

Yanev, M. and Harvey, P. (2022) Herding the FLOQ: Flow Optimised

Queueing. In: IFIP Networking 2022 Conference, Catania, Italy, 13-16 Jun

2022, ISBN 9781665487269

There may be differences between this version and the published version.

You are advised to consult the published version if you wish to cite from it.

http://eprints.gla.ac.uk/269424/

Deposited on 1 August 2022

Enlighten – Research publications by members of the University of Glasgow
http://eprints.gla.ac.uk

http://eprints.gla.ac.uk/269424/
http://eprints.gla.ac.uk/

Herding the FLOQ: Flow Optimised Queueing
Mihail Yanev

Rakuten Mobile Innovation Studio
Paul Harvey

Rakuten Mobile Innovation Studio

Abstract—With more people working remotely, the demands
placed on network operators to deliver high quality connectivity
to users is at an all time high. This is especially true for web
page responsiveness, a human-centric activity. Several approaches
strive to ensure high quality of service (QoS) from within the
browser or in-network caching, however, they do not target a core
culprit of low QoS: initial packet loss in connection establishment.

Existing works address packet loss via the active management
of packet flows within network middleboxes, however, they do not
address this specific type of packet loss directly.

This work introduces a new active queue management al-
gorithm: FLow Optimised Queueing (FLOQ). FLOQ is designed
to decrease packet loss during connection establishment without
affecting overall network performance. Through experimental
comparison with other AQM algorithms, our preliminary results
show that FLOQ solves this problem, speeding up request
completion times by up to 70%, improving TCP throughput
by up to 20%, and decreasing UDP packet loss by up to 23%.

I. Introduction

Perhaps more than any other period, the pandemic years of
2020 to 2022 have placed the connectivity provided by the
Internet at the heart of almost all human social and economic
activity. This shift highlighted the need for the highest possible
levels of service from network connectivity. From the network
operator’s perspective, this is more keenly felt than others.

Second only to video, browsing traffic represents 13% of
all global Internet application traffic [1]. As a human-centric
activity, browsing web pages can tolerate responses of up to
200ms before becoming disruptive [2], making fast page load
time (PLT) critical for users. Beyond user Quality of Experience
(QoE), fast PLT is also a necessity for business. For example,
Amazon has previously stated that a one second PLT delay
results in $1.6B loss in revenue [3]

In pursuit of faster PLT previous studies have looked at the
problem from the perspective of web browser optimisation [4]
or Internet caches [5]. However, these approaches are unable to
address a key cause of slow PLT: packet loss during connection
establishment. Indeed, such packet loss has been shown to cause
slower connection response and increase network latency [6].

Most packets are lost as an effect of being dropped by a
network middlebox. Whether a middlebox drops a packet or
not is governed by the policy that decides packet admission
and management of the middlebox’s internal buffers. Existing
management approaches of these buffers, known as active queue
management (AQM), treat traffic from all connection phases
equally. This can lead to a mismatch between the real and the
expected completion requirements.

ISBN 978-3-903176-48-5© 2022 IFIP

In this paper we introduce a new AQM algorithm called Flow
Optimised Queueing (FLOQ). Motivated by the need to address
PLT (Section II) and the limitations of existing approaches
in doing so (Section III), the goal of FLOQ (Section IV) is
to reduce packet loss during connection establishment while
preserving overall network performance. Our initial study on
synthetic data shows our goal achieved: speeding up request
completion times by up to 70%, improving TCP throughput
by up to 20%, and decreasing UDP packet loss by up to 23%.

FLOQ works by categorising traffic as being either responsive
or non-responsive, irrespective of protocol. Additionally, FLOQ
prioritizes the initial packets of a connection, decreasing
establishment latency and thus improving PLT. These results
are demonstrated experimentally (Section V) and compared
against other state-of-the-art AQM approaches (section VI).
In this way, FLOQ is connection aware, protocol agnostic,
resource preserving, and network load adaptive. To the best
of our knowledge, FLOQ is the first global AQM algorithm to
directly address the PLT challenge. Based on the summary of
the results (Section VIII) FLOQ has demonstrated real promise
as an avenue for future exploration (Section VII).

II. Motivation
The Internet is a best-effort packet switched network with

middleboxes. To help with the overall performance of the
network, these middleboxes contain buffers where packets can
be temporarily stored and eventually forwarded on to the next
hop in the packet’s journey. The management of the buffers
and the admission (or not) of packets to these buffers is know
as active queue management (AQM).

When packets are not admitted they are dropped and lost.
Senders can then react to packet loss in various ways. Some
actively monitor loss and upon detection reduce their sending-
rate, perceiving the loss as a signal of congestion. Others will
not try to detect or react to the loss.

There are multiple approaches that endpoints may use to
detect congestion. Some approaches rely on acknowledgement
data sent from the receiver [7], [8], others rely on timeouts [7],
[9]. Generally, the former approach is faster than the latter,
however, when the network experiences a serious state of
bufferbloat, an acknowledgement-based approach, and Internet
traffic generally, can suffer significantly [10].

