time O(1). We use standard notions
from parameterised complexity, following the notation of [11].

Temporal Graphs. A temporal graph G = (G, T ) is a pair consisting of a static
(undirected) underlying graph G = (V,E) and a labeling function T : E →
2Z

+ \{∅}. For a static edge e ∈ E, we think of T (e) as the set of time appearances
of e in G and let E(G) := {(e, t) | e ∈ E and t ∈ T (e)} denote the set of edge
appearances, or time-edges, in a temporal graph G. We consider temporal graphs
G with finite lifetime given by T (G) := max{t ∈ T (e) | e ∈ E}, that is, there
is a maximum label assigned by T to an edge of G. We assume w.l.o.g. that
min{t ∈ T (e) | e ∈ E} = 1. We denote the lifetime of G by T when G is clear
from the context. The snapshot of G at time t is the static graph on V with
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edge set {e ∈ E | t ∈ T (e)}. Given temporal graphs G1 and G2, let G1△G2 be
the set of time-edges appearing in exactly one of G1 or G2. For the purposes
of computation, we assume that G is given as a list of (static) edges together
with the list of times T (e) at which each static edge appears, so the size of G is
O(max{|E|, |V |}) = O(|V |2T ).

Templates and Cliques. For an edge e ∈ E(G) in the underlying graph of a
temporal graph G = (G, T ), an interval [a, b], and ∆1 ∈ Z+, we say that e is
∆1-dense in [a, b] if for all τ ∈ [a,max{a, b − ∆1 + 1}] there exists a t ∈ T (e)
with t ∈ [τ, τ +∆1 − 1]. This formalises the idea of two vertices being connected
‘frequently, but not continuously’ from the introduction. We define a template
to be a pair C = (X, [a, b]) where X is a set of vertices and [a, b] is an interval.
For a set S of time-edges we let V (S) denote the set of all endpoints of time-
edges in S, and the lifetime L(S) = [s, t], where s = min{s : (e, s) ∈ S} and
t = max{t : (e, t) ∈ S}. We say that S generates the template (V (S), L(S)). A
set S ⊂ E(G) forms a ∆1-temporal clique if for every pair x, y ∈ V (S) of vertices
in the template (V (S), L(S)) generated by S, the edge xy is ∆1-dense in L(S).
We can assume that the lifetime of any template generated by a set S is minimal,
that is, a time-edge from S occurs at each end-point of L(S).

Independence and Cluster Temporal Graphs. For ∆2 ∈ Z+ we say that two
templates (X, [a, b]) and (Y, [c, d]) are ∆2-independent if

X ∩ Y = ∅ or min
s∈[a,b],t∈[c,d]

|s− t| ≥ ∆2.

Thus, two templates are independent if they share no vertices, or their time
intervals are at least ∆2 time steps apart. Let T(G, ∆2) be the class of all col-
lections of pairwise ∆2-independent templates where each (X, [a, b]) ∈ T(G, ∆2)
satisfies X ⊆ V (G) and 1 ≤ a ≤ b ≤ T (G). Two sets S1, S2 of time-edges are
∆2-independent if the templates they generate are ∆2-independent. As a spe-
cial case of this, two time-edges (e, t), (e′, t′) are ∆2-independent if e ∩ e′ = ∅
or |t − t′| ≥ ∆2. A temporal graph G realises a collection {(Xi, [ai, bi])}i∈[k] ∈
T(G, ∆2) of pairwise ∆2-independent templates if

– for each (xy, t) ∈ E there exists i ∈ [k] such that x, y ∈ Xi and t ∈ [ai, bi],
– for each i ∈ [k] and x, y ∈ Xi, the edge xy is ∆1-dense in [ai, bi].

The first condition specifies that every time-edge of G is contained in a single
template. The second states that for any template, and any pair of vertices in
vertex set of the template, there is a time edge between the vertices contained
in any time window of length ∆1 contained in the lifetime of the template.

If there exists some C ∈ T(G, ∆2) such that G realises C then we call G a
(∆1, ∆2)-cluster temporal graph. Throughout we assume that ∆2 > ∆1, since
if ∆2 ≤ ∆1 then one ∆1-temporal clique can realise many different sets of ∆2-
independent templates. For example, if ∆2 = ∆1 then the two time-edges (e, t)
and (e, t+∆1) are ∆2-independent but also e is ∆1-dense in the interval [t, t+∆1].
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Induced, Indivisible, and Saturated Sets. Let S be a set of time edges and A be
a set of vertices, then we let S[A] = {(xy, t) ∈ S : x, y ∈ A} be the set of all the
time-edges in S induced by A. Similarly, given a temporal graph G and A ⊂ V ,
we let G[A] be the temporal graph with vertex set A and temporal edges E [A].
For an interval [a, b] we let G|[a,b] be the temporal graph on V with the set of
time-edges {(e, t) ∈ E(G) : t ∈ [a, b]}. We will say that a set S of time-edges
is ∆2-indivisible if there does not exist a pairwise ∆2-independent collection
{S1, . . . , Sk} of time-edge sets satisfying ∪i∈[k]Si = S. A ∆2-indivisible set S is
said to be ∆2-saturated in G if after including any other time-edge of E(G) it
would cease to be ∆2-indivisible.

2.2 Problem Specification

Editing to Temporal Cliques. We can now introduce the ETC problem which,
given as input a temporal graph G and natural numbers k,∆1, ∆2 ∈ Z+, asks
whether it is possible to transform G into a (∆1, ∆2)-cluster temporal graph by
applying at most k modifications (addition or deletion) of time-edges. Given any
temporal graph G, the set Π of time-edges which are added to or deleted from
G is called the modification set. We note that the modification set Π can be
defined as the symmetric difference between the time-edge set E(G) of the input
graph and that of the same graph after the modifications have been applied.
More formally, our problem can be formulated as follows.

Editing to Temporal Cliques (ETC):
Input: A temporal graph G = (G, T ) and positive integers k,∆1, ∆2 ∈ Z+.
Question: Does there exist a set Π of time-edge modifications, of cardinality
at most k, such that the modified temporal graph is a (∆1, ∆2)-cluster
temporal graph?

We begin with a simple observation about the hardness of ETC which shows
we can only hope to gain tractability in settings where the static version is
tractable. However, we shall see in Section 4.1 that ETC is hard on temporal
graphs with paths as their underlying graphs, and thus the converse is false.

Proposition 1. Let C be a class of graphs on which Cluster Editing is NP-
complete. Then ETC is NP-complete on the class of temporal graphs {(G, T ) :
G ∈ C}.

3 Basic Observations on ETC

In this section we collect many fundamental results on the structure of tempo-
ral graphs and the cluster editing problem. We will use many of these results
frequently throughout the proofs of results in this paper; we include all lemma
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statements here as they provide some insight into the behaviour of (∆1, ∆2)-
cluster temporal graphs and may be of use in the further study of cluster editing
in the temporal setting.

Lemma 1 shows that there is a way to uniquely partition any temporal graph.

Lemma 1. For any ∆2 ∈ Z+, any temporal graph G has a unique decomposition
of its time-edges into ∆2-saturated subsets.

The next three elementary lemmas are useful for relating indivisible sets to
∆1-temporal cliques to clusters in the proof of the characterisation, Theorem 4.

Lemma 2. If two ∆2-indivisible sets S1 and S2 of time-edges satisfy S1∩S2 ̸= ∅,
then S1 ∪ S2 is ∆2-indivisible.

Lemma 3. Let G be a temporal graph, S ⊆ E(G) be a ∆2-saturated set of time-
edges, and K a ∆1-temporal clique such that K ⊆ E(G) and K ∩ S ̸= ∅. Then
K ⊆ S.

Lemma 4. Let G be any (∆1, ∆2)-cluster temporal graph. Then, any ∆2-indivisible
set S ⊆ E(G) must be contained within a single ∆1-temporal clique.

However, the first application of these lemmas is the following result, which
shows that the partition from Lemma 2 can be found in polynomial time.

Lemma 5. Let G = (G = (V,E), T ) be a temporal graph, and let E = {(e, t) :
e ∈ E, t ∈ T (e)} be the set of time-edges of G. Then, there is an algorithm which
finds the unique partition of E into ∆2-saturated subsets in time O(|E|3|V |).

Since any temporal graph has a unique decomposition into ∆2-saturated
sets by Lemma 1, and using the fact that any pair of ∆2-saturated sets is ∆2-
independent by definition, we obtain the following corollary to Lemma 4.

Lemma 6. A temporal graph G is a (∆1, ∆2)-cluster temporal graph if and only
if every ∆2-saturated set of time-edges forms a ∆1-temporal clique.

Lemmas 5 and 6 allow us to deduce the following result.

Lemma 7. Let G = (G = (V,E), τ) be a temporal graph, and let E = {(e, t) :
e ∈ E, t ∈ T (e)} be the set of time-edges of G. Then, we can determine in time
O(|E|3|V |) whether G is a (∆1, ∆2)-cluster temporal graph.

The next three Lemmas concern induced structures in cluster temporal graphs.

Lemma 8. Let G be a (∆1, ∆2)-cluster temporal graph and S ⊆ V (G). Then,
G[S] is also a (∆1, ∆2)-cluster temporal graph.

Lemma 9. Let G = (G, T ) be a temporal graph, and C ∈ T(G, ∆2) be a collection
minimising minGC realises C |G△GC |. Then, for any template C = (X, [a, b]) ∈ C,
the static underlying graph of G[X]|[a,b] is connected.

Lemma 10. Let G be a temporal graph. Then, there exists a (∆1, ∆2)-cluster
temporal graph G′, minimising the edit distance |G△G′| between G and G′, such
that the lifetime of G′ is a subset of the lifetime of G.
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4 ETC on Paths

Throughout Pn will denote the path on V (Pn) = {v1, . . . , vn} with E(Pn) =
{vivi+1 : 1 ≤ i < n}. Define Fn be the set of all temporal graphs Pn = (Pn, T )
on n vertices which have the path Pn as the underlying static graph.

4.1 NP-Completeness

Clearly, ETC is in NP because, for any input instance (G, ∆1, ∆2, k), a non-
deterministic algorithm can guess (if one exists) the modification set Π and,
using Lemma 7, verify that that the modified temporal graph is a (∆1, ∆2)-
cluster temporal graph in time polynomial in k and the size of G. We show that
ETC is NP-hard even for temporal graphs with a path as underlying graph.

Theorem 1. ETC is NP-complete, even if the underlying graph G of the input
temporal graph G is a path.

To prove this result we construct a reduction to ETC from the NP-complete
problem Temporal Matching. For a fixed ∆ ∈ Z+, a ∆-temporal matching
M of a temporal graph G is a set of time-edges of G which are pairwise ∆-
independent. It is easy to note that if G = M, then G is a (∆1, ∆)-cluster
temporal graph for any value of ∆1 ≥ 1, because then each time-edge in G can
be considered as a ∆1-temporal clique with unit time interval, and these cliques
are by definition ∆-independent. We can now state this problem formally.

Temporal Matching (TM):
Input: A temporal graph G = (G, T ) and two positive integers k,∆ ∈ Z+.
Question: Does G admit a ∆-temporal matching M of size k?

It was shown in [20] that Temporal Matching is NP-complete even if
∆ = 2 and the underlying graph G is a path. The reduction fixes ∆1 = 1 and
∆2 = 5. It then takes our input temporal graph Pn and transforms it into an
new instance P ′

n by adding empty "filler" snapshots between each snapshot Pn,
see Figure 1. It is shown that a matching in the original instance corresponds
to a (1, 5)-cluster temporal graph, which gives one direction of the reduction.
We then show that, if enough filler snapshots are added, then there exists an
optimal solution to ETC where time-edges are only deleted from P ′

n. We can
then deduce from this that, since the underlying graph is a path, a solution to
ETC using only deletions must be a matching of the required size.

4.2 Bounding the Number of Edge Appearances

We now show that, if additionally the number of appearances of each edge in
Pn is bounded by a fixed constant, then ETC can be solved in time polynomial
in the size of the input temporal graph.
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Pn P ′
n

Fig. 1. An instance P of TM is shown on the left and the stretched graph P ′
n on

which we solve Editing to Temporal Cliques is on the right. Non-filler snapshots
are shown in white and filler snapshots are grey. Dotted edges show edges that were
removed to leave a (1, 5)-temporal cluster graph (which is also a 5-temporal matching,
and corresponds to a 2-temporal matching in P).

Theorem 2. Let (Pn, ∆1, ∆2, k) be any instance of ETC where Pn ∈ Fn and
there exists a natural number σ such that |T (e)| ≤ σ for any e ∈ E(Pn). Then,
ETC on (Pn, ∆1, ∆2, k) is solvable in time O(T 4σσ2 · n2σ+1).

This theorem is proved using a fairly standard dynamic programming ap-
proach, where we go along the underlying path Pn uncovering one vertex in each
step. In particular, at the ith vertex we try to extend the current set of templates
on the first i−1 vertices of the path to an optimal set of templates also including
the ith vertex.

5 Completion to Temporal Cluster Graphs

In this section we consider the following variant of ETC, in which we are only
allowed to add time-edges.

Completion to Temporal Cliques (CTC):
Input: A temporal graph G = (G, T ) and positive integers k,∆1, ∆2 ∈ Z+.
Question: Does there exist a set Π of time-edge additions, of cardinality at
most k, such that the modified temporal graph is a (∆1, ∆2)-cluster temporal
graph?

The main result of this section is to show that the above problem can be
solved in time polynomial in the size of the input temporal graph.

Theorem 3. There is an algorithm solving Completion to Temporal Cliques
on any temporal graph G in time O

(
|E(G)|3|V |

)
.

As observed in [21], the cluster completion problem is also solvable in poly-
nomial time on static graphs. In this case the optimum solution is obtained
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by transforming each connected component of the input graph into a complete
graph. The situation is not quite so simple in temporal graphs, however a similar
phenomenon holds with ∆2-saturated sets taking the place of connected compo-
nents; our algorithm relies heavily on the fact (Lemma 5) that we can find these
∆2-saturated sets efficiently.

6 A Local Characterisation of Cluster Temporal Graphs

In Section 6.1 we give a characterisation of cluster temporal graphs. We then
use this characterisation in Section 6.2 to give an FPT algorithm for ETC.

6.1 The Five-Vertex Characterisation

In this section we show the following characterization of (∆1, ∆2)-cluster tempo-
ral graphs in terms of their induced five-vertex subgraphs. The characterisation
relies on a fairly natural additional condition which says clusters cannot ap-
pear too close to each other in time. We discuss the potential to improve this
characterisation in more detail in Section 7.

Theorem 4. Let ∆2 > 2∆1. Then any temporal graph G is a (∆1, ∆2)-cluster
temporal graph if and only if G[S] is a (∆1, ∆2)-cluster temporal graph for every
set S ⊆ V (G) of at most five vertices.

One direction of Theorem 4 follows easily from Lemma 8. The other direction
is far more challenging. The following lemma illustrates a key idea in the proof
of this more challenging direction of Theorem 4: the five vertex condition allows
us to ‘grow’ certain sets of time-edges.

Lemma 11. Let G be any temporal graph satisfying the property that G[S] is a
(∆1, ∆2)-cluster temporal graph for every set S ⊆ V (G) of at most five vertices.
Let H be a ∆1-temporal clique realising the template (H, [c, d]), and x, y ∈ H.
Suppose that xy is ∆1-dense in the set [a, b] ⊇ [c, d] and let r1 = min (T (xy) ∩ [a, b])
and r2 = max (T (xy) ∩ [a, b]). Then there exists a ∆1-temporal clique H′ which
realises the template (H, [r1, r2]) where [r1, r2] ⊇ [a+∆1 − 1, b−∆1 + 1].

We are now ready to prove the final direction of Theorem 4; full details of
this proof, including proofs of the claims, can be found in the full version [4].

Lemma 12. Let G be any temporal graph such that G[S] is a (∆1, ∆2)-cluster
temporal graph for every set S ⊆ V (G) of at most five vertices. Then G is a
(∆1, ∆2)-cluster temporal graph.

Proof. Let PG be the partition of E(G) into ∆2-saturated subsets; we know that
this partition exists and is unique by Lemma 1. Fix any subset S ∈ PG and
denote L(S) = [s, t]. We want to show that S forms a ∆1-temporal clique in G.

To prove this, we introduce a collection κS = {S1, . . . , Sm} of subsets of S,
such that each Si is a ∆1-temporal clique for any i ∈ {1, . . . ,m}, S =

⋃m
i=1 Si
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and for any Si ∈ S there does not exist any other ∆1-temporal clique K ⊆ S
such that Si ⊂ K; we will say that each Si is a maximal ∆1-temporal clique
within S. First of all, we note that this collection exists: in fact, because even
the singleton set containing any time-edge is a ∆1-temporal clique, every time-
edge in S belongs to at least one ∆1-temporal clique. Note that the subsets Si

with i ∈ {1, . . . ,m} are not required to be pairwise disjoint.
We will assume for a contradiction that m ≥ 2. Because S is ∆2-saturated,

it is not possible that all the ∆1-temporal cliques contained in κS are pairwise
∆2-independent, since this would imply that S is not ∆2-indivisible. Thus, as
we assume m ≥ 2, let us consider any distinct Si, Sj ∈ κS that are not ∆2-
independent. We shall then show that they must both be contained within a
larger ∆1-temporal clique, which itself is contained in S, contradicting maxi-
mality. It will then follow that m = 1 and thus S is itself a ∆1-temporal clique,
which establishes the theorem.

The next claim shows that if two maximal ∆1-temporal cliques in S are not
∆2-independent, then there is a small sub-graph witnessing this non-independence.

Claim 1 Let Si, Sj ∈ κS be any pair of ∆1-temporal cliques which are not ∆2-
independent. Then, there exists a set W ⊆ V (Si)∪V (Sj) with |W | ≤ 5 such that
(Si ∪ Sj)[W ] is ∆2-indivisible and contains at least one time-edge from each of
Si and Sj.

Recall that Si and Sj are both ∆2-indivisible as they are ∆1-temporal cliques.
It therefore follows from Claim 1 and Lemma 2 that both Si[W ]∪Sj and Sj [W ]∪
Si are ∆2-indivisible. As their intersection is (Si ∪Sj)[W ] ̸= ∅, invoking Lemma
2 once again gives that Si ∪ Sj is ∆2-indivisible.

Claim 2 Let Si and Sj be as above with L(Si) = [si, ti] and L(Sj) = [sj , tj ].
Then, there exists some K ⊆ V and s′, t′ ∈ Z+ such that G contains a ∆1-
temporal clique K realising the template (K, [s′, t′]) where:

– s′ ∈ [s,min{si, sj}+∆1 − 1] and t′ ∈ [max{ti, tj} −∆1 + 1, t],
– there exist x, y ∈ K and a time ri ∈ [s′, t′] such that (xy, ri) ∈ Si, and
– there exist w, z ∈ K and a time rj ∈ [s′, t′] such that (wz, rj) ∈ Sj.

Let us now consider K, the ∆1-temporal clique of Claim 2. From this we
want to extend Si and Sj to a ∆1-temporal clique with vertex set V (Si)∪V (Sj)
and lifetime at least L(K) ∪ L(Si) ∪ L(Sj) = [min{si, sj , s′},max{ti, tj , t′}]. We
do this in two stages, via the following claims.

Claim 3 There exist h1 ≤ h2 satisfying

[h1, h2] ⊇ [min{si, sj , s′}+∆1 − 1,max{ti, tj , t′} −∆1 + 1]

such that (V (Si) ∪ V (Sj), [h1, h2]) is a ∆1-temporal clique.

Claim 4 (V (Si)∪V (Sj), [min{si, sj , s′},max{ti, tj , t′}]) is a ∆1-temporal clique
in G.
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Observe that Claim 4 contradicts the initial assumption that Si and Sj were
maximal in S. Thus the assumption that m ≥ 2 must be incorrect and thus
S consists of a single ∆1-temporal clique. Because S was a generic set of the
partition PG of the given temporal graph G into ∆2-saturated subsets, then G
must be a (∆1, ∆2)-cluster temporal graph by Lemma 6, giving the result. ⊓⊔

6.2 A Search-Tree Algorithm

Using the characterisation from the previous section, we are now able to prove
the following result using a standard bounded search tree technique.

Theorem 5. Let ∆2 > 2∆1. Then ETC can be solved in time (10T )k · T 3|V |5.

7 Conclusions and Open Problems

In this paper we introduced a new temporal variant of the cluster editing prob-
lem, ETC, based on a natural interpretation of what it means for a temporal
graph to be divisible into "clusters". We showed hardness of this problem even
in the presence of strong restrictions on the input, but identified two special
cases in which polynomial-time algorithms exist: firstly, if underlying graph is a
path and the number of appearances of each edge is bounded by a constant, and
secondly if we are only allowed to add (but not delete) time-edges. One natural
open question arising from the first of these positive results is whether bound-
ing the number of appearances of each edge can lead to tractability in a wider
range of settings: we conjecture that the techniques used here can be generalised
to obtain a polynomial-time algorithm when the underlying graph has bounded
pathwidth, and it may be that they can be extended even further.

Our main technical contribution was Theorem 4, which gives a characterisa-
tion of (∆1, ∆2)-cluster temporal graphs in terms of five vertex subsets, whenever
the condition ∆2 > 2∆1 holds. The assumption that ∆2 > 2∆1 is needed in two
places in the proof of Theorem 4, but we believe that with care it may be possible
to modify the proof so that this condition is not required. If it is indeed possi-
ble to remove this condition on ∆1 and ∆2, then the resulting characterisation
would be best possible, as the graph illustrated in Figure 2 demonstrates that
no such characterisation involving only four-vertex subsets can exist.

In addition to providing substantial insight into the structure of (∆1, ∆2)-
cluster temporal graphs, Theorem 4 also gives rise to a simple search tree algo-
rithm, which is an FPT algorithm parameterised simultaneously by the number
k of permitted modifications and the lifetime of the input temporal graph. An
interesting direction for further research would be to investigate whether this
result can be strengthened: does there exist a polynomial kernel with respect to
this dual parameterisation, and is ETC in FPT parameterised by the number of
permitted modifications alone?
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Fig. 2. A temporal graph which is not a (2, 3)-cluster temporal graph, whose every
induced temporal subgraph on at most four vertices is a (2, 3)-cluster temporal graph.
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