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Abstract 

The design of optimal energy systems is vital to achieving global environmental and economic targets. In the design 

of solar-geothermal multi-generation systems, most previous investigations have relied on the static multi-objective 

optimization approach (SMOA), which may leave considerable room for improvement under certain conditions. In 

this numerical study, the optimal condition at which to operate a solar-geothermal multi-generation system – which 
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can simultaneously produce hydrogen, fresh water, electricity, and heat, along with storing energy − is determined via 

a dynamic multi-objective optimization approach (DMOA). Optimization is performed using a combination of NSGA-

II and TOPSIS, and the results are benchmarked against those of SMOA. The decision variables include the solar area, 

geothermal water extraction mass flow, and hydrogen storage pressure. The objective functions include the production 

of electricity, heat, hydrogen, and fresh water, along with the exergy and energy efficiencies and the payback period. 

It is found that when compared with SMOA, DMOA can significantly improve all the objective functions. The annual 

production of electricity, heat, hydrogen, and fresh water increases by 14.4, 16.1, 13.5, and 14.3%, respectively, while 

the average annual exergy and energy efficiencies increase by 5.2 and 3.0%, respectively. The use of DMOA also 

reduces the payback period from 5.56 to 4.43 years, with a 4.4% reduction in hydrogen storage pressure. This shows 

that compared with a static approach such as SMOA, DMOA can improve the exergy and energy efficiencies, 

economic viability, and safety of a solar-geothermal multi-generation system.   

Keywords: Multi-effect desalination technology; Dynamic multi-objective optimization; Solar geothermal energies 

combination; Techno-economic analysis; Hydrogen production.   

Nomenclature 

Symbols 

d Distance parameter in TOPSIS method 

OBF Objective function 

obf Dimensionless objective function 

min Minimize 

max Maximize 

CLI Closeness index 

N Number of time intervals 

no Number of objectives 

X Decision variable 

t Time 

Greek symbols  

Δ Difference 

Subscripts  

i Counter for decision variable number 

ideal Ideal  

k  Counter for the time interval in DMOA 

non-ideal Non-ideal  

Abbreviations  

TOPSIS Technique for order of preference by similarity to ideal solution 

PSO Particle swarm optimization 

SMOA Static multi-objective optimization approach 

PV Photovoltaic 

NSGA-II Non-dominated sorting GA II 
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GWO Grey wolf optimizer 

PEM Proton exchange membrane 

GA Genetic algorithm 

TEG Thermoelectric generator 

PTSC Parabolic trough solar collector 

SOFC Solid Oxide Fuel Cell 

ANN Artificial neural network 

CCHP Combined cooling, heating, and power 

ORC Organic Rankine cycle 

STPV Solar thermal photovoltaic 

RSM Response surface methodology 

DMOA Dynamic multi-objective optimization approach 

EL electrolyzer 

1. Introduction 

The growth in the number of people living on Earth, along with problems arising from energy 

security and climate change, has highlighted the need to deploy energy systems that are more 

efficient and economical [1]. Among the different sources of energy available, renewable sources, 

such as solar and geothermal, hold particular promise [2]. The conversion and storage of renewable 

energy via hydrogen is gaining traction in various fields [3]. When compounded with water 

scarcity problems, this has led to the development of multi-generation systems that can 

simultaneously produce electricity, heat, hydrogen, and fresh water [4]. It is therefore unsurprising 

that significant research has been done to analyze and optimize such multi-generation systems [5]. 

Temiz et al. [1] conducted a thermodynamical study, based on energy and exergy analysis, of a 

system integrating solar and thermal energy to produce fresh water, hydrogen, electricity, and 

space heating. The system was located in California. It was observed that the highest energy 

efficiency (27.56%) occurs in November, but that the highest exergy efficiency (17.3%) occurs in 

January. The system produced 296.9 tons of hydrogen. 

Abdelshafy et al. [6] proposed an optimization method based on PSO–GWO (Particle Swarm 

Optimization – Grey Wolf Optimizer) to optimize the size of the components of a grid-connected 
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reverse-osmosis desalination plant integrated with a hybrid energy system, and to decrease its cost. 