To tackle bufferbloat some AQM algorithms, such as
PIE [11], and CoDel [12] were introduced - addressing
bufferbloat based on connection latency. However, a purely
latency-based approach does not consider which part or phase
of the connection it effects. This is important for protocols

Figure 1: RTO Delay

that rely mainly on retransmission timeouts (RTO) during the
connection establishment phase and shortly thereafter.

RTOs are used in protocols when there has been no
acknowledgement data (ACK) for a transmitted packet. This
situation may occur because the sender’s packet(s) got lost, the
packets were dropped at a middlebox, or because the sender
has already acknowledged all of its received packets. During
connection establishment, as a critical mass of packets have
not been sent, the sender is often unable to rely on ACK
retransmissions, and uses RTO instead, as shown in Figure 1.
Any approach to improve latency and responsiveness would
benefit if it minimises packet loss during establishment.

III. Related Work
The following provides an overview of related work in AQM.

Middleboxes, such as Internet routers, lower level switches,
device drivers, etc. contain buffers. These buffers are meant
to absorb traffic bursts, however improper configuration of
these buffers can lead to reduced performance in low-latency
interactive applications and traffic overall. The problem of how
buffers should be managed is an active research question. The
Internet Engineering Task Force (IETF) had created working
groups, dedicated to developing standards and recommendations
for AQM algorithms1 Historically, many AQM policies have
been proposed, but a few of these made it in the real networks.

The most basic form of queue management is the first in first
out (FIFO) algorithm. As the name implies, the first packet
to enter the buffer will be the first packet to leave. Once the
buffer is full, no more packets may enter and are dropped. All

1https://datatracker.ietf.org/group/aqm/about/

forms of AQM are based on this basic principle. FIFO and
other passive approaches have proven to be unstable [13].

Random Early Detection (RED) [14] was the first form of
active queue management. Here, the network middleboxes had
an active role in the decision process of dropping packets.
In RED, the current occupancy of the network middlebox
is monitored. Then, after a certain threshold, each incoming
packet is marked with a probability 𝑃 of being dropped
(either a function of the buffer occupancy or a fixed number).
Furthermore, RED does not differentiate between bursty and
non-bursty traffic nor establishing or established packets in
a connection. One of the major criticisms of RED is the
complexity around setting all required parameters.

Another AQM algorithm, Controlled Delay (CoDel) [12] was
proposed to address the problem with bufferbloat [10] - it works
by repeatedly measuring the RTT of the connections flowing
through its buffers. It uses this information to mark a connection
as having good or bad "buffering". Here, connections with bad
"buffering" are connections likely to experience bufferbloat.
CoDel will drop packets from connections with bad "buffering"
until their "buffering" stabalizes, thus reducing budfferbloat.

Yet another AQM algorithm targeting bufferbloat is
Proportional Integral Enhanced controller (PIE) [11]. Like
CoDel, PIE also monitors the latency of the active connections
and like RED, PIE applies a packet drop probability for each
connection’s packets after congestion is inferred. However,
unlike RED, PIE detects a connection’s congestion based on the
inter-arrival time of the connections packet’s at the middlebox.
Thus, PIE tackles the bufferbloat problem by applying a
probabilistic control theory-based approach of when to drop
packets. Similar to CoDel, PIE was designed without many
adjustable parameters to promote easier use and deployment.

Other works attempt to address bufferbloat by applying
reinforcement learning (RL) [15] or machine learning(ML) [16]
to AQM. As the Internet is a dynamic constantly changing
environment, the ability to predict or model Internet traffic
behaviour is an open problem. For example, since the beginning
of the 2019 global pandemic, VoIP traffic has increased
to previously unprecedented levels [17]. Consequently, high
quality training data that accurately captures the multitude
of operational conditions found in real networks is almost
impossible to provide. Similarly, The data required to train
RL or ML-based appraches suffer the same issue. Regarding
online learning in the network itself, AQM middleboxes are
often resource constrained precluding the use of resource
hungry learning applications. For these reasons, learning-based
approaches have mostly remained as academic proposals and
have not made it to production environments.

Traffic classification is not a novel concept [18]. It has
been used for network solutions since the mid 90s. Still,
by early 2010s there was no standard way of doing it and
researchers based classification on traffic features, protocol
and port numbers, and host behaviour [19]. Since then it
has been used in many solutions from advanced classification
algorithms [20] to intrusion detection systems [21].

Other techniques which can compliment AQM systems

include transport extensions, such as explicit congestion noti-
fication (ECN) [22] or new TCP implementations [23].

IV. FLOQ

In this section we introduce FLOQ, a novel AQM algorithm.
Its main goal is to address packet loss during connection
establishment and to reduce PLT without sacrificing overall
network performance. Influenced by previous work, FLOQ
builds upon monitoring connections’ properties, as in CoDel
and PIE, and applying scaling drop probability, as in RED.

