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Abstract—For vehicle-to-network communications, handover
(HO) management enables vehicles to maintain the connection with
the network while transiting through coverage areas of different
base stations (BSs). However, the high mobility of vehicles means
shorter connection periods with each BS that leads to frequent
HOs, hence raises the necessity for optimal HO decision making
for high quality infotainment services. Machine learning is capable
of capturing underlying pattern via data driven methods to find
optimal solutions to complex problems, and much learning-based
HO optimization research has been conducted focusing on specific
network setups. However, attention still needs to be paid to the
actual deployment aspect and standardized datasets or simulation
environments for evaluation. This paper proposes a deep rein-
forcement learning-based HO algorithm using the input param-
eters that are configurable in the existing measurement report of
cellular networks. The performance of the proposed algorithm is
evaluated using the well-known network simulator ns-3 with its
official LTE module. A realistic network setup in the city center
of Glasgow (U.K.) is configured with vehicle trajectories generated
by the routes mobility model using Google Maps Directions API.
Evaluation results reveal that the proposed algorithm significantly
outperforms the A3 RSRP baseline with an average of 25.72%
packet loss reduction per HO, suggesting significant improvement
in quality of service of phone call and video streaming, etc. The
proposed algorithm also has a small implementation cost compared
to some state-of-the-art and should be deployed by a software
update to a local BS controller.

Index Terms—Deep learning, handover optimization,
reinforcement learning, vehicular networks.

I. INTRODUCTION

THE future intelligent transportation systems (ITS) [1] are
becoming a key component in society to improve everyday

life, addressing the overarching goal to improve on-road safety
and traffic congestion while providing various utility-based
on-board services [2]. Vehicular networks are a critical enabler
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for information sharing in the ITS arena, and ITS applications
introduce a high level of expectation for vehicular communica-
tions and networking such as throughput, reliability and latency.
This brings new challenges to traditional wireless networks’ key
performance indicators, and have been receiving considerable
attention from the research community.

The objective of vehicular networks is to ensure road safety,
increase traffic efficiency, and provide a new level of on-board
entertainment. To achieve these goals, vehicles need to connect
with other communication entities for information exchange,
referred to as vehicle-to-everything (V2X) [3]. Various types
of communication are defined in V2X networks based on which
entity a vehicle connects to, including vehicle-to-vehicle (V2V),
vehicle-to-infrastructure (V2I), vehicle-to-network (V2N) and
vehicle-to-pedestrian (V2P) [4]. Depending on the application,
vehicular networks have strict and differentiated quality of
service (QoS) requirements. The technological factors of QoS
such as reliability, scalability, and network congestion, can be
measured by throughput, packet loss, errors, and latency at a
network level [5]. In addition, different radio access technolo-
gies (RATs) also exist for vehicles to select based on specific
scenarios, further increasing the complexity of V2X. Fig. 1
gives an example V2X scenario showing the different vehicular
communication types utilising various RATs.

According to the network blueprint [6], V2N communications
will form a major aspect to enable future vehicular networks.
V2N enables on-board infotainment services via frequent In-
ternet access, which necessitates high data throughput with
large bandwidth between vehicles and base stations (BSs), just
as traditional cellular network users’ equipment (UEs) do. In
cellular networks, the mobility of UEs is handled by a handover
(HO) mechanism, which reassigns ongoing communications
sessions from one BS to the next, enabling UEs to move between
coverage areas of different BSs without breaking the session.

5 G is the latest generation of cellular network currently under
deployment and contains some new system-level features. One
such feature is the inclusion of higher frequency bands such as
the millimetre wave (mmWave) bands to higher bandwidth and
higher data rate [7]. These frequency bands are characterised
by high directionality, relatively short transmission range, and
are sensitive to blockage, hence require dense deployment to
ensure adequate coverage, bringing new challenges to traditional
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Fig. 1. A heterogeneous V2X network with different communication types
and multiple available RATs for each type of communication.

fixed parameter-based HO algorithms. Radio access network
slicing [8] is another technology for 5 G and beyond that virtu-
alizes the physical equipment resources into logically indepen-
dent network slices with specific configurations. It can satisfy
QoS requirement for different applications with set physical
infrastructures, while also addressing the dual challenges of high
network complexity and spectrum resource efficiency in current
wireless networks, and is an important enabler for future V2X
applications [9]. However, network slicing also introduces the
requirement for HO among network slices, as UEs may face the
necessity of inter-slice HOs between BSs.

The substantially increasing numbers of BSs and connections
with more HO entities to be considered will lead to highly
complicated HO management. This rising complexity and the
high mobility of on-road vehicles brings challenges to traditional
solutions with fixed parameters for HO decision making. Ma-
chine learning (ML) that extracts underlying patterns from col-
lected data can cope with the uncertainty and dynamics in V2X
networks to provide more intelligent and flexible solutions. In
particular, reinforcement learning (RL) has the ability to learn to
make optimal decisions by interacting with an environment via
trial and error. Additionally, deep learning techniques utilize arti-
ficial neural networks (ANNs) capable of further exploiting data
patterns and further improving task-specific performances [10].
ANN enabled deep reinforcement learning (DRL) has made
significant advances in applications with high complexity and
variability such as continuous control and wireless resource
allocation [11], [12] and is a promising technique to develop
effective solutions to the HO challenges and has gained research
momentum [13].

To date, considerable research has been done on the topic
of ML-based HO optimization utilizing different input param-
eters, with various network architecture designs and system
setups [14], [15]. However, most of the existing research focuses
on specific use cases and system architecture designs, while
real-life deployment scenarios for the current network is seldom
investigated [16]. In addition, ML-based HO solutions’ perfor-
mance evaluation using a standardized dataset and/or simulation
environment has had relatively little research.

Consequently, this paper chose to focus on a DRL-based HO
algorithm to tackle the HO optimization problem in cellular
V2N networks based on a current cellular network architecture,
aiming to explore how DRL may improve the system’s HO
decision-making performance, and evaluate the performance us-
ing the well-established full-stack network simulator ns-3. The
simulation developed a realistic scenario setup for the Glasgow
city center, U.K., using BS locations and vehicle trajectories
that emulate reality. The official ns-3 cellular network module
was used in accordance with the 3GPP standards [17]. The
algorithm only utilized the reference signal received power
(RSRP) parameter available in the current measurement reports
for HO as the input parameter, and the dataset was gathered
directly from the corresponding network layer of the cellular
protocol stack via simulation for training. After offline training,
the algorithm was then deployed in the mobility management
entity for online performance analysis directly using the ns-3
simulator. Performance comparisons showed a 11.56-second
HO time delay reduction per HO and 25.73% packet loss reduc-
tion per HO. The contributions of this paper can be summarized
as follows:

1) A HO algorithm is developed using DRL utilizing the
standard input parameters list as available in cellular net-
work configurations, hence can be deployed via a software
upgrade with small system level modifications.