It was found that PSO-GWO can offer superior optimization performance when compared with 

each method applied separately. Adding a diesel generator in the hybrid system was found to 

reduce costs significantly. 

Sayyaadi et al. [7] presented a conceptual design for a thermochemical Cu-Cl cycle with a capacity 

of 6000 kg per day. Through pinch analysis, the efficiency of the cycle could be increased by 

10.2%. Further optimization was conducted in which the objective functions included the cost of 

hydrogen, energy efficiency and exergy efficiency. By choosing three design variables and with 

the help of TOPSIS, the researchers achieved thermal and exergy efficiencies of 49.83% and 

58.23%, respectively, at a cost of $6.33 per kilogram for hydrogen. 

Habibollahzade et al. [8] investigated a system featuring a thermoelectric generator (TEG), a 

parabolic trough solar collector (PTSC), and a PEM (proton exchange membrane) in terms of 

exergy and exergoeconomic performance using a genetic algorithm. The results showed that the 

use of TEG, instead of a condenser, not only improves exergy efficiency but also reduces the total 

unit cost. The optimized state of the system had the exergy efficiency of 12.8 percent.  

Integrating PVT panels and PEME with a Solid Oxide Fuel Cell (SOFC) system, Cao et al. [9]  

attempted to produce primary fuel that is rich in hydrogen. A tri-objective optimization based on 

exergy, economics, and environmental performance was performed to assess the proposed system 

relative to the conventional system. It was observed that the output power and CO2 emissions of 

the model were 8.7% and 12.9% higher than that of a conventional system, respectively. 

Using RSM and ANN-GA, Yahya et al. [10] optimized the catalytic steam reformation of toluene 

used for hydrogen production. The temperature, feed flow rate, catalyst weight and molar ratio of 
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steam to carbon were considered the optimization variables. The results show that ANN-GA, 

which had a higher R2 value (coefficient of determination) and lower RSME value (root mean 

square error), can raise the process efficiency to 92.6%, significantly above what RSM can achieve. 

Gutierrez-Martin et al. [11] modeled a system in which a photovoltaic cell was integrated with an 

electrolyzer (EL) so as to evaluate its capacity, component operation, and costs. Their study was 

conducted in two cities (Madrid and Fisciano), and considered the system with and without 

batteries. The results showed that despite increasing the costs and energy loss, the use of batteries 

can reduce the electrolyzer size. Moreover, it was concluded that operating electrolyzer at a fixed 

rate requires larger batteries and PV cells.  

Behzadi et al. [12] proposed a new model based on solar energy with the integration of a TEG for 

hydrogen production and cooling. The aim was to compare this system, in terms of energy, exergy, 

and exergoeconomic performance, with a conventional cogeneration unit in which a condenser is 

used instead of TEG. The results showed that the integration of TEG improved exergy efficiency, 

hydrogen production and total cost. 

Keshavarzzadeh et al. [13] analyzed a CCHP system consisting of a TES, PTSCs, a PEMFC, an 

ORC, a PEME, and a Li-Br chiller. Results showed that when TES and PEMFC are used together, 

the output power can increase by 3% during the day and by 10% during the night. Then, a NSGA-

II method, with cost and exergy efficiency as the objective functions, was used to optimize the 

system state, achieving 80% and 0.06 dollar per second as the optimum values. With optimization 

with one objective, the analogous results were 57% and 0.044 dollar per second. 

Daneshpour and Mehrpooya [14] proposed a new model of a system consisting of a photovoltaic 

device and solid oxide electrolyzer cell whose main product was hydrogen but which produced 
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oxygen as a byproduct. A series of STPV devices were used to supply the required power for the 

steam electrolyzer. The results showed that STPVs can potentially be used to convert solar energy 

to supply electrolyzers working under high temperatures.  

Saleem et al. [15] designed an annual simulation of a system used for solar heating of water for 

different climate conditions in Karachi, Pakistan. The main objective was to use TRNSYS to 

identify the refrigerant most capable of exchanging heat. The results indicated that the key factor 

is the thermal conductivity of the refrigerant. Ammonia was found to be the best refrigerant, with 

energy gains of 8900 and 7500 kJ per hour for July and January. 