The two main novelties of FLOQ are that a) it partitions its
buffer space not by protocol but by the responsiveness of the
traffic and b) connection establishment packets are prioritised
for responsive traffic. Using these traffic categorisations, FLOQ
then applies probabilistic admission to arriving packets.

A. Traffic Types
In FLOQ, a responsive traffic flow is defined as one which

reduces its sending-rate after packet loss is observed. FLOQ
uses inferred network knowledge to determine this. Specifically,
for a given connection, FLOQ records the number of transferred
packets, the number of packets it dropped, the timestamp of
the last dropped packet, and the connection’s sending-rate. This
information is used in the admission policy, described below.
An unresponsive traffic flow is defined as one in which the
sending-rate of packets, as observed by FLOQ, is independent
of the packet loss, as observed by FLOQ.

Initially all connections are marked as responsive, however,
connections are reclassified should they not reduce their
sending-rate after their packets are dropped. We do not infer
the traffic’s responsiveness from the observed protocol number
because such information does not guarantee useful insights
with respect to responsiveness. For example, consider TCP
connections which do not congestion control, or responsive
protocols (e.g., QUIC [24]) atop, network protocols not known
for intrinsically supporting congestion control.

Additionally, FLOQ further subdivides both traffic types into
establishment and other phases corresponding to the establish-
ment or otherwise of a connection. If a number of exchanged
packets on a connection is less than a configurable threshold,
the connection is identified as being in an establishment phase.
In this work, the threshold is set at 10.

B. Admission Policy
Using the previous definitions of traffic types, FLOQ uses a

weighted probability function to admit packets (Eq 1). All its
parameters are described in Table I. Additionally, Algorithm 1
shows FLOQ’s admission policy in the form of pseudo-code.
The admission policy function returns the percentage likelyhood
that an incoming packet gets accepted to the buffer queues.

𝑃𝑖𝑛 (𝑟𝑞, 𝑢𝑞, 𝑡, 𝑒𝑝, 𝑎𝑝) =

1 if 𝑡 = RT and rq < RQ
1 if 𝑡 = UT and uq < UQ
𝐹𝑡 (𝑡, 𝑒𝑝) ∗ 𝐹𝑑 if 𝑎𝑝 > 𝐴𝑇

1 otherwise
(1)

Algorithm 1 FLOQ’s Admission Policy
𝐶 : Connection
𝑃← 0;
if 𝐶 is responsive then

𝑡 ← “Responsive” if 𝑟𝑞 < 𝑅𝑄 then
return 100;

end
else

𝑡 ← “Unresponsive” if 𝑢𝑞 < 𝑈𝑄 then
return 100;

end
end
if Quota[𝑇] is full then

𝑃← 𝑃 + 𝐹𝑡 (𝑡);
end
if 𝑒𝑝 < 10 then

𝑃← 𝑃 + 𝐹𝑟 ;
end
if 𝑎𝑝 > 𝐴𝑇 then

𝑃← 𝑃 + 𝐹𝑡 (𝑡, 𝑒𝑝) ∗ 𝐹𝑑
return 𝑃;

end
return 100;

Parameter Description

𝑟𝑞 is the number of packets in the responsive buffer
𝑢𝑞 is the number of packets in the unresponsive buffer
𝑅𝑄 is the packet quota for responsive traffic
𝑈𝑄 is the packet quota for unresponsive traffic
𝑅𝑇 represents responsive traffic
𝑈𝑇 represents responsive traffic
𝑡 is the type of traffic
𝑒𝑝 is the number of exchanged packets for a connection
𝐹𝑡 (𝑡 , 𝑒𝑝) is the drop probability for traffic type and 𝑡

with exchanged packets 𝑒𝑝

𝐹𝑑 is a scaling function based on buffer occupancy
𝑎𝑝 total number of packets in all buffers
𝐴𝑇 FLOQ’s activation threshold

Table I: Admission Policy Parameters and Terms

𝐹𝑡 (𝑡) is the base or default probability of dropping a packet
for a given traffic type 𝐹𝑡 (𝑡, 𝑒𝑝) is 𝐹𝑡 (𝑡) with an additional
scaling factor based on this connection’s already exchanged
packets. Different base probabilities are assigned to responsive
and unresponsive traffic as FLOQ is designed to drop fewer
responsive packets. This choice is made as responsive flows
reduce their send-rate in response to packet loss making them
more sensitive to packet loss and thus having a higher impact
on network traffic overall. In this work, 𝐹𝑡 (𝑡, 𝑒𝑝) is set to 2%
and 5% for responsive and unresponsive traffic, respectively.

To address packet loss of initial connection packets, 𝐹𝑡 (𝑡, 𝑒𝑝)
is increased when the number of exchanged packets (𝑒𝑝) for re-
sponsive traffic is larger than the configurable connection setup
threshold. This is current set to 10 packets, see Section IV-A.