2) The proposed algorithm is validated on the discrete-event
network simulator ns-3 with realistic scenario setups, in
contrast to high-level proof-of-concept simulations.

3) Result evaluation demonstrates a significant HO delay
reduction of 11.56 seconds per HO and 25.73% packet loss
reduction per HO compared to the A3 RSRP HO baseline,
offering improved performance for 5 G networks.

The rest of this paper is organized as follows: A literature
review in Section II; the problem formulation and proposed
algorithm in Section IV, followed by the simulation setup and
performance evaluation results in Section V. Section VI presents
the implementation cost discussion of the proposed algorithm
and comparison with the state-of-the-art, culminating the con-
clusion and future research insights in Section VII.

II. RELATED WORK

In recent years, ML-based solutions have been widely ex-
plored in various wireless communication research, including
resource management, mobility, and HO management for dif-
ferent systems [15]. ML techniques can utilize the rich dataset
generated by wireless systems and extract hidden patterns in the
dataset that are usually difficult to derive using analytical opti-
mization techniques [18]. To improve the performance during
HO (triggering and decision making), a variety of research has
been conducted [14]. ML-based solutions for HO optimization
can be classified to three main types: ML-based HO parameter
optimization, direct ML-based HO decision making, and ML
assisted HO optimization.

To optimize HO parameters, a Q-learning based algorithm
was proposed by [19]; by setting the reward function to consider
the number of HOs, HO delays and throughput system-wise,
the proposed algorithm optimized the value for time-to-trigger
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and hysteresis. Similarly, the work of Goyal and Kaushal [20]
also utilized Q-learning, combined with an Analytic Hierar-
chy Process Technique for Order of Preference by Similarity
to Ideal Solution, to optimize two HO parameters; hysteresis
and time-to-trigger. This scheme utilized information includ-
ing RSRP, reference signal received quality (RSRQ), signal-
to-interference-and-noise ratio (SINR), the UE’s location and
direction of movement, and the load on each BS to rank neigh-
boring BSs for the Q-learning algorithm to make effective HO
decisions.

For ML-based HO decision making, A K-means clustering
algorithm was developed in [21] to cluster UEs based on the
mobility pattern, followed by an asynchronous multi-agent DRL
algorithm for optimal HO decision making. A unified HO algo-
rithm for LTE-A systems was developed in [22] based on discrete
stochastic dynamic programming. This algorithm considered
both UE measurements (RSRP and RSRQ), and overall resource
utilization to produce load-balanced HO decisions. Mollel et
al. used simulation generated SINR maps and deep Q-learning
to calculate adaptive HO decisions in a mmWave vehicular
network [23]. Their work used event A2 to trigger HOs as
it could indicate a blockage in mmWave networks while also
accelerating ANN training by skipping states that were not
points of interest. Furthermore, a joint HO and power allocation
scheme was developed for heterogeneous networks utilizing
multi-agent DRL [24]. Using a reward design based on system
throughput and introducing a penalty for HO, the algorithm
optimized BS and power level selections for each UE. Tackling
the additional HO requirement accompanying network slicing,
Sun et al. [25] explored a distributed Q-learning method for
HO decision making in a network slicing setup where a UE
needed to decide whether a HO was required for BSs, network
slices, or both. This also proposed a data-sharing mechanism
to improve the local training results of each UE and thus the
overall network performance. In their later work, Liu et al. [26]
explored a federated machine learning (FL) [27] setup to further
improve the learning architecture using a local aggregator that
kept and updated a global model shared by all UEs in the local
area.

In the area of ML assisted HO management, prediction-based
algorithms that accurately predict metrics for HO or the future
location of a vehicle were also being used in HO optimization.
An FL training setup for future signal-to-noise (SNR) prediction
utilizing both the macro BS and local UEs was proposed [28].
The SNR prediction was added to a conventional HO algorithm
to proactively trigger HOs in a mmWave vehicular network. By
matching the vehicle’s predicted future location with known BS
locations, the algorithm proposed in [29] could proactively trig-
ger optimal HOs while reducing the complexity of HO decision
making. A recurrent neural network (RNN) based auto-encoder
and a multi-layer perception neural network were developed
in [30] for HO optimization based on the quality of experience
after HO by combining various information gathered throughout
the LTE protocol stack for a regression task to assist in optimal
HO decision making and provided generalization ability across
different scenario setups.

In addition, some HO research combined the previously
discussed ML HO optimization techniques to form multi-tier

learning-based HO solutions. For example, a long short-term
memory-based RNN was trained in [31] to predict future
received signal strength indication (RSSI) values to trigger
HO predictively. After triggering, a Hidden Markov Model
(HMM) [32] was used to optimize the HO decision making.

According to the literature review, extensive research has been
conducted into ML applications in HO management from dif-
ferent optimization aspects, with some researchers focusing on
specific network setups such as mmWave networks and network
slicing. Most literature considered a scenario of generic cellular
network with slower moving UEs whilst vehicular UE scenarios
with much higher moving speed and strict QoS requirements
were less common. However, it is noteworthy that relatively little
research evaluating the performance of an ML-based solution
with conventional methods using the same set of information
has been considered. Although it is essential to evaluate and
compare performance of different ML-based solutions using
standardized dataset and/or test environments [33], surprisingly
little research considered this aspects of different HO algorithms
with only [22], [30] and [31] implementing their proposed algo-
rithms on a full-stack simulator (ns-2 and ns-3). Consequently,
our work implements a DRL-based HO algorithm utilizing the
same input parameters as existing cellular HO deployments, and
builds a realistic simulation environment of a cellular vehicular
network using the full-stack network ns-3 simulator.

III. SYSTEM MODEL AND HO PROBLEM FORMATION

This paper considers a cellular V2N network architecture that
consists of vehicular UEs and BSs for HO management opti-
mizations. The scenario can be reflected by simplifying Fig. 1
to only on-road vehicles and BSs with the V2N communication
type.