Izadi et al. [16] sought to improve the performance of a power plant featuring a gas turbine, which 

consists of thermoelectric generators, a single flash desalinated unit, and a single effect Li-Br 

chiller. Results indicated that the inlet air preheating could be effective in reducing CO and CO2 

emissions, but at the expense of increasing NO emissions. Furthermore, with the application of 

multi-objective optimization, it was found that the use of solar energy decreased fuel consumption 

by 0.1871 kg.s-1 and increased the exergy efficiency by 2.92%. 

Aided by multi-objective optimization, Tebibel et al. [17] proposed a new methodology to improve 

the design of a wind energy driven H2 production system and to reduce its environmental effects 

and production costs. The results showed that the optimum design can be effective in reducing 

both technical and economic objectives. Under the experimental conditions examined, the 

simulation showed a levelized H2 cost which is equal to 33.70 dollar per kg, and energy dump 

possibility of 10%. 

Taking an economics viewpoint, Koleva et al. [18] used simulations of a PV-EL system to increase 

its NPW (net present worth). They considered different financial methods and weather conditions 
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in California. The results showed that a system with market settings similar to combined retail and 

wholesale could offer a range of potentially cost-competitive solutions, leading to a hydrogen 

production cost between $6.2 per kg and $6.6 per kg. 

Alirahmi et al. [19] performed an exergoeconomic and exergy evaluation of a system that produced 

electricity, fresh water, and hydrogen for three different solar radiations (high, low and no 

radiation). They then performed optimization based on a genetic algorithm. It was found that the 

cost per unit of the system’s exergy has a direct correlation with the current density and an inverse 

correlation with the electrolyzer temperature as well as the peak temperature of the desalination 

unit. The exergy efficiencies ranged from 2.52% to 5.39%.  

Farsi et al. [20] investigated a Cu-Cl cycle in Aspen Plus to optimize the exergy efficiency and 

costs of hydrogen generation using a genetic algorithm integrated with artificial intelligence. For  

different operating conditions, they also conducted a sensitivity analysis for the studied model. 

Siddiqui and Dincer [21] presented a new model for a solar-geothermal system featuring multi-

generation capabilities including those for fresh water, cooling, hydrogen and electricity; these 

researchers evaluated the thermodynamics of the model and found energy and exergy efficiencies 

of 42.3% and 21.3%, respectively. Yuksel et al. [22] presented a new multi-generation system in 

which a Brayton cycle functioned as the main unit using methane gas and was integrated with an 

organic Rankine cycle to produce hydrogen, electricity, ammonia, drying, freshwater, cooling, and 

heating. After a thermodynamic analysis, the energy and exergy efficiencies of the entire system 

were calculated to be 69.09% and 65.42%, respectively. Ishaq and Dincer [23] conducted a 

comprehensive dynamic analysis of a solar-driven system, which was used for electricity 

production and ammonia synthesis. The system also utilized a PEM electrolyzer for hydrogen 

generation, and its performance was evaluated under different radiation intensities. The greatest 
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production of hydrogen and ammonia was 5.85 and 1.38 mol.s-1, respectively, which occurred in 

the month of June. 

When photovoltaic panels are applied, some materials, including nanofluids, could be utilized for 

performance enhancement. For instance, Sangeetha et al. [24] conducted experiments to 

investigate the impact of nanofluids on a photovoltaic-thermal-solar system in which three 

different nanofluids were chosen as the coolant for the photovoltaic panel. The results showed that 

the adoption of each of the three nanofluids resulted in increases in electrical power and efficiency. 

On a similar note, Manigandan et al. [25] considered two different types of water-based nanofluids, 

based on ZnO and CuO, in order to experimentally examine their influence as coolants in five 

different photovoltaic fluid collector systems. These researchers reported that the energy efficiency 

of the system would rise as a result of the use of nanofluid. 