Finally, FLOQ increases the packet drop scaling factor 𝐹𝑑

per traffic type as the number of stored responsive (𝑟𝑞) or
unresponsive (𝑢𝑞) packets increase. In this work, 𝐹𝑑 is a factor
that scales with the total buffer occupancy 𝑎𝑝. Furthermore,
𝐹𝑑 is additive for responsive traffic, and multiplicative for
unresponsive traffic. Finally, 𝐹𝑑 is only applied after a traffic

Figure 2: Experimental Setup

type reaches its pre-defined packet quota (𝑅𝑄 or 𝑈𝑄) and 𝑎𝑝

is over the activation threshold 𝐴𝑇 . This is done to prevent
FLOQ from dropping packets from a given type when there
is available capacity in the other type’s buffer. Also, FLOQ
further increases the scaling factor 𝐹𝑑 if a packet from the
responsive traffic would overflow into the unresponsive buffer
and vice versa. FLOQ allows such traffic type "overflows",
since it can use the remaining "other" quota to store bursts of
the traffic type which buffers were overflown. Additionally, the
increased 𝐹𝑑 for the overflowing traffic and the unconditional
admittance policy for the overflown type aims to preserve the
preset admission boundaries as much as possible.

Drawing inspiration for managed memory heaps [25], FLOQ
partitions the available middlebox memory buffer into three
logical domains, as opposed to dedicated memory buffers per
traffic type. Here, each domain corresponds to responsive traffic,
unresponsive traffic, or other traffic. In order to prevent FLOQ
overfitting quota sizes to the problem studied, each quota has
a soft limit. This means that packets can overflow into the
other memory buffers. However, as explained in the previous
paragraph, FLOQ ensures that such traffic overflows would not
be disruptive to FLOQ’s operation in general.

The size of each domain is determined by the quotas 𝑅𝑄 and
𝑈𝑄. The final other traffic quota is the remaining space after
𝑅𝑄’s and 𝑈𝑄’s values are combined. In this work 𝑅𝑄 is set to
50%, 𝑈𝑄 is set to 30%, leaving 20% for the other traffic. As
the Internet is has more responsive than unresponsive traffic [1],
𝑅𝑄 has the most allocated space. Despite concerns that storing
larger of amounts of responsive traffic would benefit PLT at the
expense of unresponsive traffic’s performance, experimental
results in Section VI did not confirm this effect. Nevertheless,
exploration of the quota ratio is an area of future work. When
all buffers are full, FLOQ reverts to FIFO behaviour.

Dropping initial packets is sometimes unavoidable, either
due to many initial packets arriving at once and filling the
buffers or because the buffers were already at full capacity. In
such cases, FLOQ would try to keep the occurrence of this
to a minimum by preemptively dropping packets from other
connections. When an initial packet needs to be dropped, FLOQ
would give subsequent initial packets on that connection higher
admission probability. Thus, dropping as few initial packets of
the same connection, FLOQ would speed-up that connection’s
overall completion time and allow for more connections to
complete within the experiment duration.

Figure 3: Per-Experiment Traffic Composition

It is important to note that FLOQ introduces no more
overhead than state-of-the-art algorithms, such as CoDel and
PIE. While FLOQ keeps per-connection state, these are simple
counters, comparable to PIE’s connection RTT tracking.

V. Experimental Setup
As discussed in Section IV, the main goal of FLOQ is to

reduce PLT without sacrificing overall network performance.
To explore this, the following experimental setup was used.

A. Testing Configuration
All experiments were performed on a simulated topology

where traffic flows from a sender on one side to a receiver on
the other via a router and a delay emulator, as shown in Figure 2.
FLOQ is implemented as a FreeBSD kernel module to emulate
the router and is used in conjunction with dummynet [26] to
emulate delay. The router’s buffer capacity was set to the widely
accepted value of the bandwidth delay product (BDP) plus an
additional 20% extra capacity. The extra capacity was added to
intentionally introduce some bloated buffer space as CoDel and
PIE were designed to operate well in such cases. Consequently,
buffer sizes were 20 and 200 packet slots for the 10 Mbps and
the 100 Mbps link scenarios respectively. The link scenarios
are described below. Furthermore, many provisioned network
middleboxes experience some level of bloated buffers [10], this
enables exploration of FLOQ’s behaviour in this context.

The sender, receiver, router, and delay emulator are all
separate processes in a single virtual machine. This VM had
two processor cores and 4GB of virtual memory executing on a
Intel Core i5-10210U 4 x 1.6 - 4.2 GHz. In future work, a more
complicated set of topologies and testbed will be explored.

B. Experimental Traffic
For each experiment, various traffic types were used to

simulate background network activity and web connections.
These traffic types are shown in Figure 3 and discussed below:

UDP Periodic Bursts: Periodic burst of constant bit-rate
traffic. In each of the experimental sets described below, the
UDP traffic was configured to use 15% of the total link capacity.
For example, UDP traffic was 1.5Mbps with the 10 Mbps link.
Such traffic can be representative of VoIP or gaming traffic.