For cellular networks, a UE reports a set of measurements of
the BSs that it is able to perceive: RSRP and RSRQ. Presently,
these two are the most important metrics in cellular networks to
infer signal strength and quality from a BS to UE for HO decision
making. According to the 3GPP standard [34], RSRP is the linear
average over the power contributions of the resource elements of
BS-specific reference signals within the measurement frequency
bandwidth, while the RSRQ also includes channel interference
and thermal noise. The relationship between RSRP and RSRQ
is shown as (1).

RSRQ = Nrb × RSRP

RSSI
(1)

where Nrb is the number of resource blocks of the Evolved
Universal Terrestrial Radio Access Network (E-UTRAN) carrier
RSSI measurement bandwidth.

There are also several important events for HO decision-
making based on UEs’ measurement reports; specifically events
A2 and A3 that are used for intra-RAT HO initialization [35].
When a serving BS becomes worse than the predefined threshold
in terms of RSRP or RSRQ it satisfies the conditions to enter
event A2. For event A3, the entering condition is when the RSRP
or RSRQ from a neighbour BS becomes better than that of the
serving BS by a predefined threshold. The opposite of such
conditions indicate the leaving condition of both events.
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Fig. 2. Event A3-based HO trigger, in this case, t0 specifies the optimal HO
triggering instant, Δ and β represent the two parameters of the 3 RSRP HO
algorithm, hysteresis and time-to-trigger, while δt indicates the time delay for
this HO with respect to t0.

Two standardized HO algorithms for cellular networks are the
event A2A4 and event A3 based HO algorithms for HO trigger
and decision making [36]. Fig. 2 demonstrates the concept of A3
based HO. As also shown in the figure, t0 represents the ideal
HO triggering instant in the demonstrative case, while Δ and β
represent the two HO parameters, hysteresis and time-to-trigger.
A3 RSRP HO algorithm utilizes these two parameters to reduce
unnecessary HOs and overcome the ping-pong effect [37]. Fi-
nally, δt represents the delayed time to trigger this HO, with
respect to t0. During δt, the UE experiences suboptimal signal
strength while waiting for the confirmation of HO trigger.

A. The HO Delay Cost

In cellular networks including LTE and the current 5 G
implementation, hard HO is applied such that the connection
between the UE and its serving BS is severed before the new
connection is established [38]. The optimal BS selection during
hard HO becomes critical as no useful data will be transmitted
for the UE during the HO process. Following the HO trigger
shown in Fig. 2, the delay to complete the hard HO process for
the UE to switch connection from its serving BS to the target
BS, is known as the HO delay time td. The accumulation of td
will lead to a degradation effect on the average throughput of
the UE. The cumulative td and total number of HO in a given
trajectory is known as HO delay cost DHO, and is the function
of the number of HOs and HO delay time, according to [39]:

DHO = NHO × td (2)

For a given time period T of a moving UE, the normalized
HO delay cost βHO can then be derived:

βHO = min

(
DHO

T
, 1

)
(3)

βHO is expressed as a factor between 0 and 1, indicating the
percentage of total time consumed on HO operations such as
radio link switching between BSs, and as βHO tends towards 1,
thus indicating that the UE has spent almost the whole period
T on HOs, and hence the average throughput derived from

Fig. 3. The generic reinforcement learning framework, Fig. 3.1, [40].

the Shannon capacity formula when considering βHO can be
expressed as:

Throughput = BW × log2(1 + SINR)× (1− βHO) (4)

where BW is the bandwidth and SINR is the average signal-
to-noise ratio. Therefore, maximizing throughput indicates
maximizing BW and SINR while minimizing βHO. If con-
stant BW and td are considered, SINR and NHO then play
a vital role to increase the average throughput for a defined
time period T . Therefore, given T and a know trajectory in a
hard HO setup, the objective is to maximize average throughput
by optimizing the HO decision making to increase the average
SINR while reducing NHO for a constant BW and td. Based
on this objective, it is acceptable to have more HOs to further
increase SINR as long as the resultant Throughput can also
increase following (4).

IV. PROPOSED DRL SOLUTION

As discussed in Section III, this research focuses on develop-
ing a DRL solution to optimize the decision for BS selection after
a HO is triggered, to maximize throughput along a given UE’s
trajectory. In this section, a DRL based intelligent HO decision
making algorithm is proposed for cellular V2N networks. The
background to RL and DRL is introduced in Section IV-A,
followed by a detailed algorithm design in Section IV-B for the
formulated problem.

A. The RL Framework and DRL

The concept of RL is shown in Fig. 3, where a decision-
making agent takes actions based on its observation of the current
environmental state, receiving the observation of the following
state, and a numeric reward generated by the environment.
After many rounds of training through trial and error, the agent
develops an optimal policy to adopt in taking action within the
given environment that maximizes the long-term accumulated
reward. For interested readers, detailed information of RL can
be found in a well-known book on the field [40].

Traditional RL algorithms are successful in the tabular
environment, but such approaches become inefficient when
representing a highly complex environment with very large
state space or high-dimensional state inputs such as an outdoor
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radio environment requiring optimal HO decision making. As
a result, approximate solution methods were proposed such as
linear value function approximation or policy gradient methods,
etc. [41].

With the development of deep learning techniques using
ANN, DRL algorithms utilizing the strong approximation abil-
ities of an ANN were developed as a promising candidate for
approximation-based RL methods as first proposed by Mnih
et al. [42], which is known as Deep Q-network (DQN). DQN
combines Q-learning, an RL algorithm that does not require a
model of the environment [43], and ANN to achieve RL train-
ing in complex environments where traditional RL encounters
difficulty. A technique named Experience Replay [44] is also
introduced to speed up the learning process.

According to the Bellman equation [45], the essential mech-
anism for the RL training, the calculation of the Q valve in
DQN is shown in (5). In this equation, s, a represent the current
state and current action taken respectively, s′, a′ stand for the
resultant state and action taken in that state. Besides, r and
γ ∈ [0, 1] represent the received reward and the discount factor
respectively, while θ is the ANN approximating the Q table.
For DQN, the prediction Q value Q(s,′ a′) and updated Q value
Q(s, a) are calculated via the same ANN θ. While updating
the current Q(s, a; θ) will change the value of future states (as
parameters of θ are updated), it leads to potential instability
during training that may result in non-convergence.

Q(s, a; θ) = r + γQ(s,′ argmaxa′Q(s,′ a′; θ); θ) (5)

To overcome this problem, a new DRL algorithm Double deep
Q-learning (DDQN) has been developed [46]. In DDQN, another
ANN θ′ is introduced as the target network, which calculates pre-
dicted value Q(s,′ a′), alongside the training network θ, which
calculates current valueQ(s, a), changing (5) to (6). Throughout
the training process of DDQN, only θ will be updated with each
training iteration, while θ′ only synchronizes periodically with θ
by copying all parameters from θ to keep information updated.
This design can greatly stabilize the DRL training and improves
the chances of convergence.