A literature review has revealed that despite significant research contributions to date, multi-

objective optimization has been applied only conventionally, in the form of a static multi-objective 

optimization approach (SMOA). As noted previously (e.g. in Ref. [26]), the use of SMOA may 

leave some optimization potential unrealized under certain conditions. The dynamic multi-

objective optimization approach (DMOA), in which changes in the effective system parameters 

are accounted for throughout the year, has yet to be comprehensively studied. Based on this 

research gap and the success of DMOA in other energy systems (e.g. evaporative coolers [27]), 

the present study uses DMOA to optimize a solar-geothermal multi-generation system for 

simultaneous production of electricity, heat, hydrogen, and fresh water. The results are then 

benchmarked against those of SMOA in terms of exergy and energy efficiencies, economic 

viability, and safety. A techno-economic multi-objective optimization is carried out by considering 

the annual production of electricity, heat, hydrogen, and fresh water, along with the exergy and 
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energy efficiencies, payback period, and hydrogen storage pressure. The results show that for the 

specific system under study, DMOA can lead to better performance than SMOA, highlighting the 

need to adopt a dynamic approach when optimizing solar-geothermal systems. 

The aim of this research is to determine the optimal operating conditions of a solar-geothermal 

multi-generation system via DMOA, where the objective functions include the generation of 

electricity, heating, hydrogen, and fresh water, as well as the exergy and energy efficiencies and 

the payback period.  

2. Methodology 

The details about the methodology are given here. It includes system description and optimization 

procedure. They are presented in sections 2.1 and 2.2, respectively.  

2.1. System description 

The investigated system is schematically shown in Figure 1.  This system is a multi-generation 

unit relying on renewable energy. It has many subsystems such as a concentrated solar power 

system (CSP), a parabolic trough collector (PTC), an energy storage system, a Cu-Cl 

thermochemical unit for hydrogen production, a multi-effect distillation (MED) unit, a heat pump 

for building heating, and a trilateral ammonia Rankine cycle for the geothermal system. Saline 

water enters the system from a water source containing salt, e.g., the ocean. The energy needed to 

run the system is then extracted by the system itself via devices such as PTC, CSP, and heat 

exchangers.  

As Figure 1 shows, the geothermal water enters the system and undergoes a trilateral ammonia 

Rankine cycle to supply the required heat. This cycle is responsible for electricity generation. The 

excess heat from NH3 is then transferred to a R-134a heat pump via a heat exchanger. From the 
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separator, steam enters the desalination unit, producing fresh water. The energy for running the 

Cu-Cl cycle is supplied from TES and CSP. In the first stage of the Cu-Cl cycle, which involves 

hydrolysis, the reaction of CuCl2 and steam results in the production of HCl and Cu2OCl2. In the 

second step, which involves thermolysis, O2 and CuCl are produced from the decomposition of 

Cu2OCl2. In the third step, which occurs in the electrolyzer, the reaction of CuCl with HCl results 

in the production of gaseous hydrogen and aqueous CuCl2. Hydrogen is transferred to the 

compressor to be stored as compressed fuel, while CuCl2 is transferred to the dryer to be prepared 

for reuse in the first stage of the Cu-Cl cycle. The Cu-Cl cycle is one of the most common means 

of H2 production [28]. 

Further details on this multi-generation system can be found in the study by Temiz and Dincer [1], 

in which it was originally introduced. 

Tehran, the capital and largest city of Iran, is chosen as the location of this case study. With a 

population of over 10 million, Tehran is a mega-city that faces severe water scarcity and air 

pollution. Therefore, the investigated system could be part of a viable solution. It is worth noting 

that this city has a strong geothermal energy potential, especially in the north-eastern regions [29]. 

The climatic data for Tehran are extracted from Ref. [30] at a temporal resolution of 10 minutes.  
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Figure 1. Schematic of the investigated system, as per Ref. [1]. 
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2.2. Optimization procedure 

Two different types of optimization methods are used and compared. The first is the static multi-

objective optimization approach (SMOA), which is the conventional approach for optimization. 

The second is the dynamic multi-objective optimization approach (DMOA), which is a novel 

technique for this specific system. Initially, the list of decision variables and objective functions is 

provided. Then, the working principles of SMOA and DMOA are explained. After that, 

information about the case study is presented.  Given that both SMOA and DMOA rely on a 

combination of NSGA-II and TOPSIS, these two methods are also introduced. 

Operation of NSGA-II is based on an evolutionary process, which means that the algorithm has to 

run several times in order to identify the globally optimal point.  

The annual production of electricity, heat, H2, and fresh water in the system, along with the average 

annual exergy and energy efficiencies, are selected as the objective functions for both SMOA and 

DMOA; these functions should be maximized. The payback period is also chosen as an objective 

function, representing the economics, which should be minimized. Therefore, the multi-objective 

optimization problem takes the form: 

2

max

max

max

max

max

max

min

Annual electricity production

Annual heat production

Annual H production

Annual fresh water production

Annual Average energy efficiency

Annual Average exergy efficiency

Payback period













 (1) 

It should be noted that all the considered values of parameters for the cycle and simulation 

processes are similar to those used in Ref. [1]. Consequently, these values are not repeated here.  
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The area of the collectors, called the solar area, in addition to the extracted mass flow rate of 

geothermal water and the H2 storage pressure, are selected as the decision variables. The lower 

and upper bounds for the three decision variables are shown in Table 1. 

Table (1): Lower and upper bounds for the three decision variables. 

Decision variable Lower bound Upper bound Unit 

Solar area 0 100,000 m2 

Extracted mass flow rate of geothermal water 0 5,000 kg.s-1 

H2 storage pressure 100 500 bar 

In order to make the optimization process more practical, it is necessary to use just a few decision 

variables, and for that reason number of selected decision variables is three. The three chosen 

variables, including solar area, geothermal water extraction mass flow rate, and hydrogen storage 

pressure, are reasonably effective for reaching the appropriate optimal condition of the system. 

SMOA and DMOA are two viable optimization approaches. In SMOA, the optimization algorithm 

runs only a single time, and the optimum values of the decision variables and thus the objective 

functions are determined [31]. 

In DMOA, the optimization algorithm runs every time interval. Therefore, if there are N time 

intervals, each with a period of t , then the optimization algorithm runs N times. If the value of 

the ith decision variable from running the optimization algorithm at the kth time interval is ,i jX , 

then the value provided by DMOA would be [32]: 

 

 

, ,

1
,

1

N

i k DMOA

k
i DMOA N

k

X t

X

t














 (2) 
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We use a combination of NSGA-II and TOPSIS. The former is used to find the Pareto optimal 

frontier (POF), while the latter is used to find the best solution on the POF.  

In NSGA-II, an initial population is generated randomly. A comparison is then made between each 

solution and its counterpart, in order to determine how many solutions dominate the answer. As a 

hypothetical example, suppose that the objective is to minimize all the objectives, answer Z2 

dominates Z1 in case the whole elements of Z2 are not greater than or equal to those of Z1. The 

dominancy degree of a solution is the number of points on the POF that dominate it. The answers 

are then sorted based on their dominancy degrees. According to the algorithm, based on a given 

ratio, a certain number of solutions remains to create the subsequent population, and the remainder 

is put aside. In cases where number of points needed to produce the subsequent population is 

smaller than the number of existing ones, all of them will be chosen, and then, the next population 

group with a greater dominancy degree will be taken into account. Otherwise, the points which 

have the identical dominancy degree are sorted based on the crowding distance. The answers that 

have higher crowding distances will be selected up to the time the required points for generating 

the subsequent generation are completely gathered. When the algorithm is programmed in this 

way, the stopping criterion must be checked. If just one of them is met, the algorithm will stop, 

and non-dominant solutions will form the POF. Otherwise, the algorithm continues.  

The TOPSIS decision making method is used to identify the optimal answer among the points on 

the POF. In TOPSIS, answers are first made dimensionless [32]: 

 
2

1

j

jk

jk
no

jk

j

OBF
obf

OBF




 
  

 
(3) 
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where obf and OBF refer to the objective function and the dimensionless objective function, 

respectively. Then, the distances from the ideal and non-ideal answers are determined [32]: 

 
2

, ,

1

objno

ideal j jk ideal k

k

d obf obf


   
(4) 

 
2

, ,

1

objno

non ideal j jk non ideal k

k

d obf obf 



   
(5) 

where dideal is the distance from the ideal answer and dnon-ideal is the distance from the non-ideal 

answer. It should be noted that ideal and non-ideal answers are the imaginary solutions that have 

the best and worst values of the objective functions, respectively. 