QUIC Web: Sequential HTTP/3.0 requests from a sender to
a local copy of Google’s index page stored on the receiver. Here,
the sender and receiver correspond to the quiche client and
server respectively2. After a request completes (successfully or

2https://github.com/cloudflare/quiche

(a) 10 Mbps

(b) 100Mbps

Figure 4: PLT Distribution for TCP Web Traffic

otherwise), the client will wait 6 seconds before sending another
request. This was done to simulate user browsing behaviour.

TCP Web: Sequential HTTP/2.0 requests to a local copy of
Google’s index page. Here, the sender and receiver correspond
to wget3 and the nginx4, respectively. After a request completes,
the client will wait 6 seconds before sending another request.
This was done to simulate user browsing behaviour.

TCP Video Stream: A single adaptive bit-rate streaming
application operated for the full duration of each experiment.
The video used the 6 second segmented MPEG-DASH dataset5.
The client used was scootplayer6 and nginx as the server.

TCP File Transfer: file transfer of an "infinitely large" file.
Based on the above traffic types, we conducted experiments

using link bandwidths of 10 Mbps and 100 Mbps. These
values were chosen to correspond to representative DSLv2 and
FTTC links [27], respectively. Each experiment was run for 600
seconds, as the TCP Video Stream traffic had a hard deadline
of just over 600 seconds. No server or network buffer warm-up
was performed prior to any of the experiments. This is since,
no caching took place and we wanted to monitor how FLOQ
operates with the network buffers as their capacity builds up.

In each link scenario, the number of concurrent TCP file
transfers was altered to explore the performance of FLOQ
under different network loads. As each TCP flow tries to claim

3https://www.gnu.org/software/wget/
4https://www.nginx.com/
5https://github.com/camilanovaes/MPEG-Dash-Simulation
6https://github.com/broadbent/scootplayer

(a) 10 Mbps

(b) 100Mbps

Figure 5: PLT Distribution for QUIC Web Traffic

as much bandwidth as possible, the pressure on the single
(bottleneck) link and the load on the AQM are increased.
Section VI describes the performance of FLOQ and the
traffic in this context. Our dataset is built using the results
from 10 repeated runs for each link capacity/link load/AQM
combination. That is, 10 experiments on the 10Mbps link with
3 background file transfers using FLOQ, another 10 using
FIFO, etc. Adding up to a total of 240 runs (2 link capacities,
3 link load scenarios, 4 algorithms, 10 repetitions).

VI. Results
Using the setup described in Section V, we now discuss

how FLOQ compared against FIFO, PIE, and CoDel in terms
of number of completed TCP and QUIC connections, page
load times, jain’s fairness index, overall traffic throughput/per-
formance, and UDP loss percentages. PIE and CoDel were
configured with their default dummynet7 settings on a Free
BSD 11.3 kernel implementation.

We compare FLOQ with FIFO, PIE, and CoDel as these three
algorithms are used to manage the majority of our currently
deployed infrastructure and are accepted as standards.

A. Web Browsing (Responsive) Performance
Figures 4 and 5 show the distribution of TCP Web (HTTP/2)

and QUIC Web (HTTP/3) page load times across 10 experi-
mental runs. Please note the log scale on the y-axes. As noted
in Section V, we use all background traffic and vary the number

7https://github.com/luigirizzo/dummynet

(a) 10 Mbps

(b) 100Mbps

Figure 6: Completed TCP Web Traffic Requests

of TCP file transfers across experiments. For 10 Mbps we use
3, 5, and 10 concurrent file transfers and for 100 Mbps we use
10, 30, and 50 concurrent file transfers.

For both TCP and QUIC Web traffic at 10 Mbps (Figures 4a
and 5a) we see that FLOQ performs comparably to the other
AQM approaches when comparing the distributions. The only
exception being FLOQ’s performance on QUIC traffic in the
presence of 5 TCP files transfers, Figure 5a. This behaviour
is also seen by the other AQM algorithms in the 10 TCP file
transfer case. FLOQ exhibits this behaviour earlier as FLOQ
starts dropping packets comparatively earlier.

Also, we see that in Figure 4a FLOQ shows comparable
performance to the best AQM algorithm. However, we do not
see the full benefit of FLOQ as it will only apply to the last
4 packets in the buffer. This corresponds to final 20% of the
buffer, as explained in Section V.

When considering TCP and QUIC Web traffic at 100 Mbps
(Figures 4b and 5b) the advantage of FLOQ becomes more
clear. Here we see that FLOQ’s median response time is lower
in five of the six experiments, and comparable for 50 TCP
file transfers in Figure 5b. We ascribe the latter case to the
heavy load of the link meaning that FLOQ is unable to always
preserve the initial packets. However, it can be observed that
FLOQ has a wider interquartile range in this case. Inspecting
further, we can see that the lower quartile is near the RTO
value for a connection and the upper quartile is twice the RTO.
This means that when a connection will loose initial packets
FLOQ causes this loss to gravitate towards only one or two

(a) 10 Mbps

(b) 100Mbps

Figure 7: Completed QUIC Web Traffic Requests

packets, corresponding to the one or two RTOs.
Given a larger BDP, and hence a larger buffer, FLOQ’s

initial setup preservation policy works as intended and the
hypothesised lower response times are observed. Here we see
that FLOQ is able to prioritise a connection’s initial packets
enabling either a connections’ setup and congestion window
(CWND) build-up or fast re-transmit to work effectively.

A similar pattern of results can be seen when considering
the number of completed TCP and QUIC web requests, across
10 experimental runs in Figures 6 and 7. Again we see that
FLOQ performs comparably for the 10 Mbps experiments,
but when provided with enough buffer space, prioritising a
connection’s initial packets leads to an increase in the number
of completed web connections in the 100 Mbps experiments.
Additionally, Figures 6b and 7b show that for both TCP and
QUIC traffic the number of completed connections increases
as the response time decreases. Here FLOQ enables more
connections to successfully establish without loss, leading to
more connections which complete faster.

B. Overall TCP Performance & Throughput

Figure 8 shows the average throughput for all TCP file
transfers across the different experiments for 10 runs. The
error bars show the standard deviation. When considering
the 10 Mbps experiments (Figure 8a) it can be seen that
FLOQ achieves comparable throughput to that of connections
controlled by other AQMs. However, when comparing the
fairness indexes in Figure 9a, FLOQ performs slightly worse.

(a) 10 Mbps

(b) 100Mbps

Figure 8: Average TCP File Transfer Throughput

While FLOQ aims to not drop multiple packets from the same
connection, the buffer space in the 10 Mbps case was so
low that FLOQ would fall back to tail drops. Hence, some
connections would experience more loss compared to others
leading to decreased speed.

The 100 Mbps experiments yield more interesting results.
When considering the fairness index, Figure 9b shows that
FLOQ consistently performs equal or better to all other
approaches across all experiments. This is because other AQM
approaches have no mechanism to balance the lost packets
across connections. Conversely, FLOQ’s preservation policy is
able to manage and sustain high fairness across all connections.
Additionally, in this case FLOQ has sufficient buffer space
combined with enough packets from different flows to trigger
FLOQ’s activation thresholds.

When considering the 100 Mbps throughput experiments in
Figure 8b, FLOQ is less consistent. When the traffic load is
low (10 TCP file transfers), FLOQ controlled queues achieve
lower overall throughput compared to others. This is because
FLOQ preemptively starts dropping packets. Specifically, as
the middlebox’s buffer is sufficiently large, FLOQ’s activation
threshold will make it drop packets earlier compared to the
other AQMs. Put simply: when the link is not loaded by enough
flows, combined with FLOQ’s early drop policy, flows may
observe worse performance. However, despite the decrease in
the TCP file transfer throughput, Figure 4b shows improved
PLT even though both traffic types are TCP and responsive.

This TCP performance decrease can be addressed by ex-

(a) 10 Mbps

(b) 100Mbps

Figure 9: Average Jain’s fairness index

ploring alternate FLOQ configurations on how aggressively
it drops packets and possibly by adding the network load as
another input to Eq 1. However, this must be balanced against
the impact on PLT. We leave this as discussion for future work.

C. Streaming Performance

Over 70% of TCP Internet traffic is video [1]. Although the
primary goal for FLOQ is to improve PLT, it is necessary
to ensure that FLOQ does not disrupt video traffic more
than other AQMs. Volume aside, such traffic is important to
consider because it has very different operational characteristics
compared to file transfer or web traffic.

As the current standard for on-demand video delivery is
to pre-encode the video in different representations and then
segment each one into equally sized time chunks, video
connections typically reuse the same single connection for the
duration of video download. Also, such connections experience
periods where no data exchange happens due to client buffering.
Additionally, as each requested chunk may be of different
quality, such traffic is usually bursty traffic at irregular intervals.

Figure 10 shows the distribution of how often the video
client failed to download a video chunk before it had to be
played-out, thus contributing to the playback rebuffering or
“freezing”. As with other results, the 10 Mbps experiments show
FLOQ as comparable to other AQM’s. However, for the 100
Mbps experiments, FLOQ’s stricter admission policy allowed
for more video chunks to meet their respective deadlines, thus
reducing the number of chunk download errors.

(a) 10 Mbps

(b) 100Mbps

Figure 10: Failed Video Chunk Downloads

Figure 11 shows the distribution of average throughput
(rendered quality) for the video stream across 10 runs. Again,
FLOQ’s performance is comparable for the 10 Mbps experi-
ments. For the 100 Mbps experiments FLOQ is able to achieve
higher average video throughput. This is confirms the behaviour
observed for FLOQ in Section VI-B.

In summary, FLOQ not only enables fewer download errors
but also increases the overall quality of video playback.