Q(s, a; θ) = r + γQ(s,′ argmaxa′Q(s,′ a′; θ); θ′) (6)

B. Proposed DDQN-Based HO Algorithm

Because of DDQN’s advantage over the original DQN, this
research aims to further develop a DDQN-based HO algorithm
and deploy it in a cellular network architecture and compare
with the results of the presently implemented A3 RSRP HO
algorithm. A centralized agent is hence designed that utilizes the
DDQN HO algorithm, following the same HO decision making
setup as the existing cellular network. The HO process derived
from the current X2-based HO [47] can be found in Fig. 4.

In addition, the state observation and reward design must
be based on the E-UTRAN measurement report entities from
the UE, specifically, the mapped RSRP index values (integer
values between 0 and 97) for the serving BS and neighbour BSs
and corresponding BS IDs [34]. According to 3GPP, raw RSRP
measurement values will first go through layer-3 filtering before
being reported to the serving BS by a UE. The layer-3 filtering is
shown in (7), where Fn and Fn−1 are the current and old filtered

Fig. 4. The HO process with a centralized DDQN agent.

RSRP values to report, Mn is the latest received measurement
result from the physical layer, and a = 1

2
k
4

where k is the filter

coefficient for corresponding measurement quantity received by
the quantity configuration parameter.

Fn = (1− a) · Fn−1 + a ·Mn (7)

1) State Space: Mobility-based BS selection strategies have
been intensively studied for vehicular networks, utilizing a UE’s
location and speed [14]. Measuring the exact location of a UE is
impractical, while RSRP information can be utilized to estimate
a UE’s location [48], [49]. This provides a strong mapping
between a geographical location in a defined area to a set of
RSRP values from the BSs within the area, while more BSs
available in the area may further improve the location estima-
tion’s precision. Therefore, this study considers the combination
of the RSRP values measured by a UE from all surrounding BSs
to represent the HO location-of-interest instead of the precise
location of the UE (i.e. geo-coordinates of UE’s location), and
vehicle UEs are assumed to be of the same height to reinforce
such representation.

Following the E-UTRAN configuration, converted RSRP in-
dexes will be reported by a UE to its serving BS for HO infer-
ence [50] however, in contrast to the E-UTRAN configuration
deployed in the current network, our study requires that all RSRP
indexes of listed BSs within an area to be reported to form a state
observation vector.

For a given local area containingnBSs and for a UE at position
p, the RSRP measurements of all BSs RSRP p is given as:

RSRP p = {rsrp1
p, rsrp

2
p, . . . , rsrp

n
p} (8)

Hence, the state observation vector sp is the combination of
¯RSRP p and the serving BS ID { ¯RSRP p;BSserving}.
However, instead of using the converted decimal value to

represent the serving BS ID (as it may be confused with a RSRP
index value), this information is designed to be represented via
one-hot encoding [51]. For example, if the serving BS of a UE
has a local ID of 2, with totally 5 BSs in the local area, then
the serving BS ID after one-hot encoding becomes the vector
BSserving = {0, 1, 0, 0, 0}. Therefore, sp can then be formally
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Fig. 5. A simplified environmental representation of n BSs and a vehicular
UE in the upper graph, with the lower graph giving a demonstrative RSRP record
of n = 4 BSs for a UE trajectory.

defined as:

sp = {rsrp1
p, rsrp

2
p, . . . , rsrp

n
p ;BSserving} (9)

and the complete state space S is then defined as the collection
of all possible states. To observe the environment fully, the al-
gorithm assumes that a state observation is periodically reported
by a UE for both training and performance evaluation.

Fig. 5 demonstrates the environment-state relationship fol-
lowing the state design. At the top of the figure, a conceptual
geographic environment is represented by n BSs and a moving
vehicle UE between two locations, p and q, at time t and t′,
to show the formulation of sp. The lower part of the diagram
shows the RSRP p formulation in a graphical example of an
RSRP record assuming n = 4.

2) Action Space: An action a to take in each state can be de-
fined as the BS to connect to the next state for a UE, i.e. all listed
BSs in the local area including the serving BS (if the decision
is not to HO). Therefore, the action space can be defined as a
vector consisting of local BS IDs, A = {BS0, BS1 . . . , BSn}.
Note: a HO will only be executed if the action taken specifies
a neighboring BS to connect to, while an action of serving BS
ID indicates no HO required for the UE and to remain on the
current the serving BS.

3) Reward Design: In line with the design of the state obser-
vation space, the reward design should also utilize the informa-
tion from the E-UTRAN report only. A straightforward design
uses the RSRP of the target BS specified by the action taken
after state transition. In this work, the proposed reward design
is to normalize this value with the highest reported value to
emphasize the RSRP difference between the current BS choice
and the local maximum RSRP, following the premise that higher
signal strength correlates with a higher SINR and thus larger
throughput.

A constant HO “punishment” is introduced in the reward
design to enable the agent to consider the negative impact of
performing HOs. Because the simplified approach of maximiz-
ing cumulated RSRP-based reward may lead to unwanted HOs
resulting in a “ping-pong” effect due to noisy measurement re-
ports causing pauses in data transmission as occur in the current
hard HO implementation of LTE and 5 G cellular systems.

As shown in (10), r(sp, ap; sp+1) is the reward gained after
taking action ap in state sp and observing the next state sp+1.
max(RSRP p+1) is the largest RSRP value from the measure-
ment report in state sp+1. In addition, rsrpap+1 is the RSRP
value of the target cell decided by the action taken, and CHO

is the introduced punishment on HO, a positive number with its
specific value configuration depending on the environment.

r(sp, ap; sp+1) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

max(RSRP p+1)− rsrpap+1 − CHO,

if HO is triggered

max(RSRP p+1)− rsrpap+1,

otherwise
(10)

4) Experience Replay: During Q-learning (hence DQN and
DDQN) training, an experience consisting of the current state,
action taken, reward, and the resultant state observations
(s, a, r, s′) is used once to update the value function parameters
and then discarded. This is inefficient and can also cause insta-
bility as only the latest experience sample is being considered
during parameter updates. Therefore, experience replay aims
to improve the efficiency and reduce the potential instability by
re-utilizing all experience samples. This is achieved by setting up
a replay buffer B that stores all experience tuples (s, a, r, s′) until
the maximum capacity of B is reached, and then the oldest expe-
rience can be deleted. To update parameters, experiences in B are
uniformly sampled so that both current and previous experiences
are considered during the algorithm’s training process. Using
experience replay can significantly improve the performance of
the algorithm [42].