Ultimately, the closeness index for each solution is determined [32]: 

,

, ,

ideal j

j

ideal j non ideal j

d
CLI

d d 


  (6) 

In Eq. (6), CLI is the closeness index. The answer with the smallest value of the closeness index 

corresponds to the TOPSIS selection. 

3.  Results and discussion 

This section begins with a validation of the simulation framework, and then moves on to present 

the results of DMOA. These results are compared with those of SMOA for benchmarking. 

3.1. Validation 

To validate the proposed methodology, the results from Ref. [1] are used. Figure 2 shows good 

agreement between our data and the data from Ref. [1]. It is worth mentioning that the data in Ref. 

[1] are for Geysers, California (USA). The maximum and mean error values are 1.7 and 1.2%, 

respectively, demonstrating the reliability of the framework. 
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Figure 2. Validation of the simulation framework against Ref. [1]. 

Despite the use of analytical models, there might be errors in the results relative to the actual 

measurements. One source of error could be phenomena not considered in the modeling. For 

instance, there could be hotspots on the surface of the PV panel that are not considered in the 

simulation. In addition, there are measurement errors in recording the experimental meteorological 

data. However, the low error level in the validation case shows that the modeling approach 

deployed here is sufficiently reliable for the present study.    

3.2. Decision variables  

The values of the decision variables for SMOA and DMOA are shown in Table (2). It is found that 

DMOA tends to utilize a larger solar area and a higher extracted mass flow rate of geothermal 

water. The values of the first two decision variables are 12.8 and 11.8% higher for DMOA than 

for SMOA, respectively.  However, the H2 storage pressure tends to decrease from 367.6 bar for 

SMOA to 351.4 bar for DMOA, a 4.4% reduction. The lower H2 storage pressure implies a slightly 

safer system.  
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Table (2): Values of the decision variables at the optimal condition for SMOA and DMOA. 

Decision variable SMOA DMOA Unit 

Solar area 20992.7 23688.4 m2 

Extracted mass flow rate of geothermal water 10.832 12.113 kg.s-1 

H2 storage pressure 367.6 351.4 bar 

3.3. Dynamic multi-objective optimization  

The monthly and annual profiles of the technical objective functions are compared between SMOA 

and DMOA. Later, the payback periods are also compared.  

3.3.1. H2 production 

The more solar radiation the system receives, the more H2 it can produce. Therefore, in the hotter 

months of the year, more H2 is produced, regardless of whether DMOA or SMOA is used. Figure 

3 shows the monthly variation of H2 production. It is found that for all months of the year, DMOA 

produces more H2 than SMOA. This difference is greatest near summer because, with DMOA, the 

collector area can be increased such that more solar energy is received and converted. In January, 

there is a 378.1 kg difference between DMOA and SMOA, with the former and latter producing 

10217.3 and 9839.2 kg of H2, respectively. Moreover, in March, May, and July, DMOA produces 

17419.7, 25459.5, and 31827.7 kg of H2, but the corresponding values for SMOA are 16249.3, 

22251.5, and 26557.2 kg. Therefore, DMOA gives 1170.3, 3208.0, and 5270.5 kg more H2 than 

SMOA; these numbers are 3.1, 8.5, and 13.9 times those in January, respectively. Figure 3 also 

shows that July is the month with the highest received solar radiation, the highest H2 production, 

and hence the greatest improvement over SMOA. In every month of the year, H2 production with 

DMOA is higher than that with SMOA, leading to a higher annual H2 production as well.  

Specifically, SMOA leads to 230178.6 kg of H2 production, whereas DMOA leads to 261251.2 

kg, an increase of 13.5%. 



18 of 27 

 
Figure 3. Comparison of monthly H2 production with DMOA and SMOA. 

3.3.2. Fresh water production 

Receiving more solar radiation from the sun leads to more input energy for water desalination. 

Therefore, the same seasonal variations seen in H2 production are also seen for fresh water 

production. It is observed that DMOA can increase fresh water production. As Figure 4 shows, 

fresh water production for February, April, and June rises from 5913.4, 10830.4, and 12295.9 ton 

with SMOA to 6205.9, 11974.9, and 14422.3 ton with DMOA, respectively. This is equivalent to 

increases of 4.9, 10.6, and 17.3%, respectively.  

Like H2 production, fresh water production peaks in July, when the irradiance level is at a 

maximum. During this month, compared with SMOA, DMOA increases fresh water production 

from 13921.2 to 16934.4 ton, which is a 21.6% improvement. Regarding the annual fresh water 

production, DMOA gives an increase from 119309.4 to 136333.3 ton, an improvement of 13.5%. 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

SMOA 9839.2 11310.9 16249.3 20656.6 22251.5 23533.3 26557.2 26450.5 26104.0 21636.2 14991.7 10598.3

DMOA 10217.3 11892.3 17419.7 22947.0 25459.5 27636.9 31827.7 31512.8 30916.5 23952.0 16247.2 11222.3
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Figure 4. Comparison of monthly fresh water production with DMOA and SMOA.  

3.3.3.  Energy efficiency 

The monthly variation of energy efficiency is shown in Figure 5. It is observed that the energy 

efficiency dips during the hot months of the year. This is because the energy efficiency is 

normalized by the received solar radiation, but owing to system inefficiencies, the nominator of 

this parameter is proportional to an irradiance power below unity. Figure 5 shows that there is a 

significant improvement in energy efficiency when DMOA is used instead of SMOA. The 

improvement is weak during the winter but strong during the summer. For instance, in December, 

October, and August, SMOA gives an energy efficiency of 30.42, 29.66, and 28.56%. The 

corresponding values for DMOA are 31.09, 30.55, and 29.70%, implying an improvement of 2.2, 

3.0, and 4.0%, respectively. Again, July is the month with the greatest improvement in energy 

efficiency (4.1%). When SMOA is replaced with DMOA, the average annual energy efficiency 

increases from 29.59% to 30.47%, an improvement of 3.0%.  

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

SMOA 5119.6 5913.4 8457.5 10830.4 11608.5 12295.9 13921.2 13676.5 12837.3 11299.6 7832.8 5516.6

DMOA 5331.9 6205.9 9090.4 11974.9 13286.0 14422.3 16934.4 16607.5 15646.0 12499.3 8478.5 5856.3
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Figure 5. Comparison of monthly energy efficiency with DMOA and SMOA.  

3.3.4. Exergy efficiency 

Figure 6 shows that, for both SMOA and DMOA, the monthly profile of exergy efficiency 

resembles that of energy efficiency. However, the values of exergy efficiency are generally lower 

than those of energy efficiency because there are several products in the form of heat and the 

exergy of a specific amount of heat is lower than its energy content. The enhancement in exergy 

efficiency due to the use of DMOA over SMOA increases as summer is approached. For example, 

in March, April, and May, SMOA gives an exergy efficiency of 18.35, 17.62, and 16.82%, while 

DMOA gives 19.14, 18.84, and 18.12%, implying increases of 4.3, 6.9, and 7.7%, respectively. 

On an annual basis, DMOA increases the exergy efficiency by 5.2% relative to SMOA. 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

SMOA 31.12 30.82 30.16 29.54 28.90 28.50 28.24 28.56 29.07 29.66 30.05 30.42

DMOA 31.69 31.47 30.80 30.40 30.00 29.65 29.39 29.70 30.12 30.55 30.82 31.09
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Figure 6. Comparison of monthly exergy efficiency with DMOA and SMOA.  

3.3.5. Useful electricity production 

DMOA leads to a larger collector area, increasing useful electricity production. As Figure 7 shows, 

the difference in useful electricity production between the two optimization strategies starts at 61.7 

kWh in January, and then rises to 182.2 and 491.9 kWh in March and May, respectively. During 

three summer months (July, August, and September), the difference in useful electricity production 

reaches 865.8, 863.0, and 810.9 kWh, respectively. This is beneficial as extra electricity produced 

during the summer months can help the power network cope with any unexpected deficits. In 

October, November, and December, DMOA gives 347.2, 193.8, and 101.7 kWh more electricity 

than SMOA. This indicates that a considerable improvement in electricity production can be 

achieved not only during the summer season, but for the whole year. In fact, throughout the entire 

year, SMOA gives 34577.0 kWh of electricity, but the corresponding value from DMOA is 

39549.3 kWh, an improvement of 14.4%. 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

SMOA 19.49 18.84 18.35 17.62 16.82 16.32 16.02 16.48 17.41 18.31 19.22 19.45

DMOA 20.03 19.55 19.14 18.84 18.12 17.41 17.12 17.56 18.38 19.26 20.00 20.13
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Figure 7. Comparison of the monthly useful electricity production with DMOA and SMOA. 

