Abbasi, M. A. B., Akinsolu, M. O., Liu, B. , Yurduseven, O., Fusco, V. F. and Imran, M. A. (2022) Machine learning-assisted lens-loaded cavity response optimization for improved direction-of-arrival estimation. Scientific Reports, 12, 8511. (doi: 10.1038/s41598-022-12011-z)
![]() |
Text
269372.pdf - Published Version Available under License Creative Commons Attribution. 3MB |
Abstract
This paper presents a millimeter-wave direction of arrival estimation (DoA) technique powered by dynamic aperture optimization. The frequency-diverse medium in this work is a lens-loaded oversized mmWave cavity that hosts quasi-random wave-chaotic radiation modes. The presence of the lens is shown to confine the radiation within the field of view and improve the gain of each radiation mode; hence, enhancing the accuracy of the DoA estimation. It is also shown, for the first time, that a lens loaded-cavity can be transformed into a lens-loaded dynamic aperture by introducing a mechanically controlled mode-mixing mechanism inside the cavity. This work also proposes a way of optimizing this lens-loaded dynamic aperture by exploiting the mode mixing mechanism governed by a machine learning-assisted evolutionary algorithm. The concept is verified by a series of extensive simulations of the dynamic aperture states obtained via the machine learning-assisted evolutionary optimization technique. The simulation results show a 25% improvement in the conditioning for the DoA estimation using the proposed technique.
Item Type: | Articles |
---|---|
Additional Information: | This work was partially funded by the Engineering and Physical Sciences Research Council under grant EP/P000673/1 and by Leverhulme Trust under Research Leadership Award RL-2019-019. |
Status: | Published |
Refereed: | Yes |
Glasgow Author(s) Enlighten ID: | Imran, Professor Muhammad and Liu, Dr Bo |
Authors: | Abbasi, M. A. B., Akinsolu, M. O., Liu, B., Yurduseven, O., Fusco, V. F., and Imran, M. A. |
College/School: | College of Science and Engineering > School of Engineering > Autonomous Systems and Connectivity |
Journal Name: | Scientific Reports |
Publisher: | Nature Research |
ISSN: | 2045-2322 |
ISSN (Online): | 2045-2322 |
Copyright Holders: | Copyright © 2022 The Authors |
First Published: | First published in Scientific Reports 12: 8511 |
Publisher Policy: | Reproduced under a Creative Commons License |
University Staff: Request a correction | Enlighten Editors: Update this record