5) Algorithm Design: The proposed DDQN algorithm im-
plementation contains two phases: exploration (training) and
exploitation (execution) phases. During the exploration phase,
the algorithm is trained offline; the dataset is first collected,
pre-processed, and then used to train the DDQN, without directly
interacting with the environment. The dataset is collected along
different UE trajectories and the ε-greedy strategy [52] is used
to explore various actions in every state to update the ANN
approximating the optimal HO value function. Algorithm 1
summarizes the DDQN algorithm’s training process during the
exploration phase.

In the exploitation phase, the training process completes and
the ANN update is terminated. The trained ANN is then used to
emulate the optimal HO policy to take HO actions, with the ε-
greedy strategy also disabled (i.e. ε = 0). In a direct comparison
with the A3 RSRP baseline, event A3 is also used in this phase to
trigger the HO inference. Fig. 6 demonstrates the algorithm in the
exploitation phase. It is noteworthy that the new data generated
during the exploitation phase can also be stored and processed
to update the DDQN algorithm to learn the underlying patterns
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Algorithm 1: The Proposed DDQN Algorithm.
Initialization:

θ - Training Q network; θ′ - Target Q network;
B - The reply buffer (empty);
Nr - Replay buffer capacity;
Nb - Training mini-batch size;
Nf - Step size to update target network;
γ - The discount factor;
ε - The probably to take a random action.

For episode← 1, 2. . ., Nepisode:
Set the initial state s1;
For i← 1, 2. . ., end of trajectory:

Observe si;

ai ←
{

a random action, with probability ε
argmaxa Q(s, a; θ), with probability 1− ε

Execute ai
Observe s′i and ri
Store (si, ai, ri, s

′
i) in B

If Nr is reached:
Delete the oldest experience sample

If Bhas more than Nb samples:
Sample a mini-batch of data from B;
Construct target value tuple:

yi ←

⎧⎪⎪⎨
⎪⎪⎩

ri, ifs′is the terminal state

ri + γ Q(s,′ argmaxa′Q(s,′ a′; θ); θ′),
else

Do gradient descent with loss ‖yi −Q(s, a; θ)‖2

If mod(step, Nf ) = 0:
θ′ ← θ
(Replace the parameters of θ′ by those of θ);

Update parameters of θ

in the new datasets. However, the design and implementation of
such future updates to the algorithm is beyond the scope of this
work.

V. SIMULATION SETUP AND PERFORMANCE EVALUATION

A. Scenario Design and Simulation Setup

Due to the complexity of real-world UE handover data collec-
tion, the dataset for this research was generated using the ns-3
network simulator [53]. The ns-3 simulator is an open-source,
discrete-event full-stack simulator, that allows tracing internal
events with flexible configurations and supports multiple com-
munication technologies. The ns-3 official standard-compliant
LTE module LENA [54] was chosen to configure an LTE cellular
network scenario to investigate a cellular V2N network. This ap-
proach was adopted as the 5 G and LTE network HO mechanisms
are very similar and the 5G-LENA [55] (the 5 G version of the
LENA module) is still under development at present.

The need for the simulation data is to train and evaluate the
DDQN HO algorithm in an environment that is a close analogue
to a real-world network. The simulation scenario was a 2× 2
km local area in the city center of Glasgow, U.K.. For the
implementation of a realistic mobility simulation for vehicles,

Fig. 6. A flowchart of the proposed DDQN HO algorithm in execution phase.

the routes mobility model [56] was selected, which utilized the
Google Maps’ directions API and the way-point mobility model
provided by ns-3. By specifying the target area and a trajec-
tory’s start and end points, the routes mobility model enabled
real-world trajectory generation to be directly used by ns-3. For
BSs, the location references were taken via the Cell Mapper
website [57], which recorded the approximate real-world BS
deployment locations based on measured data from participants.
For the scenario in this paper, eight BSs from the U.K. mobile
operator Vodafone were chosen. Fig. 7 demonstrates the scenario
setups, including the environment setup, BS locations, and the
network architecture on the map of the selected area. Each BS
is connected to the core network (i.e. the Mobility Management
Entity and Serving Gateway) via the S1 interface, and to other
BSs via the X2 interface. A vehicle trajectory is also included
in Fig. 7, whose current serving BS is the red BS, and will
HO to the green BS following its route. The red and green
circles are simplified indications that the signal strength from
the corresponding BSs are the same, while the intersection of
the circles represents a HO location-of-interests between the two
BSs.

After establishing the scenario, the detailed network config-
uration is listed in Table I. An isotropic antenna model is used
at the current stage, demonstrating the same HO strategy while
simplifying the scenario, and hence the state space to be consid-
ered by the DDQN HO algorithm. Other network configurations,
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Fig. 7. Glasgow city center scenario setup with 8 BSs marked in different
colors, and 1 demonstrative trajectory of an on-road vehicle. The network setup
and a potential HO along the trajectory is also demonstrated.

TABLE I
SIMULATION CONFIGURATION

such as the carrier frequency, are set according to the 3GPP
standards. However, these setups did not consider the effect of
fading except for pathloss. While it is recognized that multi-path
fading and Doppler spread can introduce significant variations
during propagation, particularly in a vehicular networks of high
UE mobility, it is important to introduce such effects to the simu-
lation to emulate the real-world situation. Therefore, trace-based
fading was generated via the MATLAB script provided in the
LENA module [58], using the the fading model derived from
that of [59], and loaded into ns-3. The “Vehicular” mode with
nodes’ moving speed of 60 km/h was chosen to generate the
fading traces and hence introduced small scale fading within the
simulation scenario. This 60 km/h speed was chosen as a worse
case scenario for Doppler spread and thus fading, while being
in line with the maximum moving speed in the area according
to the area’s speed limit to generate more realistic RSRP values.

TABLE II
ANN CONFIGURATION

To train and evaluate the performance of the proposed DDQN
HO algorithm, 18 trajectories covering the major routes across
the selected area of Glasgow city center were generated via the
routes mobility model [56] for the ns-3 simulation, to form a
training dataset for the exploration phase of the DDQN algo-
rithm. The maximum simulation time is set to 800 seconds
(13.3 minutes) so that all vehicles can have sufficient time to
complete their trajectories. For performance evaluation, overall
the same trajectories were used for the exploitation phase of
the algorithm, while slight modifications were applied to the
detailed way-points representing the trajectories to also test
the algorithm’s generalization ability. Performance evaluation
was implemented in an online manner using the ns-3 simulator
directly and the connection between a UE and BS pair was
terminated shortly after the UE reached its end point to avoid
redundant data collection.

For the DDQN setup, a fully connected feed-forward ANN
with 3 hidden layers was used, and the detailed hyperparameter
configurations are summarized in Table II. The Gaussian Error
Linear Units (GELUs) was used as the activation function of
hidden layers [60], while the optimization algorithm was set
to the “Adam with decoupled weight decay” (AdamW) opti-
mizer [61], for their better performances in general in ANN
training compared with their predecessors (other linear unit ac-
tivation functions and the original Adam optimizer). The initial
learning rate was set to 0.001, and an exponential learning rate
decay was configured with the decay ratio set to 0.98 to stabilize
the ANN training convergence. The replay buffer was set to have
a maximum capacity of 100,000 observation samples, and a mini
batch sampling size of 1024 was configured for ANN training.
After completing the exploration phase, the trained ANN was
then turned into exploitation phase and deployed to directly
interact with the ns-3 simulator using the ns3-ai module [62]
for direct online performance evaluation.

1) Data Collection and the Evaluation Metrics: To train
and evaluate the DDQN HO algorithm, RSRP data of all BSs
need to be collected, following the design in Section IV-B.
The data is collected directly from the ns-3 LENA module’s
radio resource control (RRC) layer of the vehicle UEs where
E-UTRAN measurements are performed and reported [63]. An
RSRP index record of all BSs is generated for each trajectory to
form a dataset to train the algorithm.

To evaluate the performance of the proposed HO algorithm,
several metrics are chosen to compare performances between
the proposed algorithm and A3 baseline. The time delay δt as
expressed in Fig. 2 indicates when a HO decision is made with
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respect to the optimal time instant. Therefore, the gain in time
delay Gδt becomes a clear metric to measure how much faster
the DDQN HO algorithm makes the HO decision towards the
optimal HO instant.

According to (4), it is essential to maximize the SINR
while minimizing βHO in order to maximize throughput. Given
a constant td in (2), the objective of maximizing throughput
becomes maximizing the SINR while minimizing the NHO.
Therefore, the SINR traces of serving BSs are collected for
signal quality comparison between the proposed DDQN HO
algorithm and the A3 RSRP baseline during the HO periods-of-
interests, while the number of HOs NHO is also collected for all
trajectories. The SINR traces are collected by the ns-3 LENA
module and presented as raw linear-scale values [64], and are
converted to decibels for performance comparisons. This SINR
metric is defined as the normalized SINR value (gain in SINR)
GSINR using the DDQN HO algorithm with respect to A3 RSRP
baseline.

In addition, the Packet Data Convergence Protocol (PDCP)
packet loss is also used as the metric because the PDCP layer
in the LTE protocol stack is responsible for the transfer of
data on the control/user planes [65] hence is a clear metric to
evaluate throughput performance. A smaller packet loss during
a HO period-of-interests suggests higher throughput during that
period. The PDCP packet loss is calculated by the ns-3 simulator
with the statistics recorded by the LENA module [54] while
the calculation of packet loss follows ns-3’s data plane error
model utilizing the link-to-system technique and block error
rate mapping [66].

The analysis of Gδt and GSINR for all 18 trajectories cannot
be presented clearly in a graphical manner in the simulation
scenario due to a number of HOs occurring. Therefore, for
the remainder of this section, the results from 1 demonstrative
trajectory selected from the full simulation are presented in Sec-
tion V-B, to present a detailed graphical demonstration of metric
analysis for a single HO instance. Then, the statistical results for
the whole simulation scenario (i.e. all 18 trajectories including
the demonstrative one) is then presented in Section V-C with
some edge-case discussions. Excluding the reference results
introduced in the remainder of this section, all presented results
are collected via the same round of training and evaluation.

B. Result Analysis of One HO Case

Following the scenario and simulation setup, this subsection
presents an exemplar performance analysis case of a single
trajectory within the 18 trajectories in the simulation scenario.
The visualization for this trajectory’s geographical information
is shown in Fig. 7, and the performance of the proposed DDQN
HO algorithm was evaluated against the A3 RSRP baseline
with all other network settings kept constant. Different from
the learning-based algorithms, the A3 RSRP HO algorithm
triggers a HO based on event A3, when a neighbor BS’s RSRP
becomes larger than that of the serving BS by a predefined offset
value. The two parameters of this HO algorithm, hysteresis
and time-to-trigger, are used to avoid the “ping-pong” effect,
and Fig. 2 demonstrates this HO decision-making. To permit
easy comparison in this performance evaluation, the A3 RSRP

Fig. 8. Case study: The corresponding RSRP record for the selected trajectory.
The top half of the figure includes the RSRP record for all 8 BSs (without fading
for a clear visual presentation). The bottom half of the figure is the zoomed-in
period of interests when a HO was triggered, with the triggering instants of
DDQN and A3 baseline plotted as vertical lines (fading enabled as it was in the
simulation).

baseline used the same parameter configuration as current cel-
lular networks as stated in Table I.

The RSRP record for all BSs throughout this trajectory is
shown in the top half of Fig. 8. For improved visual clarity, this
part of Fig. 8 is presented without fading. Accordingly, 1 HO
should be triggered for this trajectory, that also corresponds with
the simulation results. This HO period-of-interests is highlighted
by a black rectangle in the top half of Fig. 8, and the zoomed-in
of this area is presented in the bottom half of the figure. The
bottom half of Fig. 8 is presented with fading enabled to reflect
the actual simulation.

It is clear that the optimal triggering instant of this HO is
around 116 seconds after the simulation starts (0 s) based on
Fig. 8. This is when the RSRP of BS3 becomes greater than that
ofBS4, the initial serving BS, and remains so until the end of the
simulation. Due to the 3 dB hysteresis and time-to-trigger, the
A3 RSRP baseline has to wait until both thresholds are satisfied
to trigger the HO at 126.72 seconds, while the DDQN-based
HO algorithm triggers the HO as soon as the optimal triggering
point is reached (116.68 seconds). As a result, the DDQN-based
HO improves the triggering instant by having a Gδt = 10.04
seconds compared to A3 RSRP baseline.

After presenting Gδt , Fig. 9 includes the normalized serving
BS SINR (GSINR) using the proposed DDQN HO with respect
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Fig. 9. The SINR gain GSINR during the HO period-of-interests of the
DDQN HO with respect to the A3 RSRP baseline for the trajectory. Both results
were produced by the same DDQN trained using data with fading. (a) Original
result with fading enabled (b) Reference result with fading disabled.

to using the A3 baseline to show the SINR gain. When not in the
HO period, the normalized SINR = 0 as the experience SINR
using both HO algorithms are the same, while the differences
are clearly evident during the HO period-of-interests. As the
simulation setup includes fading that introduces fluctuations
in Fig. 9 a, a reference curve of normalized SINR is also
included in Fig. 9 b using the same simulation configuration but
disabling fading, to give a clearer visual presentation on GSINR.
Note that the same DDQN trained using the dataset generated
in the scenario with fading is deployed to produce results in
this reference, and in both sub-figures, the average GSINR is
calculated and plotted as well. Also, by disabling fading, the
RSRP record becomes smooth, leading to some state changes
and hence different HO triggering instances when using the two
HO algorithms. However, it is clear that the DDQN’s HO start
at 115.8 seconds is still an optimal trigger referring to Fig. 8.

The results shown in Fig. 9 demonstrate an obvious HO per-
formance gain with respect to GSINR during the HO period-of-
interests, with a maximum SINR gain of over 12.5 dB compared
with the A3 RSRP baseline. According to the reference curve
without fading, an average GSINR of 3.51 dB is obtained by the
DDQN HO algorithm during the HO period-of-interests.

Fig. 10. Cumulated packet loss comparison between the proposed DDQN HO
algorithm and A3 RSRP baseline for the demonstrative trajectory.

Fig. 11. The edge case that leads to DDQN’s 1 more HO trigger, marked in
the black rectangle. Fading is disabled for a clear visual presentation.

The improvement of HO performance is also reflected in
packet loss, as shown in Fig. 10, where the PDCP packet loss is
counted for this HO for A3 RSRP baseline and the DDQN algo-
rithm respectively. For the HO period-of-interests between 116
and 127 seconds shown in Fig. 9, there are overall 625 packets
sent. When using the A3 RSRP baseline, the UE experiences a
packet loss of 30 packets due to waiting for HO to trigger and
the connection drop during HO, while that number for DDQN is
13 packets, indicating a 56.7% better performance with respect
to packet loss and thus throughput gain.

C. Results Analysis for All Trajectories

In total, there are 46 HOs using the A3 RSRP baseline, and
47 HOs using the proposed DDQN HO algorithms for all 18
trajectories throughout the simulation over the scenario. The
edge case for the additional HO happened when using DDQN
is that the RSRP difference between the best neighboring BS
and the serving BS, although stable, could not satisfy the A3
RSRP baseline’s 3 dB hysteresis, as shown in the black rectangle
area in Fig. 11. In contrast, the DDQN algorithm learned the
RSRP features along the whole trajectory and performed an
additional HO to improve optimal signal strength, demonstrating
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Fig. 12. Cumulated packet loss comparison for all trajectories between the A3
RSRP baseline and the proposed DDQN HO algorithm.

the superiority of having the knowledge of the environment.
Excepting this one edge case, both HO algorithms have the same
number of HOs, indicating that DDQN manages the ping-pong
effect as effectively as A3 RSRP baseline does. However, instead
of using predefined parameters (hysteresis and time-to-trigger)
as A3 RSRP HO, the proposed DDQN algorithm learns with the
HO cost punishment of unnecessary HOs, while being able to
avoid staying connected to a BS with suboptimal signal strength
until the static conditions are satisfied as the A3 baseline.

Throughout the whole evaluation, using the DDQN-based HO
algorithm results in 1741 fewer accumulated lost packets over
the 47 HOs compared to the A3 RSRP baseline, showing an
improvement in cumulated packet loss by 42.62%, as shown in
Fig. 12. On average, the corresponding numbers are 35.37 fewer
packet loss and 25.72% packet loss reduction for each HO. As
the HO mechanism of 5 G is very similar to that of the current
LTE networks, the evaluation results suggest a potential for
significant performance gain in a dense 5 G mmWave network
that will have many more HOs due to the short range of mmWave
beams. The 25.72% fewer packet losses per HO in the proposed
simulation scenario will result in more significant packet loss
reduction in a dense 5 G network.

If the TCP protocol is used instead of UDP, the 25.72%
packet loss reduction means that many packet re-transmissions
are saved, leading to a further improvement of 51.44% more
packets transferred compared with the A3 baseline.

As demonstrated in Section V-B, using DDQN-based HO
algorithm makes the HO triggering instant closer to an optimal
triggering instant for a HO, compared to the A3 RSRP baseline.
For all HOs happened in the simulation scenario, the DDQN-
based HO algorithm may improve a HO trigger instant from 4.52
to 25.64 seconds towards the optimal HO instant. The average
time improvement to HO triggering instants in the scenario is
11.56 seconds per HO, suggesting a significant performance
gain. Both metrics are summarized in Table III. Note that the
results of these metrics also depend on the UE’s moving speed.
For a given trajectory, the slower a UE moves along it, the
longer it takes to satisfy the A3 RSRP baseline’s hysteresis and
time-to-trigger, resulting in a larger δt for the baseline and thus
higher Gδt and GSINR.

TABLE III
STATISTICAL RESULTS FOR METRICS Gδt AND GSINR FOR ALL 18

TRAJECTORIES

VI. DISCUSSION

After presenting the performance evaluation results, this sec-
tion discusses the proposed algorithm’s implementation aspects,
followed by a qualitative comparison of the proposed algorithm
with some state-of-the-art research.

A. Discussion on Deployment Aspects

As this research looks at the deployment aspect of an intelli-
gent HO algorithm, it is essential to consider the implementation
cost alongside the performance gain. For the proposed DDQN
algorithm, the fundamental requirement is that RSRP measure-
ment of all listed BSs in a local area to be reported for HO
decision making. Because the related configuration options are
available in the current E-UTRAN setup [63], implementing the
algorithm locally requires only a software patch.

Compared to the current HO solution (A3 RSRP), the pro-
posed algorithm requires proportionally larger data input to
operate. In the proposed scenario of 8 BSs in this paper, the A3
RSRP baseline usually gets a report of two entries, the RSRP and
IDs of the serving BS and the best neighboring BS. In contrast,
the DDQN requires the reports for all 8 listed BSs to operate,
resulting in quad times the data input. Linear complexity yields a
moderate cost with respect to computation and storage. Further-
more, the E-UTRAN measurement reporting uses the dedicated
control channel [67], and the increase in data transmission will
result in a larger communication overhead in the control channel.
With the deployment of 5 G, ultra-dense network deployment
is also scheduled and in progress. The future large number of
BSs also adds to this potential issue of linear complexity and
communication overhead for the proposed DDQN, the effect
of which demands further research and quantitative analysis.
Similar issues in resource allocation has previously attracted
attention and research to reduce input state space of a learning-
based algorithm to reduce communication overhead [68]; which
may also provide a valuable exploration for learning-based HO
algorithms.

As the proposed DDQN algorithm considers the scenario
of vehicular networks and the vehicular UE mobility, a ma-
jor feature of vehicular networks compared to generic cellular
networks may also impact the algorithm’s performance and
needs discussions. Fading in wireless channels can be broadly
classified as large-scale and small-scale fading, and Doppler
spread from the small-scale fading has a positive correlation
to the UEs’ moving speed [69]. Consequently the fading setup
in Section V-A, and the results in Figs. 8 and 9 indicate that
the same DDQN is able to produce the optimal HO decision
in both the theoretical worst fading situation and in the ideal
situation where only pathloss is considered. The results in such
extreme cases suggests that the proposed DDQN holds the
resilience against the speed dependent Doppler spread within the
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TABLE IV
COMPARISON BETWEEN THE PROPOSED DDQN HO ALGORITHM AND SOME STATE-OF-THE-ART

considered UE speed range however, it may be necessary to train
the algorithm using data generated at the speed limit to provide
the DDQN knowledge of the worst fading case. Additionally,
as the proposed DDQN is based on the model-free Q-learning
technique that does not require a model of the environment, and
trained using data generated via known trajectories, the state
transition variation caused by a UE’s moving at different speeds
along a given trajectory will not influence the overall decision
making.

For the real-world deployment aspect, the HO algorithm is
designed to work on a defined local area, leading to the require-
ment of dedicated local area specifications and individual ANNs
to be trained and stored locally for HO decision making that
are heavily dependant on mobile operators’ physical network
deployments. Finally, as for all learning-based solutions, the
DDQN-based HO algorithm requires a significant amount of
data to form an effective training dataset. Therefore, the related
data collection and processing for individual local area that
influence the scalability of the algorithm, remains an important
aspect for the algorithm’s implementation.

In summary, the proposed DDQN-based HO algorithm, after
learning from collected data of the environment, can improve the
performance of handover significantly compared to the baseline.
Importantly, it only requires a small change to the existing
network architecture setup, therefore the implementation cost
should be small requiring only a software patch. However, other
important deployment aspects need to be considered, including
state space reduction, actual network deployment, and data
collection and processing.

B. Comparison With the State-of-the-Art

After discussing the deployment aspects, comparison of the
proposed DDQN HO algorithm with the A3 RSRP baseline, and
some of the state-of-the-art research is presented. The contents
of this comparison include the methodologies and key design
concepts, followed by the input parameters required to operate
the algorithms, and what level within the network the algorithms
execute. Impact on the cellular network architecture (LTE and
5 G) is also compared on a qualitative level based on the proposed

algorithm and system architectures in the original literature. Fi-
nally, the communication overhead using the selected algorithms
is compared by analyzing the type and amount of information
required to be transferred on wireless channels for operation.
The full comparison is presented in Table IV.

Note that with the exception of the A3 RSRP baseline, all
state-of-the-art works are ML-based solutions, and are selected
based on their ML application types for HO optimization as dis-
cussed in Section II. Algorithm designs that considered multiple
optimization objectives such as [22] (joint optimization of HO
and radio resource management), have not been selected in this
comparison in order to focus on HO optimization.

According to Table IV, ML-based HO parameter optimiza-
tion [19] and HO decision making [21] exploit information
from various input parameters for optimization, and require
some network adjustment for the HO algorithms to operate. In
contrast, predictive HO triggering considers one type of input pa-
rameter for accurate predictions, while the prediction is usually
performed at UE level. However, using additional training setups
(i.e. the FL setup in [28]) will require major change to the net-
work architecture for deployment, while also demanding that the
ANN model is transmitted through the wireless channel among
training participants. Similarly, the two-tier design in [31] also
requires the RNN model to be transmitted via wireless channels
and may lead to a large communication overhead, while its
HMM-based centralized HO decision require less modification
to the network architecture compared to [28]. In comparison,
the proposed DDQN HO design, although aimed at HO decision
making, requires only 1 type of input parameter while maintain-
ing a low impact on the existing network architectures (utilizing
existing deployment design and input parameters). Therefore, it
is a lightweight upgrade taking real-world deployment aspects
into consideration while delivering near-optimal decisions.

VII. CONCLUSION

Vehicles have higher moving speeds, which leads to reduced
connection time between a vehicle UE and a BS and more HOs
as a result, especially for 5 G enabled dense V2N networks
currently under deployment, where small-cell BSs with reduced
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cover range are deployed. ML-based HO optimization research
has utilized various input parameters and enabling technologies,
while relatively less attention was paid to implementation in uni-
fied test environments as well as real-world deployment aspects.
In this paper, a double deep Q-network-based HO algorithm is
proposed and evaluated using the ns-3 full-stack network simu-
lator with the LENA module and a realistic simulation setup. The
results analysis from 47 HOs throughout the simulation show a
44% reduction in accumulated packet loss compared to the A3
RSRP HO algorithm baseline, and an average 11.56-second im-
provement of the optimal HO triggering instant in the simulation
scenario. The proposed algorithm also aimed to utilize the ex-
isting cellular network configuration with only minor additional
information requirements; reporting all neighboring BS’s RSRP
instead of only those satisfying predefined conditions (as the A3
RSRP baseline). This makes the algorithm implementable via a
software patch, while some small modifications in the network
configuration greatly reduced the implementation cost.

Future research extending this work will implement and
evaluate the proposed algorithm using ns-3’s latest standardised
cellular module, 5G-LENA [55], which has become publically
available but is still under active development requiring updating
with the 5 G HO interfaces. Other research optimizing learning-
based algorithms, such as state space reduction, is also relevant
to this research to reduce foreseeable communication overheads
in the control plane. In addition, extending the HO algorithm to
also combine inter-slice HO in network slice is also viable to
fully exploit the benefit of new enabling technologies.
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