D. UDP (Unresponsive) Performance
Figure 12 shows the average percentage packet loss for

the UDP periodic bursty traffic using the different AQM
approaches across 10 runs. Again, FLOQ behaves consistently
with previous results. For the 10 Mbps experiments FLOQ
displays comparable loss to the other AQMs (Figure 12a).
For the 100 Mbps experiments, Figure 12b shows that for 10
concurrent file transfers, UDP loss increases and for 30 and 50
concurrent file transfers it decreases. As before, we explain the
increase in UDP packet loss as a result of FLOQ pre-emptively
dropping packets to preserve room for a connection’s initial
packets. We explain the reduction in UDP packet loss as a side
effect of FLOQ’s effective management of the TCP file transfer
traffic, as see in Figure 8b. Again, by preemtively dropping
TCP file transfer packets, we are able to decrease UDP packet
loss as more free capacity is available in the middlebox’s buffer.

E. Summary
We have observed that for links with lower capacity, such as

DSLv2 lines, FLOQ shows comparable performance to existing

(a) 10 Mbps

(b) 100Mbps

Figure 11: Video Throughput (Render Quality)

AQM approaches. This is since FLOQ would require a certain
capacity of the buffer to be filled, in order to start operating.
For lower capacity cases, this allows FLOQ to manage too few
packets, so that its benefits can be fully demonstrated.

For links with higher capacity, such as FTTC lines, we
see that FLOQ’s preemptive packet drops, combined with the
initial packet prioritisation can - for the majority of cases -
both reduce page load times and increase completion rates
for TCP and QUIC web traffic, maintain or improve TCP
throughput and fairness, improve video streaming performance,
and reduce UDP packet loss. These benefits are seen when
multiple throughput demanding connections compete on the
same link or more generally when the links are busy. For
cases where the link is lightly loaded, while FLOQ achieves
its primary goal of reducing page load time, this comes at the
cost of decreased performance for other traffic, for example,
TCP throughput and increased UDP packet loss.

VII. Future Work
While influenced by anecdotal evidence from Rakuten

Mobile’s national network, this work has currently been based
on synthetic data and topologies. Next steps involve increasing
the complexity of the testing environment and studying FLOQ
with real network traffic.

Additionally, we are also exploring the autonomous and
distributed operation of FLOQ (and more generally AQM) fol-
lowing the approach being proposed in the ITU-T FGAN [28].

We leave testing and deploying FLOQ as scope for future
work. However, we note that FLOQ’s deployment should be

(a) 10 Mbps

(b) 100 Mbps

Figure 12: Average UDP Packet Loss

relatively straightforward for network operators. Currently, we
have implemented FLOQ as a FreeBSD module, and it can
be switched enabled or disabled dynamically at the network
hardware. Additionally, we note that similar to RED, FLOQ
exposes a multitude of configurable parameters, however, our
current solution would pick default values based on our internal
testing and heuristics. Nevertheless, in future we would also
like to explore adjusting FLOQ’s parameters during run-time,
in the context of autonomous distributed systems.

VIII. Conclusions

This work presents a new AQM algorithm called FLOQ.
Unlike other AQM approaches, FLOQ categorises traffic by be-
haviour, not protocol, and prioritises initial connection packets
based on these traffic categorisations. Through experimental
comparison against state-of-the-art AQM algorithms, FLOQ’s
performance across various scenarios ranges from comparable
in lightly loaded links, to significantly improved across a range
of traffic types for the majority of cases.

IX. Acknowledgements

This work is partially supported by the National Institute of
Information and Communications Technology (NICT), JAPAN.

References
[1] Sandvine, “The Global Internet Phenomena Report,” 2019.
[2] R. Netravali, A. Goyal, H. Balakrishnan, J. Mickens, and M. Csail,

“Polaris: Faster Page Loads Using Fine-grained Dependency Tracking,”
p. 123, 2016. [Online]. Available: http://x.com/first.js’’/

[3] R. Rehrmann, M. Keppner, W. Lehner, C. Binnig, and A. Schwarz,
“Workload merging potential in sap hybris,” in Workshop on Testing
Database Systems. Association for Computing Machinery, 2020.
[Online]. Available: https://doi.org/10.1145/3395032.3395326

[4] X. S. Wang, A. Balasubramanian, A. Krishnamurthy, and D. Wetherall,
Demystifying Page Load Performance with WProf, 2013.

[5] M. Al-Fares, K. Elmeleegy, B. Reed, and I. Gashinsky, “Overclocking
the yahoo! cdn for faster web page loads,” in ACM SIGCOMM
Conference on Internet Measurement Conference. Association for
Computing Machinery, 2011, p. 569–584. [Online]. Available:
https://doi.org/10.1145/2068816.2068869

[6] J. Hall, I. Pratt, I. Leslie, and A. Moore, “The effect of early packet
loss on web page download times,” in Passive and Active Measurement
Workshop, La Jolla, California USA, 2003.

[7] V. Jacobson, “Congestion avoidance and control,” ACM SIGCOMM
Computer Communication Review, vol. 18, no. 4, pp. 314–329, aug
1988. [Online]. Available: https://dl.acm.org/doi/10.1145/52325.52356

[8] S. Floyd, J. Mahdavi, M. Mathis, and D. A. Romanow, “TCP Selective
Acknowledgment Options,” RFC 2018, Oct. 1996. [Online]. Available:
https://www.rfc-editor.org/info/rfc2018

[9] M. Sargent, J. Chu, D. V. Paxson, and M. Allman, “Computing TCP’s
Retransmission Timer,” RFC 6298, Jun. 2011. [Online]. Available:
https://www.rfc-editor.org/info/rfc6298

[10] J. Gettys, “Bufferbloat: Dark buffers in the Internet,” IEEE Internet
Computing, vol. 15, no. 3, may 2011.

[11] R. Pan, P. Natarajan, F. Baker, and G. White, “Proportional Integral
Controller Enhanced (PIE): A Lightweight Control Scheme to Address
the Bufferbloat Problem,” RFC 8033, Feb. 2017. [Online]. Available:
https://www.rfc-editor.org/info/rfc8033

[12] K. Nichols, V. Jacobson, A. McGregor, and J. Iyengar, “Controlled
Delay Active Queue Management,” RFC 8289, Jan. 2018. [Online].
Available: https://www.rfc-editor.org/info/rfc8289

[13] M. Bramson, “Instability of fifo queueing networks with quick service
times,” The Annals of Applied Probability, pp. 693–718, 1994.

[14] S. Floyd and V. Jacobson, “Random Early Detection Gateways for
Congestion Avoidance,” IEEE/ACM Transactions on Networking, vol. 1,
no. 4, pp. 397–413, 1993.

[15] H. Fawaz, D. Zeghlache, T. A. Q. Pham, J. Leguay, and P. Medagliani,
“Deep reinforcement learning for smart queue management,” Electronic
Communications of the EASST, vol. 80, 2021.

[16] X. Lin and D. Zhang, “Kemy: An aqm generator based on machine learn-
ing,” in International Conference on Communications and Networking
in China, 2015, pp. 556–561.

[17] G. Forecast et al., “Cisco visual networking index: global mobile data
traffic forecast update, 2017–2022,” Update, vol. 2017, p. 2022, 2019.

[18] K. C. Claffy, H.-W. Braun, and G. C. Polyzos, “A parameterizable
methodology for internet traffic flow profiling,” IEEE Journal on selected
areas in communications, vol. 13, no. 8, pp. 1481–1494, 1995.

[19] H. Kim, K. Claffy, M. Fomenkov, D. Barman, M. Faloutsos,
and K. Lee, “Internet traffic classification demystified: Myths,
caveats, and the best practices,” in ACM CoNEXT Conference.
Association for Computing Machinery, 2008. [Online]. Available:
https://doi.org/10.1145/1544012.1544023

[20] U. Prabu and V. Geetha, “Self-organizing deep learning model for network
traffic classification,” in Inventive Communication and Computational
Technologies. Springer, 2022, pp. 419–425.

[21] M. Di Mauro, G. Galatro, G. Fortino, and A. Liotta, “Supervised feature
selection techniques in network intrusion detection: A critical review,”
Engineering Applications of Artificial Intelligence, vol. 101, 2021.

[22] S. Floyd, D. K. K. Ramakrishnan, and D. L. Black, “The Addition of
Explicit Congestion Notification (ECN) to IP,” RFC 3168, Sep. 2001.
[Online]. Available: https://www.rfc-editor.org/info/rfc3168

[23] B. Briscoe and A. S. Ahmed, “TCP Prague Fall-back on Detection
of a Classic ECN AQM,” nov 2019. [Online]. Available: http:
//arxiv.org/abs/1911.00710

[24] J. Iyengar and M. Thomson, “QUIC: A UDP-Based Multiplexed
and Secure Transport,” RFC 9000, May 2021. [Online]. Available:
https://www.rfc-editor.org/info/rfc9000

[25] A. W. Appel, “Simple generational garbage collection and fast allocation,”
Software: Practice and experience, vol. 19, no. 2, pp. 171–183, 1989.

[26] L. Rizzo, “Dummynet: A simple approach to the evaluation of network
protocols,” SIGCOMM Comput. Commun. Rev., vol. 27, no. 1, p. 31–41,
jan 1997. [Online]. Available: https://doi.org/10.1145/251007.251012

[27] Ofcom, “UK Home Broadband Performance,” Tech. Rep., 2021.
[28] P. Harvey, L. Wong, X. Cao, and X. Song, “FGAN-I-167: High level

architecture framework for Autonomous Networks,” UN ITU-T Focus
Group on Autonomous Networks, Tech. Rep., 2021. [Online]. Available:
https://extranet.itu.int/sites/itu-t/focusgroups/an/input/FGAN-I-167.docx