The power of a solar panel is the efficiency multiplied by the collected solar radiation over an area. 

When the solar radiation increases, the panel efficiency decreases. The positive influence of the 

increase in solar radiation can outweigh the negative influence of the drop in efficiency as a result 

of a hotter panel. This increases the electricity generated by the solar panels. The observed trend 

for power production rises during the hot seasons based on the above discussion, which is 

consistent with the literature, such as Ref. [30]. 

3.3.6. Useful heat production 

The monthly profiles of useful heat production follow those of useful electricity production, as 

shown in Figure 8. With either optimization strategy, the values of useful heat production are 

significantly greater than those of useful electricity production. The lowest heat production is 

found for the coldest months of the year, i.e., January, February, November and December, in 

which 13069.4, 14859.9, 20322.6, and 14197.2 kWh of heat is produced with SMOA. With 

DMOA, however, those values increase by 7.1, 9.6, 9.5, and 8.3%, respectively. The largest 

increase occurs in the summer season, when the highest level of solar radiation is received. With 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

SMOA 1485.1 1710.9 2454.8 3129.6 3362.3 3563.3 4046.7 3954.7 3727.9 3278.8 2265.7 1597.2
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a heat production of 44438.1, 43580.2, and 41057.2 kWh, DMOA gives increases of 24.4, 22.8, 

and 19.8% in July, August, and September, respectively. On an annual basis, DMOA gives a heat 

production of 357757.0 kWh, which is a 16.1% improvement over SMOA.  

 
Figure 8. Comparison of the monthly useful heat production with DMOA and SMOA.  

3.3.7. Payback period 

The payback period for SMOA is 5.56 years. When DMOA is applied, the collector area and, 

hence, the initial purchase price increases. Nonetheless, this is counterbalanced by improved 

generation capabilities and efficiencies, which tend to offset the higher upfront costs, reducing the 

payback period to 4.43 years for DMOA. This represents a 20.3% reduction relative to SMOA.  

4. Conclusions 

Rather than relying on conventional SMOA, this study uses DMOA, augmented with a 

combination of NSGA-II and TOPSIS, to optimize the performance of a solar-geothermal multi-

generation system.  

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

SMOA 13069.4 14859.9 21481.8 27734.8 30125.7 31977.9 35726.1 35499.4 34263.4 28976.7 20322.6 14197.2

DMOA 13991.5 16285.2 23854.4 31423.6 34864.2 37846.0 44438.1 43580.2 41057.2 32799.9 22248.9 15367.8

0.0

5000.0

10000.0

15000.0

20000.0

25000.0

30000.0

35000.0

40000.0

45000.0

50000.0

H
ea

t 
p

ro
d

u
ct

io
n

 (
k

W
h

)

Month



24 of 27 

The results revealed that when compared with conventional SMOA, DMOA can improve the 

energy and exergy efficiencies, economic viability, and safety of a solar-geothermal multi-

generation system. The annual production of electricity, heat, hydrogen, and water was found to 

increase by 14.4, 16.1, 13.5, and 14.3%, respectively. The average annual exergy and energy 

efficiencies were found to increase by 5.2 and 3.0%, respectively. Meanwhile, the payback period 

was found to decrease from 5.56 to 4.43 years, implying that DMOA is more economically 

competitive than SMOA. The hydrogen storage pressure was found to decrease by 4.4%, 

indicating improved safety with DMOA.  Overall, this study demonstrates that the use of DMOA 

over SMOA can improve the exergy and energy efficiencies, economic viability, and safety of a 

solar-geothermal multi-generation system. This study opens several avenues for future work, 

including: 

1. A feasibility study of the investigated system in different climatic regions,  

2. Exploring the effects of price inflation or other economic indicators on the optimization 

results,  

3. Adding an industrial plant to the multi-generation unit and investigating the hybrid system, 

4. Evaluation of different storage technologies for the multi-generation unit. 
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