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ABSTRACT
With Artificial intelligence (AI) to aid or automate decision-making advancing
rapidly, a particular concern is its fairness. In order to create reliable, safe and trust-
worthy systems through human-centred artificial intelligence (HCAI) design, recent
efforts have produced user interfaces (UIs) for AI experts to investigate the fairness
of AI models. In this work, we provide a design space exploration that supports not
only data scientists but also domain experts to investigate AI fairness. Using loan
applications as an example, we held a series of workshops with loan officers and
data scientists to elicit their requirements. We instantiated these requirement into
FairHIL, a UI to support human-in-the-loop fairness investigations, and describe
how this UI could be generalized to other use cases. We evaluated FairHIL through
a think-aloud user study. Our work contributes better designs to investigate an AI
model’s fairness—and move closer towards responsible AI.

KEYWORDS
Human-centred AI; fairness; user interfaces; visualizations; human-in-the-loop;
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1. Introduction

Artificial intelligence (AI) to aid or automate decision-making is advancing rapidly, and
there are now many systems in use in jurisprudence, medicine and finance (Barocas,
Hardt, & Narayanan, 2019; Barocas & Selbst, 2016; Chouldechova, 2017; Corbett-
Davies, Pierson, Feller, Goel, & Huq, 2017). However, there have been increasing calls
for a human-centred artificial intelligence (HCAI) design approach that is a part of
a responsible AI development process to address concerns that automated decision-
making is not very reliable, safe or trustworthy because they can ignore human values
or contexts that change depending on the circumstances (Shneiderman, 2020, 2021).
HCAI proposes that considerations are made for how to integrate user control into
tasks, how to involve stakeholders in responsible AI development, and how to design
user interfaces (UIs) that allow users to interact with AI systems.

CONTACT Yuri Nakao Email: nakao.yuri@fujitsu.com



In recent years, a number of UIs and technologies have been proposed that aim
to involve stakeholders in investigating fairness of machine learning (ML) models by
making them more transparent, such as AI Fairness 360 (Bellamy et al., 2018), the
What-If Tool (Wexler et al., 2020), FairSight (Ahn & Lin, 2020), FairVis (Cabrera
et al., 2019), SILVA (Yan, Gu, Lin, & Rzeszotarski, 2020), and Fairlearn (Bird et
al., 2020). However, this strand of HCAI research has mostly focused on enabling
data scientists or ML experts to inspect and assess their models, rather than involving
other stakeholders such as domain experts or end-users. This is especially important
for AI fairness, as stakeholder groups may vary in human values underlying fairness,
information needs, practices, and technical abilities (Saxena et al., 2020; Veale,
Van Kleek, & Binns, 2018), and these differences need to be reflected in the design of
UIs that allow users to inspect fairness of AI (Lee, Kim, & Lizarondo, 2017; Veale
et al., 2018).

In this work, we provide a design space exploration of UI components that allow
both domain experts and data scientists to investigate fairness. We investigated this
by: 1) conducting a series of workshops to better understand domain experts’ and data
scientists’ practices and information needs for investigating fairness and produce a set
of requirements; 2) designing FairHIL which instantiates a suite of 7 UI components
based on requirements that can support these stakeholders in investigating fairness
through a human-in-the-loop approach; and 3) evaluating FairHIL through a user
study. We situated our work in the loan application domain, working directly with
loan officers and data scientists employed by Intesa Sanpaolo, a bank who partnered
with us in these studies.

Our aims were as follows:

• to understand how these different groups of users assess AI fairness in loan
applications in terms of process, criteria, informational needs, and transparency,
and develop requirements for UI design;

• to design a suite of UI components to support data scientists as well as loan
officers in assessing fairness and finding potential fairness issues in datasets that
underlie ML models and also ML models developed from these datasets. We
show how these UI components could be generalized for other domains;

• to evaluate the usefulness and usability of these UIs through a user study in-
volving data scientists and loan officers. We reflect on what these results mean
for implementing these UIs into an AI development process.

We contribute to an evolving space of HCAI design with a focus on developing
responsible AI. Our work concentrates specifically on fairness which is of great concern
in increasingly automated decision-making. We advance the current state-of-the-art by:

• identifying the requirements of domain experts and data scientists for investi-
gating fairness;

• providing a set of UI components which support the processes and practices of
these stakeholder groups;

• clarifying the space of design options for developing UIs that allow fairness to
be investigated in other domains;

• evaluating an instantiation of these UI components in the loan application do-
main.

Our paper is structured as follows: we first review the related work in ML fairness,
paying particular attention to UIs that have been developed to interactively explore
fairness in ML models. We then describe our first study with data scientists and loan

2



officers and show their UI requirements for investigating fairness. We then present in
detail UI components that we developed in order to help data scientists and domain
experts to investigate fairness and find potential fairness issues. We provide the findings
of a second user study that evaluates these UI components with data scientists and
loan officers. We conclude with a discussion of the implications and limitations of our
work and future research that is warranted.

2. Related Work

2.1. Assessing AI Fairness

Fairness is often equated with justice which comprises two main principles, liberty
and equality, in which all people should be entitled to basic rights and freedoms, and
should have equal opportunities (Rawls, 1958). Scholars have attempted to differen-
tiate and taxonomize notions of justice (Binns et al., 2018; Cook & Hegtvedt, 1983;
Eckhoff, 1974; Lee et al., 2017), including equity (i.e. equal distribution), procedural
(i.e. relating to a fair decision-making process), interactional (i.e. relating to people’s
treatment), and informational (i.e. that a decision is well-justified) fairness.

A common way of perceiving fairness is at the group and individual level (Hegtvedt,
2005). For example, in US law, group fairness is embodied through the concepts of
disparate treatment and disparate impact (Barocas & Selbst, 2016). The former is an
intentional discriminatory treatment of groups or members of groups, and the latter,
the process that causes a dissimilar impact on groups. These groups are often de-
fined using ‘protected attributes’ which are enshrined in law. For example, the United
Kingdom Equality Act 2010 states that it is illegal to discriminate against someone
because of their age, disability, gender reassignment, marriage and civil partnership,
pregnancy and maternity, race, religion or belief, sex and sexual orientation (Equality
& Commission, 2020). Other countries have also moved to protect certain groups from
unfair treatment. However, discrimination against a group can be less obvious. Even if
protected attributes are not explicitly used in decision-making, discrimination might
be indirect through the link of a protected attribute (e.g. race) with non-protected
attributes (e.g. zip code). A different way of judging fairness is through individual
fairness, which relates to the similar treatment or outcomes of two similar individu-
als (Dwork, Hardt, Pitassi, Reingold, & Zemel, 2012). Often, one difficulty that arises
in individual fairness is defining how two people are similar. Additionally, the trade-
off between individual and group fairness widely used in legal situations also has been
considered as a difficult issue to solve (Dwork et al., 2012).

Unfairness can manifest in ML systems through biases. The ML development process
presents numerous opportunities for bias to infiltrate, and biases can eventually play
a role in making a decision (Barocas & Selbst, 2016; Caliskan, Bryson, & Narayanan,
2017; Dodge, Liao, Zhang, Bellamy, & Dugan, 2019; Friedman & Nissenbaum,
1996; Hajian, Bonchi, & Castillo, 2016; Olteanu, Castillo, Diaz, & Kıcıman, 2019),
for example, through the choice and characteristics of the dataset, feature engineering
and selection, or choice of learning model. A well-known study underscores this point:
COMPAS (Correctional Offender Management Profiling for Alternative Sanctions), a
system used in the US justice system, was found to predict Black defendants as a much
higher risk of violent recidivism than their White counterparts (Jeff Larson & Angwin,
2016). Because a lot of these ML systems are not accountable or transparent, there is
a strong need to investigate and then potentially mitigate fairness issues in ML.
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To measure fairness in AI systems, a number of fairness measures have been
proposed. In the last few years over twenty different types have been identified
(Narayanan, 2018; Verma & Rubin, 2018), for example:

• Individual fairness: similar outcomes for similar individuals (Dwork et al., 2012).
• Group fairness (statistical/demographic parity): people in both protected and

unprotected groups have equal probability of having the positive outcome (Kami-
ran & Calders, 2009; Verma & Rubin, 2018).

• Subgroup fairness (intersectional bias): a combination of multiple sensitive fea-
tures lead to an unfair result, which would have otherwise been considered fair
when looking at them individually (Kearns, Neel, Roth, & Wu, 2018; Yang,
Cisse, & Koyejo, 2020).

• Counterfactual fairness: a comparison between predictions concerning an indi-
vidual and its “counterfactual self” with different values for protected attributes
(Kusner, Loftus, Russell, & Silva, 2017).

• Equalized Odds: same error rates (false positive rate and false negative rate)
in groups with different values of protected attributes (Hardt, Price, & Srebro,
2016).

• Fairness Through Unawareness: sensitive features are not explicitely employed
to make decisions (Kusner et al., 2017).

• Predictive Parity: same precision for groups with different values of protected
attributes (Verma & Rubin, 2018).

These fairness measures can then be used to develop ways to mitigate or remove
bias or unfairness. There are a number of toolkits available to investigate and miti-
gate fairness issues, for example, IBM’s AI Fairness 360 (Bellamy et al., 2018) and
Fairlearn (Bird et al., 2020). There are various approaches for bias mitigation, for
example, manipulating or cleaning observed data, reweighting observations, suppress-
ing features correlated with protected attributes, or trying to remove from the data
all the information of protected attributes while trying to keep as much information
as possible from other variables (Calmon, Wei, Vinzamuri, Ramamurthy, & Varshney,
2017; Kamiran & Calders, 2009; Zemel, Wu, Swersky, Pitassi, & Dwork, 2013).
Bias mitigation can also include adopting training approaches such as adversarial
training (Zhang, Lemoine, & Mitchell, 2018), regularization (Kamishima, Akaho, &
Sakuma, 2011), or reductions approach (Agarwal, Beygelzimer, Dud́ık, Langford, &
Wallach, 2018). Finally, it is also possible to tweak the final outcomes in order to
satisfy the desired fairness metric (Barocas et al., 2019; Hardt et al., 2016).

Despite the exploration of fairness-aware ML, there has been scant agreement which
measures to use (Verma & Rubin, 2018) because of trade-offs between them (Barocas
et al., 2019; Barocas & Selbst, 2016; Chouldechova, 2017; Verma & Rubin,
2018). It has also been argued that fairness measures are poor proxies for identifying
discrimination (Corbett-Davies & Goel, 2018; Narayanan, 2018; Veale et al., 2018),
and that therefore statistical bias, based on fairness measures, and societal bias, based
on human values, need to be differentiated (Mitchell, Potash, Barocas, D’Amour, &
Lum, 2018; Narayanan, 2018).

Whether a decision or a system is judged as fair depends very much on human
values embedded in individuals and society (Saxena et al., 2020), and, increasingly,
there have been research efforts to investigate human fairness values empirically. For
example, it has been found that while fairness outputs were perceived by participants
as statistically fair, some participants were not comfortable with an AI system making
high-stakes decisions without a human in the loop (Binns et al., 2018). In addition,
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stakeholders can vary in what they perceive as fair (Narayanan, 2018). Many variables
have been identified that influence fairness judgements in individuals. These include
education, computer literacy (Wang, Harper, & Zhu, 2020), gender (Mallari et al.,
2020; Wang et al., 2020), culture and region (Berman, Murphy-Berman, & Singh,
1985; Blake et al., 2015; Bolton, Keh, & Alba, 2010; Hofstede, 2011; Kim & Leung,
2007; Mattila & Choi, 2006), and environment and stakeholder role (Lee et al., 2017;
Veale et al., 2018). Hence, it is very important to study how stakeholders investigate
fairness in different domains, how stakeholder groups differ within a domain, and also
how to better involve them through human-in-the-loop UIs, as we do in this work.

2.2. User Interfaces to Investigate Fairness

There has been a recent influx of fairness UIs that introduce a human-in-the-loop
approach in the development of ML models. Many of these efforts are based on work
in Explainable AI (XAI) to communicate models and decisions to users, for example,
through model-agnostic tools such as LIME (Ribeiro, Singh, & Guestrin, 2016) and
SHAP (Lundberg & Lee, 2017). LIME looks to explain model predictions on a local
level, identifying the features that are driving the prediction (Ribeiro et al., 2016).
SHAP can explain the contribution of features to the model (Lundberg & Lee, 2017).
Coupled with data visualisation, XAI approaches are often used to identify potential
bias, for example, Dodge et al. (Dodge et al., 2019) investigated global and local
explanation styles in fairness assessments.

There are also now a number of toolkits being developed to support interactive
exploration of fairness in datasets and ML models. We review five of the most well-
known and recent ones in detail.

2.2.1. What-If Tool

The What-If Tool (Wexler et al., 2020) has been developed for data scientists to
visualise fairness in ML (Figure 1 a). The UI is comprised of three screens: datapoint
editor, performance and fairness, and features. The datapoint editor facilitates on-
the-fly visualizations of the dataset or model. Users are easily able to bin, position,
color and label data points. Features can be sliced to investigate group fairness and
combined for subgroup fairness. Data points can be directly investigated and compared
through counterfactual reasoning; by allowing users to select a data point, visualise its
counterfactual and adjust its values, they are able to see ‘what could have happened’
and subsequently infer a reason for an outcome. Through color encoding, users are also
able to see decision boundaries between the data points. The performance and fairness
screen provides the user with a selection of six performance and fairness metrics. The
features screen provides users with more descriptive statistics of the features in the
dataset, such as their count, mean, median, and standard deviation.

2.2.2. FairVis

FairVis (Cabrera et al., 2019) (Figure 1 b) is a UI developed for data scientists to
audit their models before deployment. In addition to comparing fairness between two
or more groups, it also allows users to explore intersectional bias, i.e., identifying
subgroup discrimination. The UI is made up of four interconnected panels. The first
panel enables users to see all features (and their distributions), select them, or drill
down further to select specific target classes. The second panel provides users with the
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ability to apply a number of predefined metrics such as accuracy, precision and recall
from a drop-down list. Strip plots for each metric are displayed below. By clicking or
hovering on subgroups, the user is able to see, through color encoding, the subgroup’s
position across the selected metrics and the four panels, therefore comparing and
contrasting the subgroup across the dataset. To explore further, the user is able to
click and pin their subgroups of interest and compare metric outputs in the third
panel. The fourth and last panel facilitates further exploration through a carousel
of suggested subgroups, which showcases features and their classes (sorted by chosen
metric) as percentile bar charts.

2.2.3. FairSight

FairSight (Ahn & Lin, 2020) provides users familiar with ML with a UI that embeds
a workflow to ensure fair decision-making. The FairSight UI (Figure 1 c) is made up
of six panels; the first, ‘generator’, supports the user in setting up a model by defining
sensitive features, features (including showing their distribution and correlation with
the target), and target, and selecting a prediction algorithm from a pre-defined list.
After running the model, group and instance-based performance and fairness metrics
are shown in the Ranking View, Rankings, and Global Inspector panels. The Local
Inspector and Feature Inspector panels facilitate the investigation of a specific data
point and its nearest neighbor, and the features that might contribute to bias.

2.2.4. Silva

Silva (Yan et al., 2020) is a UI to support the AI development workflow. Crucially it
is claimed that this UI is useful for both data scientists and ’novices’ unfamiliar with
fairness analysis. Its main feature is a causal graph generated by structural learning
algorithms (Figure 1 d). The graph enables exploration of the features (nodes) and
the relationships (edges) between them to identify potential bias in a classifier. The
interface is made up of four panels; the first enables users to select and group features
of interest and toggle their sensitiveness. The second panel shows the causal graph.
Groups and their fairness metrics are shown in the third panel. The user is also able
to access the dataset. The final panel displays the fairness metrics scores of each group
for each of the machine learning algorithms.

2.2.5. Fairness Elicitation Interface

A UI, coupled with an interview protocol, has been proposed to elicit fairness notions
from stakeholders who have no technical background in ML (Cheng et al., 2021) (Fig-
ure 1 e). The investigations for this UI were focused on predicting child maltreatment
cases, and involved social workers and parents. The UI consists of a group view which
shows differences between variable groups along fairness metrics and allows division
into subgroup by a further variable; a case-by-case view which shows a pair of cases and
their prediction and AI model features; and a similarity comparison view which shows
a scatterplot that compares a selected case with all other cases, calculated through
feature similarity using weighted Euclidean distance. While this UI is encouraging as
it targets stakeholders other than data scientists, its aim is only to function as a sup-
portive tool to elicit fairness notions instead of providing comprehensive support to
investigate fairness of an AI model.

[Figure 1 near here]
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2.2.6. Overview of Emerging Fairness UI Design Space

While every tool works in different ways to support a user to explore the fairness
of an AI model, some common UI functionality is emerging designed to cover various
functional and informational needs. For example, all tools allow the data to be grouped
in some way. Many tools either display performance or fairness metrics, or both. Table
1 shows a mapping of functionality to the tools we have described in 2.2.

[Table 1 near here]
Our work explores a design space of UI components and associated functionality

to investigate fairness. We aim to support a variety of stakeholder groups that differ
in their technical ability with respect to AI, and in their experience with formalized
notions of fairness. In order to ground our exploration, we started with an empirical
investigation of stakeholder functional and informational needs to investigate fairness
in the loan applications domain. This then led to a design of a tool based on these
requirements. The coverage of the design space and the differences of our tool compared
to the ones reviewed in section 2.2 are discussed in detail in section 6.2.

3. Study 1: Investigating stakeholder needs to assess fairness

To explore user needs, we worked with two stakeholder groups, loan officers and data
scientists, employed in a partner bank, Intesa Sanpaolo based in Italy. Loan officers
act as intermediaries between the bank and the customer, and are domain experts in
this area but typically have little formal knowledge of AI or fairness metrics. Data
scientists have experience in developing ML models for banking systems and processes
and will typically have come across some fairness metrics.

We conducted two workshops with each stakeholder group to inform the exploration
of this design space and uncover functional and informational needs. Due to Covid-19
restrictions, all research was conducted remotely using online meeting software.

Workshop 1 focused on how stakeholders investigate fairness, and what information
that they consider important and need to assess fairness. It also exposed them to some
initial potential UI components, based on our literature review, as design provocations.
Workshop 1 was analyzed, and the insights informed the development of an initial
prototype. This prototype was then discussed in Workshop 2, in order to obtain early
feedback on more detailed designs while also being open to extending functionality
that we had missed previously or needs that we had misunderstood in Workshop 1.
Based on the requirements and feedback from the workshops, we produced a final set
of UI components (section 4) for the evaluation study (section 5).

3.1. Participants

We recruited 6 loan officers (5 men, 1 woman, mean age = 36.5, stdev = 3.39) and
6 data scientists (3 men, 3 women, mean age = 29.7, stdev = 4.13). For further
background details, see Table 2. All participants were over 18 years old and fluent in
English. We excluded participants with any severe visual or hearing impairments, as
it would have been difficult to make accommodations for these impairments in the
study setup. Five of the 6 loan officers had previous experience with granting retail
loans in bank branches across Italy, one of which had served as branch manager. The
remaining participant had previously worked in Zagreb, Croatia, in another role but
moved to Italy where he worked in retail and wealth management for a year. Four of
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the 6 data scientists were very involved in considering AI fairness as part of their role.
[Table 2 near here]

No incentives were offered for participation. This study was approved by the City,
University of London Research Ethics Committee.

3.2. Setup

Separate workshops were held for data scientists and loan officers. All 6 data scientists
were in one online workshop, and the 6 loan officers were in another. The sessions
were run as semi-structured discussions, with the flexibility to explore relevant areas
in more detail. This meant that data scientists and loan officers worked together in
their respective groups and discussed their approaches and views for investigating
fairness.

3.2.1. Workshop 1

The aim of workshop 1 was to conduct user research into how fairness was investigated
by these data scientists and loan officers, their functional and informational require-
ments, and to expose them to initial conceptual designs. Workshop 1 took place in
September 2020 for each group and lasted 2 hours. These 2 hours were structured into
3 parts: 1) a general discussion about fairness in AI, 2) a detailed investigation of the
fairness of decisions in a given dataset, and 3) initial reactions to causal reasoning
graphs.

In part 1 (approx. 30 minutes), participants had a general discussion about fairness,
for example, what makes decisions in loan applications fair or unfair, and the role of
ML in loan decision-making and fairness. This was to familiarize participants to the
topic at hand, and to discover any general fairness values that they paid attention to.

In part 2 (approx. 1 hour), participants were asked to investigate fairness for a
dataset we provided to them using their own preferred way. The dataset was devel-
oped by Intesa Sanpaolo, a partner bank in this project. The dataset contained 1000
anonymized but real loan applications and their decisions, with 26 features. These fea-
tures include demographic information of the applicant (age, gender, nationality, etc),
financial information (household income, insurance, etc), loan information (amount
of loan requested, purpose of loan, loan duration, monthly payments, etc), as well
as some information of their financial and banking history (years of service with the
bank, etc). There were also some features that related to internal bank procedures,
such as a money laundering check and a credit score developed by the bank. The
dataset was sent ahead of the workshop so that participants had time to familiarize
themselves with it (they could but did not have to have a look at the dataset before
the workshop). We created a data visualization tool, providing the ability to slice the
features and present them using various chart types such as histograms, scatter plots,
bar graphs and a strip plot, in order to answer questions that participants had about
the data on-the-fly. We screenshared this dataset and the visualisation tool so that any
questions they had could be answered on the fly, in order to further investigate the
fairness of the dataset. They were asked to discuss their individual approaches of how
they would examine this dataset. As such, there was no set flow; it was all directed by
the participants.

In part 3 (approx. 30 minutes), we aimed to understand how these users would react
to some initial design provocations. Based on our literature review, casual graphs, as
used in (Yan et al., 2020), seemed an intuitive and well-received yet much less common
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way to explore fairness that could be useful for both data scientists and loan officers.
We wanted to see the reactions of our participants to this. Hence, we introduced the
concept of a causal graph to support fairness investigations.

Design provocations are often employed to explore the use and tensions of designs
with users in order to speculate about future technologies. Consequently, the choice of
these provocations can influence the future design space for the UI and visualizations.
We only provided a simplified example of a small aspect of the UI (Figure 2) to gauge
their initial reactions, so as not to bias stakeholders towards a particular design too
early.

[Figure 2 near here]
After the workshop, all data was transcribed and de-identified. Thematic coding

(Clarke, Braun, & Hayfield, 2015) identified themes around:

• Fairness in AI: Opinions on the limitations and benefits of AI and human in-
volvement in loan application decision-making and fairness.

• Fairness Criteria: The criterion that participants use to judge and decide fairness
within the dataset.

• Fairness Assessments: How participants make fairness assessments within the
dataset. This includes what they look at, how they manipulate data to explore
and troubleshoot, and the decision points they encounter along their journey.

• Causal Graph: Comments on the limitations, benefits and improvements of the
causal graph presented during the workshop.

The insights from workshop 1 guided the design of an initial prototype which was
discussed in Workshop 2.

3.2.2. Workshop 2

The second workshop aimed to gain early feedback on an initial prototype that was
developed based on insights from workshop 1, to deepen our understanding of the
informational and functional requirements needed to support stakeholders to explore
fairness, and to extend and change our designs based on requirements that we had
missed in workshop 1 or needs that we had misunderstood. These workshops took
place with the same groups and participants in November 2020, two months after
Workshop 1, lasting 2 hours each.

The initial prototype contained several different UI components (Figure 3): a system
overview (A), a causal graph showing the relationships between five features (B), a
dataset view (C), comparing nearest application with a different outcome (D). There
was also an opportunity to see information on subgroups. Components within the
UI worked in conjunction with one another, for example, selecting an application in
component C highlighted this application in component D.

[Figure 3 near here]
We took participants through the UI to gather feedback. The prototype was screen-

shared; participants did not have access to it directly, instead the researcher clicked
through it and described what would happen in a fully developed prototype.

As in workshop 1, data was collected through screen and audio recordings, tran-
scribed and analysed through thematic coding (Clarke et al., 2015). Themes relating
to participants’ reactions were developed around the screens and interface areas, and
the clarity and usefulness of information and functionality offered in the prototype UI.
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3.3. Insights into Stakeholder Requirements

3.3.1. Human-in-the-loop Fairness Process

There were some differences between data scientists and loan officers in perceptions
about the role that ML should play and how human-in-the-loop ML fairness assess-
ments need to be situated in the decision-making process. Both stakeholder groups
stated that ML systems do not currently provide the ability to explain their decisions.
Participants were aware of the impact biased ML systems could have on individuals
and that human intervention is needed to ensure that outputs were fair. However, they
also stated that it is difficult for users to control the ML system’s decision-making.

Loan officers saw ML systems as additional support for human decision-making.
Rather than replacing human expertise, they thought that a ML system does not see
the whole picture of the decision-making. Loan officer thought that the information
that the ML system is based on might sometimes be subjective, or that important
information is not available to the system at all. For example:

“I spent two years in a very small branch in very little town, the knowledge of the
customer is something that is very valuable and maybe you as an employee could provide
something extra - soft information - that would help the system to get the right decision
in the end.” - WL01

In their view, this inability of the ML system to work with tacit information and
take into account ‘grey areas’ may then lead to unfairness. This reflects earlier findings
(Lee et al., 2017) that pointed out that some tasks are seen to require human skill.

Data scientists on the other hand leaned towards a process where the ML model
was checked by humans before adoption.

What this means for user interfaces: The context in which human-in-the-loop
fairness tools are used will matter for their design. Because data scientists would use
these tools for model fairness assurance, we expect that they focus more on fairness
measures of the model and relationships across attributes. Loan officers, on the other
hand, want support for fair decision-making where humans have high control (Shnei-
derman, 2020), and hence they would focus more on information and functions that
apply to individual applications. We do not suggest that these specific foci are exclu-
sive, i.e. information about model fairness might also be useful to loan officers. What
we take away from this though is that the UI should be adaptable to the needs of
these user groups, or be equally usable by both.

3.3.2. Fairness Criteria and Metrics

Our investigation found that loan officers and data scientists use different fairness
criteria.

Loan officers agreed that group fairness was important:

“I think there is a problem with adverse selection, often related to age, for example,
younger people are disadvantaged, or nationality - foreign people are also penalised and
another issue that I saw in the past is the absence of a credit history.” - WL04

However, they focused mainly on individual fairness, often wrestling with unin-
tended bias creeping in. For example:

“I’d like to have the same treatment if I asked for money for a car and for healthcare.
Why should I receive a different result if I can afford something?” - WL02
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Perhaps because of the danger of bias based on the ‘worthiness’ of loan purpose,
loan officers focused most frequently on affordability, by trying to understand how
income and out-goings contributed to the application decisions. For example:

“We would have to first define what we intend for fairness, so fairness from an economic
point of view from the sustainability of the numbers, or fairness from the point of view
that this person is good enough to have the loan, maybe despite some short fall in the
economic data, so I think this is important to set what we are looking at.” – WL01

In contrast, for data scientists group fairness played a significant role, while they
did not mention individual fairness frequently. In fact, it seemed that they shied away
from using individual fairness, possibly because it is more subjective, for example:

“How do we assess that two people are similar?” - WD06

Data scientists preferred to use metrics that captured group fairness objectively.
There was also an expectation that a range of different metrics should be available in
the UI, to cover different ways of assessing fairness.

“Okay, yeah, one thing is, if this should be a fairness explorer, there must be a lot of
other metrics of fairness.” – WD02

What this means for user interfaces: Designs should support a range of popular
fairness metrics, and support adding new ones if they are not already included. As
previously discussed, there are quite a number of ways to measure fairness and it is
sometimes unclear what measures to apply, therefore, it might also be necessary to
describe these metrics and how they are derived in more detail.

While there are readily available metrics for capturing fairness that can be applied
in AI systems and which would be useful for data scientists, there is currently a lack
of ways to support the fairness assessments of loan officers. This could be overcome by
allowing loan officers to specify ‘custom’ attributes, for example, to capture the notion
of affordability. These attributes can then be used in ensuring fairer decision-making.

3.3.3. Exploring Features and Relationships

To make fairness assessments, both groups looked in detail at what they considered
sensitive features. Gender and citizenship were discussed the most in both groups and
both considered them unfair to be used in AI decision-making. However, age as a
sensitive feature proved to be more contentious. Loan Officers in particular pointed
out that young people often could not provide a long credit history, so suffered from a
‘cold start’ problem in loan applications. Similarly, older people might be deemed too
much of a risk if their repayment terms were long.

Both groups requested information on the acceptance rates for loan applications
related to feature values, particularly for the ones they considered sensitive. In general,
investigating relationships between attributes was very important to them, through
exploring the distribution of attribute values to the target values. This allowed them to
compare whether there was a bias against certain applicant groups, and to determine
if there was a cause for concern in terms of group fairness:

“Perfect, so it’s not so small the difference between 70/30 and 40/60, about 10% higher
the rate of rejected proposal of non-national customers.” – WL05

Data scientists also wanted to explore subgroup fairness, in addition to simple group
fairness. This meant combining a number of feature values and looking at the accep-
tance rates.
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As already highlighted, participants identified that outcomes might be related to
features and feature combinations, however the stakeholders were also interested in
investigating relationships between any features to see if they were linked to each
other, to see how bias might have crept in unintentionally:

“The first thing that I did was to check the correlations, mainly between the target
variable, which is the result. . . the most correlated variable is of course, the risk levels.
But for example, I didn’t find any correlation among the gender or the age or something
like that. . . [it would be] probably nice to deeply analyse [the dataset] better and check
also the correlations between the other variables to understand if there is something
biased as we said at the beginning of the discussion. . . I also did some plots to check for
example, the percentage of accepted or rejected for each variable.” – WD01

Loan officers often leveraged their domain knowledge to explore fairness. For exam-
ple, they were already aware how credit risk could impact the outcome, and brought
in the citizenship feature in their exploration:

“Yes, this is pretty similar, yes, it’s more approval in the national but it’s maybe usual
because national people usually earn more money than people from abroad. Nothing
unusual.” - WL03

In our workshops, we provided Sankey diagrams (Figure 4) as design provoca-
tions for communicating relationships between features values. While both stakeholder
groups stated that visualizing relationships between features is useful, it became clear
that this choice of visualization was too complex for participants to grasp, especially
for continuous, binned feature values. Instead, they requested simplified visualizations
or numerical information.

[Figure 4 near here]
We also showed causal relationships underlying the data, showing these in a simple

node-edge graph (Figure 2), to allow an alternative and easy way for stakeholder to
investigate relationships between all features. Both stakeholder groups saw the value
in having causal relationships shown:

“I think the crucial point is at the beginning to decide what is fair and what is not in
that specific domain. And in this respect, maybe the graph that you’re showing could
help. Let’s take for example, gender. This graph is telling us that gender impacts the
decision, at least through the credit risk level, then you have to ask about this impact;
so, the impact that goes from gender through credit risk level to result is something that
I’m willing to accept as a correlation from gender to result or not? So, you have to ask
yourself, how is credit risk levels calculated?” – WD04

They also appreciated how these graphs could be integrated in the process of
decision-making in loan applications and mitigating fairness issues:

“We cannot modify the graph? So for example, if we don’t want gender, we can remove
it?” - WL06

What this means for user interfaces: Although protected features by law will
need to be taken into account, there is considerable variability between the laws of
countries in terms of which features count as sensitive. Further, other features might
also be considered sensitive even though they are not protected by law. Hence, these
features need to be selectable by the user, and then highlighted as especially important
in the UI.

Outcomes related to features values and their ratios and distributions formed a core
part of the assessments of the stakeholders. This information will need to be made avail-
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able in an easily understandable format, perhaps through appropriate visualizations
that can support comparisons between applicant groups, or ratio percentages.

Exploring relationships between features should also be extended to features that
are not considered sensitive and features that do not directly influence the outcome. In
addition, information about combination of features needs to be provided to investigate
issues of subgroup fairness. This also allows intersectional issues of fairness to be
explored, and would allow stakeholders to find biases that are perhaps less obvious.

Exposing causal relationships can add information that would otherwise not be
available when looking at a dataset. For loan applications this is important, as the
features used in calculations are often interrelated.

3.3.4. Exploring Individual Cases and Their Similarities

While a lot of the exploration of the data focused on investigating group fairness,
we showed earlier (3.3.2) that loan officers also considered individual fairness. In the
workshops we also investigated how to support this.

Feedback indicated that both stakeholder groups liked the ability to see and compare
individual applications:

“For me it’s cool. Maybe the coolest part” – WD05.

However, the visualizations we presented proved to be problematic as participants
did not understand how similarity was calculated and how the data was mapped to
the axes. What they wanted to compare was the similarity of applications, especially
if they led to different outcomes, and what attributes caused this.

What this means for user interfaces: Comparing similar applications was ap-
preciated and should be supported in fairness exploration, in order to investigate indi-
vidual fairness. These should provide information about similarity of cases, including
their attributes, across decision boundaries.

3.3.5. Transparency and Explanations

Both groups wanted more transparency about how metrics or other information was
derived or calculated. For example, they wanted information on how the causal graph
was created, and how the ’similarity’ score was calculated.

In particular, data scientists wanted a clear distinction between what belongs to the
ML model and what belongs to the dataset from which the ML model is derived:

“The other thing that I noticed is I see a system overview accepted and rejected. I don’t
know if it’s the model or the original, maybe I guess their model, but I’m not sure.” –
WD06

It was obvious that loan officers struggled with ML concepts that were very famil-
iar to data scientists. For example, they had difficulty with concepts such as target,
precision, etc. and also how ML algorithms worked.

What this means for user interfaces: Much effort has been directed at provid-
ing explanations of ML systems and making them more transparent (Kulesza, Burnett,
Wong, & Stumpf, 2015; Lim & Dey, 2009). Our findings echo this, showing that
users require detailed descriptions so they can understand how information and vi-
sualizations have been generated, in order to interpret them effectively. Contextual
help could aid in this. In addition, explanations need to be carefully targeted at differ-
ent stakeholders to extend users’ understanding and mental models (Kulesza, Stumpf,
Burnett, & Kwan, 2012).
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3.3.6. Summary

Table 3 shows a list of requirements that we gathered through the workshops. Partici-
pants in our study supplied many informational and functional requirements that need
to be supported to explore fairness. These requirements provide a much richer design
space than the functionality provided by existing tools described in section 2.2.6. We
found that data scientists and loan officers have slightly different priorities but overall
their needs are surprisingly similar. Based on these requirements, we started to de-
velop a prototype UI that would support data scientists and loan officers needs. We
describe this UI next.

[Table 3 near here]

4. FairHIL, a UI to Support Investigating Fairness

Our design space exploration that started with a literature review and design work-
shops continued with the implementation of a UI of 7 components. We now present
a detailed description of these UI components we developed; for each component we
reference the corresponding requirements we captured from the design workshops (see
Table 3). Please note that we focused on informational and functional requirements
that allow stakeholders to investigate fairness. Requirements that focus on mitigating
fairness by adjusting the model were considered out of scope for the purposes of our
research. For each of these UI components we also show how it could be generalized
for any dataset and model.

The UI is divided into a setup process UI and the main UI screen to explore the
input dataset and the model, respectively. The setup comprises five steps for data
scientists and four for loan officers, inspired by a wizard approach which is frequently
implemented in UI setup processes (e.g. Fairlearn (Bird et al., 2020)) and involves
loading the dataset, setting the target feature, selecting the prediction model, marking
up sensitive features, and choosing fairness metrics, including the ability to define a
’custom metric’ which leads to a function builder. (In order to simplify the interface,
we did not include a choice of prediction model or metrics for loan officers.) We will
focus on the metrics choice UI component in section 4.1.

[Figure 5 near here]
The main UI screen (Figure 5) allows users to rapidly switch between information

about the dataset and the model through tabbing, and thus it supports them to easily
compare the fairness of underlying loan decisions as well as the resulting predictions.
The UIs to explore the dataset and the model are very similar, each with six main com-
ponents that relate to each other. The system overview (Figure 5 A) provides overall
information about the data and target, described in section 4.2. The main component
supporting users to explore fairness is a causal graph (Figure 5 B) which shows features
and causal relationships between them and the target. We discuss this UI component
in detail in section 4.3. Detailed information about features and relationships, such as
fairness metrics, distributions, and acceptance ratios in the causal graph, is displayed
in a component underneath the graph (Figure 5 C). This UI component is described
in section 4.4. Users are also able to see how intersections of feature values affected
the acceptance ratios by exploring feature combinations (Figure 5 D), as we will de-
scribe in section 4.5. We also provide access to the underlying dataset (Figure 5 E)
which allows filtering and more detailed explorations, see section 4.6. Finally, users
are able to select an application in the dataset component and compare it with other
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applications in the compare applications component (Figure 5 F), which we will detail
in section 4.7.

Throughout we focus on providing transparency and explanations in UI compo-
nents, to satisfy user requirements uncovered in section 3.3.5. We add detailed expla-
nations, particularly targeting loan officers who struggled in the workshops with ML
terminology and concepts. We concentrate on explaining the target and the algorithm,
sensitive features, and the fairness metrics, and their calculation. Furthermore, we ex-
plain how the causal graph was developed and the information it showed in detail.
We also provide contextual information on individual UI elements, for example when
fairness metrics are shown in the UI components.

4.1. Metrics Choice

A main way of exploring fairness is through the use of fairness metrics (REQ1.3,
REQ2.8). Providing users with a range of popular metrics is important as fairness
criteria are both subjective and contextual to the problem at hand. To support this,
data scientists are able to choose one or more of five metrics: statistical parity dif-
ference (SPD), equality of opportunity difference, average odds difference, disparate
impact, and Theil index (see Figure 6). These metrics are also provided in IBM’s AI
Fairness 360 (Bellamy et al., 2018), and we followed their metric definitions in our
instantiation. For example, in our work, SPD was calculated as the difference between
acceptance rate of the (grouped) values of an attribute. In cases where an attribute
had continuous values, e.g. age, we split these values into ’bins’ to represent groups,
(e.g. 10 years, 20 years, etc.), calculated the acceptance rate for each bin, and then
provided the difference between the highest and the lowest acceptance rate for the
bins. For loan officers, we provide only one metric, SPD, because it is relatively simple
and most widely used in different contexts. To extend and generalize this UI compo-
nent, further metrics could be added to the selection, e.g. drawn from (Mitchell et al.,
2018) or (Verma & Rubin, 2018).

[Figure 6 near here]
We also provide the ability to specify a custom attribute which could be used as

an informal ’metric’ (REQ2.7) , in order to support alternative user-generated or
domain specific notions of fairness, as seen in section 3.3.2. For example, during the
workshop, stakeholders repeatedly raised notions of affordability which could be added
in addition to the predefined fairness metrics. The custom metric builder (Figure 7)
allows users to give the metric a name, to select from existing features along with
their value distributions against the target, and a work area where they are able
to construct a metric using features and mathematical operators, inspired by other
formula builders. Further extensions could obviously be made to the formula builder,
for instance to show example output, or to incorporate more complex functions than
the basic mathematical operators.

[Figure 7 near here]

4.2. System Overview

This component provides important contextual information around fairness of the data
or the model to the user by showing the number of instances in the dataset (REQ1.1),
an overall target ratio, shown as a percentage and a visual pie slice, which in our use
case was the acceptance rate (REQ1.4). For the model, we show the same information
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calculated on the test data.
The system overview could of course be extended with other global information.

For example, for the model, we could add a positive prediction rate, alongside other
accuracy metrics. Other forms of representing and visualizing this data could also be
explored.

4.3. Causal Graph

The main way for a user to explore features and relationships between features, a
key need that was highlighted in the workshops, is through a causal graph (Figure 8)
(REQ2, REQ3). The causal graph is made up of nodes representing features and
edges representing causal relationships between features, presented in a circular lay-
out. Causal graphs can be inferred by applying causal discovery algorithms (Zheng,
Aragam, Ravikumar, & Xing, 2018) and then followed up and validated by domain
experts. Sensitive features marked up during the setup process are highlighted in gold
(REQ1.5); relationship strengths are indicated by line thickness (REQ3.2); out-degree
is represented by node size. The target is shown as a circle node to differentiate it from
the other features.

[Figure 8 near here]
In the dataset view, each feature node contains a bar graph which shows the tar-

get distribution, i.e. acceptance rate, for each feature value (REQ2.2). In the case of
categorical data this is fairly straightforward, while binning is used for continuous
features. We use a simple and commonly used square root approach for the binning
process but other ways of determining bin size, such as Sturges approach, could be
explored. Above this information, we show a small horizontal bar: its length indicates
the relative value of the statistical parity difference metric for this feature, mapped
to a 0 to 1 bar chart. This allows users to quickly identify features for further explo-
ration, either through an imbalance in target distributions for feature values, or a high
fairness metric value, as discussed in section 3.3.3. We choose percentage bar graphs
as they normalize the data and allow easy comparison to enable the identification of
trends or possible relationships.

Using a contextual menu, users are able to add a feature to a combination (see
section 4.5) (REQ2.9), toggle the feature’s status as sensitive (REQ1.5), or mark the
feature as potentially ’unfair’ for further discussion (REQ1.7, REQ2.16), which set the
feature color to red.

To ease visual processing load, clicking or hovering over a feature makes all con-
nected relationships more prominent. Outgoing edges are colored blue to encode the
direction of causality (REQ3.2). In addition, if a relationship is clicked or hovered over,
the relationship’s strength is shown in numerical form, generated from the causal dis-
covery algorithm.

Initially, all features are displayed in the causal graph to get an overall sense of
the data, based on feedback from the workshops (REQ1.1, REQ1.3). Users are also
allowed to temporarily filter features and their relationships that interest them most
for further exploration, reducing the visual ‘clutter’ of the graph. To do so, users are
able to enter a drill-down mode and select the features of interest (REQ2.1, REQ2.3).
Only the selected features and their relationships are then shown in this UI component.
The user is able to easily exit this drill-down view and return to the full causal graph.

When investigating the model, feature importance is encoded as the feature’s color
saturation (Figure 9) (REQ3.1). Feature importance in the model represents the ab-
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solute value of the feature weight and therefore can be mapped to a saturation scale
between 0 to 1. The less saturated a node, the smaller of an impact it has on the model,
giving users an indication of how much features contribute to the model’s predictions.

[Figure 9 near here]
The causal graph offers opportunities for extension based on domain and informa-

tion requirements. Obviously, different choices could have been made for encoding in-
formation in the causal graph, by choosing different mappings of information to visual
attributes such as colors and size, by selecting other graph types, or by highlighting
other important information such as different feature types. However, we encourage
designers to favor simplicity and ease of understanding in order to communicate this
information to data scientists but particularly to domain experts. We also implemented
a common ‘overview and drill-down’ data visualisation strategy which was suited to
our stakeholders.

4.4. Features and Relationships Information

The causal graph works in conjunction with a supporting information component.
This displays additional contextual information triggered when selecting features and
relationships (REQ1.1, REQ 1.3, REQ2.2), satisfying the main requirements outlined
in section 3.3.3.

In the dataset view when clicking on a feature (Figure 10), the component shows
in-degree and out-degree values derived from the causal graph, a bar graph of fairness
metric scores, and a table which shows, for each categorical or binned feature value,
the number of instances in each target category – here ‘accepted’ and ‘rejected’ – and
the acceptance rate in the same way as in the system overview. In the model view, we
add prediction confidence, i.e. the certainty for making this prediction represented by
its closeness to the decision boundary (Kulesza et al., 2015), as an additional column
to this table, and display this as pie slices. This table provides the same information
as the feature bar graph in the causal graph and also allows easy, visual comparison
between feature values and against the overall target ratio.

[Figure 10 near here]
When clicking on a relationship in the causal graph, the component presents a

stacked bar graph (Figure 11), showing the percentage of the intersection of the two
related feature values (REQ2.1). The outgoing feature’s value (the cause) is mapped to
the x-axis of the graph, while the other feature’s values are shown on the y-axis. This
simplified the Sankey diagrams originally shown in the workshops (see section 3.3.3)
while supporting easier comparisons.

[Figure 11 near here]
This UI component could be extended to suit other use cases. The bar graph of

fairness metrics is extensible to show more metrics, if desired. The table of detailed
feature information could also include other information that is of importance to the
user group. As always, information could be encoded differently. In particular, while we
chose to show relationships between two features in a very simplistic way, in preference
to Sankey diagrams, there might be other way of better visualizing relationships for
specific user group.

The bar graphs within this component are also connected to the dataset component
(see section 4.6); clicking on a particular value or bin filters applications shown in the
dataset component. This allows users to further explore applications that might be
problematic (REQ4).
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4.5. Feature Combinations

To support the investigation of intersectional bias and subgroup fairness, as evidenced
in the workshops (see section 3.3.3), users are able to add features to a combination
(REQ2.9). Subgroups (Figure 12) are presented as ‘cards’ which communicate the
subgroup’s acceptance rate, number of application instances in this subgroup and the
combination’s feature values. To focus attention on possible issues of fairness, cards
were ordered by low to high acceptance ratio. Users were able to highlight combinations
as ‘unfair’ for further exploration and discussion.

[Figure 12 near here]
In the implemented prototype, users have to select subgroups of interest. In a real

working system, this could be extended through automatic calculation of all possible
subgroup combinations. This might be computationally expensive, however. On the
other hand, more support for focused user-driven exploration could also be provided,
such as filtering against a minimum number of instances that makes up a subgroup.

4.6. Dataset

This component enables users to see the underlying raw data and investigate individual
applications (REQ4). The dataset component (Figure 13) presents all features in a
spreadsheet-like table, familiar to many users (REQ4.1). It allows users to filter and
sort by feature and value, and is also connected to the feature information component
described in section 4.4. The target feature (here, the result column) and its values
are always visible, with additional color-coding to help with rapid visual processing.

[Figure 13 near here]
The dataset table in the model view (Figure 14) also includes a column for prediction

confidence. i.e. the application’s certainty or closeness to the decision boundary, which
is shown as a percentage and a pie slice visualization. In addition, if a user selects
an application we show the corresponding feature values and their relative feature
weights. The weights are shown as bi-directional bars, either negative (red) or positive
(blue). In addition, the criticality of the feature value, i.e. the feature value multiplied
by the weight of the feature, is encoded by color depth; the deeper the color, the
more critical the feature value is in determining the target value. This enables users
to understand how features contribute to the model.

[Figure 14 near here]
Additionally, this component is also connected to the compare applications com-

ponent (section 4.7). By selecting an individual application, a similarity comparison
graph is generated.

4.7. Compare Applications

This component is designed to give users the ability to explore similar applications that
might have very different outcomes, hence uncovering potential biases or unfairness at
the individual level (see section 3.3.3) (REQ4.3, REQ4.4). This is initiated by selecting
an application in the dataset component to show a similarity comparison graph.

In this graph in the dataset view (Figure 15), we plot all applications as data points.
The target categories are encoded with color (accepted: blue, rejected: red) to be con-
sistent with the dataset table’s encoding of the target. On the y-axis, the plot shows
similarity of all applications to the currently selected application, shown in a square
outline (REQ4.3). Different similarity metrics could be applied, we chose the Pearson
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correlation coefficient. When investigating similarity in the dataset, the target cate-
gories are presented on the x-axis. In the model view, the x-axis represents prediction
confidence (or certainty) of the target outcome for each application; either to be ac-
cepted or rejected. This allows users to understand how close a selected application is
to a decision boundary, and also its relationship to all other applications (REQ4.5).

[Figure 15 near here]
The user can select another application on the plot, which shows the compared

features side by side, along with the feature similarity score represented as a bar chart
(REQ4.4). This information is ordered from least similar values to most similar.

Constructing the plot relies to a great extent on the binary target which aids map-
ping this information on a 2D visualisation. However, if the target had been multi-
categorical or continuous, different visualization choices are needed while still encoding
similarity and prediction confidence as important information.

5. Study 2: FairHIL evaluation with stakeholders

The aim of this study was to evaluate FairHIL in order to understand if the UI com-
ponents we instantiated were useful and usable by loan officers and data scientists,
our two stakeholder groups, to investigate fairness. As fairness is such a subjective
notion, we did not measure any ’task success’, instead we paid attention to qualitative
feedback which point the way to improvements of the UI or further requirements.

5.1. Participants

We conducted one-to-one 1-hour sessions with 17 participants, 8 loan officers (mean
age=38, stdev=4.54) and 9 data scientists (mean age=31.8, stdev=3.56). Table 4 shows
the background details of the participants in more detail. Most data scientists were
aware of AI fairness while most loan officers were not. We did not capture participants’
familiarity with similar tools in our background questions, however, currently there are
no such tools in systematic use at the partner bank. Due to COVID-19 restrictions all
sessions were held online through remote meeting software. Recruitment was facilitated
by Intesa Sanpaolo, a partner bank involved in the project. This study was approved
by City, University of London Ethics Committee. No incentives were offered.

[Table 4 near here]

5.2. Setup

We focused in detail on the dataset UI components, as they were very similar to the
AI model UI components. We probed participants’ reactions to each UI component
as they used the prototype: first we gathered opinions about the setup process of
loading the dataset and initialising the model, focusing in detail on selection of sen-
sitive features and metrics. We then explored how they would use the prototype to
investigate fairness of a dataset, which consisted of using the causal graph, the feature
and relationship information, feature combinations, and investigating the dataset and
comparing applications. We repeated this for the model exploration where we focused
also on the use of prediction confidence and feature weights.

As they interacted with the prototype, we encouraged the participants to ‘think
aloud’, and verbalize if they would use the UI component, and if so, how. The study
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concluded with two post-session questionnaires to evaluate users’ experience in inves-
tigating fairness using the UI. First, we asked participants to answer the following
questions around the usefulness of the prototype, using a 7-point Likert scale:

• The prototype supports my ability to assess fairness effectively
• The interface provides the information I need to assess fairness effectively
• The interface provides a sufficient amount of detail needed to assess fairness

effectively
• The interface provides the functionality I need to assess fairness effectively
• The interface supports the way I reason when making a decision

We also allowed participants to add free-text comments on their experience of the
prototype. Second, we employed the simplified NASA-TLX questionnaire (Hart &
Staveland, 1988), which is widely used in assessing UIs and XAI to understand work-
load.

Sessions were screen and audio recorded and analyzed qualitatively through the-
matic analysis (Clarke et al., 2015) focusing on themes of understanding, use and
usefulness for each UI component; in addition, we also analyzed the usefulness ques-
tionnaire’s free comments qualitatively. We report the quantitative results of the ques-
tionnaires through simple descriptive statistics for each stakeholder group.

5.3. Findings

Overall, the prototype was received equally well by both sets of stakeholders, as evi-
denced in the usefulness questionnaire responses (Figure 16). All responses were above
3.5 on a 7-point scale, with responses mostly at the upper end of the rating scale. This
indicates that both stakeholder sets were happy that the tool supported them in assess-
ing fairness by providing necessary functionality, that it provided information neces-
sary and in sufficient detail to make assessments, and that it supported their reasoning
when making decisions. Loan officers viewed the prototype slightly more positively on
the whole, but we only found significant differences between data scientists and loan
officers in two of the responses, for ‘This interface provides a sufficient amount of de-
tail needed to assess fairness effectively’ (Mann-Whitney U, U=58.00, p=0.036) and
‘The interface supports the way I reason when making a decision’ (Mann-Whitney U,
U=57.00, p=0.046).

[Figure 16 near here]
Regarding workload as measured through the NASA-TLX questionnaire, there were

no significant differences between data scientists and loan officers when investigated
through Mann-Whitney U tests (Figure 17). Note that ratings for both stakeholder sets
on mental demand and effort were relatively high. This is likely due to the complexity
of the UI and the high amount of information that needs to be processed by the user.
However, this is balanced by the perceived performance which indicates that users
also felt that the fairness exploration through the prototype was paying off and led to
success.

These results show that the UI components were perceived as useful for performing
their tasks by both sets of stakeholders, and that felt that they were usable.

[Figure 17 near here]
Our efforts of explaining the UI concepts in AI fairness were mainly successful, with

very few areas that caused confusion. The ML and fairness concepts that were par-
ticularly difficult for loan officers to grasp were targets (5 out of 8 loan officers) and
sensitive features (4 out of 8 loan officers). Frequently, targets and sensitive features
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were seen as any features that mattered in decision-making, e.g. that were strongly
related to the target or to sensitive features. Possibly, this would require further clar-
ifications about input and output in ML predictive models, and what features are
protected by law.

We now turn to investigating responses to individual UI design components.

5.3.1. Metrics Choice

An area that requires additional transparency to increase understanding is fairness
metrics. Both sets of stakeholders, but in particular data scientists, requested more
information about how they were calculated, which ones should be selected, and how
they should be applied. This reflects the fact that in general they were not entirely
trusted as a method for assessing fairness, for example:

“These five metrics would have trouble letting me understand, won’t allow me to under-
stand well if I am being discriminatory because I don’t see in these descriptions the way
they are used.” - ED03

The custom metric builder in the UI was very popular: 7 data scientists and 4
loan officers stated that they would use it to create metrics. While data scientists
stated that they would use this to create metrics that were not included in the UI by
default, loan officers wanted to create a new feature to measure affordability for each
application; it seems that they were trying to define a similarity metric in the sense
of (Dwork et al., 2012). For this, they wanted to define and compute affordability
by selecting other features, and then, if the applicant was able to afford the loan, use
this as an acceptance criterion, independent of other (sensitive) features. Of course, a
challenge with this approach is to define affordability in a fair way.

5.3.2. Causal Graph

Responses indicated that there were usually no problems in understanding the causal
graph; all users considered it very intuitive, for example:

”There are also indirect effects, indirect ways that age can affect the result. I think that
it is a really interesting picture” - ED03

Encoding important relationships as thicker lines helped users to focus on the prob-
lematic relationships, such as ones connected to sensitive features, which possibly cause
fairness issues, or to the target, which directly affected the final loan decisions. High-
lighting sensitive features was mentioned positively by all data scientists and 6 loan
officers, while highlighting important relationships were mentioned by 8 data scientists
and 7 loan officers. Users also said that the causal graph encouraged exploration of
relationships between features that were not directly affecting the target, or that it
encouraged exploring features that were not sensitive.

Using the casual graph, loan officers were able to confirm or reject hypotheses they
had about the data. For example:

“It’s clearer for me that age is an important feature more than gender or citizenship,
that’s an idea I had before because of my experience, and I told you before that age is more
important but now, I can realise it even looking at the chart, it’s like a confirmation.” –
EL03

This can be useful in investigating decision-making biases, and possible discrimina-
tory practices, based on domain expertise.
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Users were able tp simplify the causal graph to drill down into exploring features
of interest in more detail, and all participants found this useful. