Demystifying the black box: the importance of interpretability of predictive models in neurocritical care

Moss, L. , Corsar, D., Shaw, M., Piper, I. and Hawthorne, C. (2022) Demystifying the black box: the importance of interpretability of predictive models in neurocritical care. Neurocritical Care, 37(2), pp. 185-191. (doi: 10.1007/s12028-022-01504-4) (PMID:35523917)

[img] Text
269549.pdf - Published Version
Available under License Creative Commons Attribution.



Neurocritical care patients are a complex patient population, and to aid clinical decision-making, many models and scoring systems have previously been developed. More recently, techniques from the field of machine learning have been applied to neurocritical care patient data to develop models with high levels of predictive accuracy. However, although these recent models appear clinically promising, their interpretability has often not been considered and they tend to be black box models, making it extremely difficult to understand how the model came to its conclusion. Interpretable machine learning methods have the potential to provide the means to overcome some of these issues but are largely unexplored within the neurocritical care domain. This article examines existing models used in neurocritical care from the perspective of interpretability. Further, the use of interpretable machine learning will be explored, in particular the potential benefits and drawbacks that the techniques may have when applied to neurocritical care data. Finding a solution to the lack of model explanation, transparency, and accountability is important because these issues have the potential to contribute to model trust and clinical acceptance, and, increasingly, regulation is stipulating a right to explanation for decisions made by models and algorithms. To ensure that the prospective gains from sophisticated predictive models to neurocritical care provision can be realized, it is imperative that interpretability of these models is fully considered.

Item Type:Articles
Glasgow Author(s) Enlighten ID:Piper, Dr Ian and Hawthorne, Dr Christopher and Moss, Dr Laura and Shaw, Dr Martin
Authors: Moss, L., Corsar, D., Shaw, M., Piper, I., and Hawthorne, C.
College/School:College of Medical Veterinary and Life Sciences > School of Medicine, Dentistry & Nursing
Journal Name:Neurocritical Care
ISSN (Online):1556-0961
Published Online:06 May 2022
Copyright Holders:Copyright © 2022 The Authors
First Published:First published in Neurocritical Care 37(2): 185-191
Publisher Policy:Reproduced under a Creative Commons License

University Staff: Request a correction | Enlighten Editors: Update this record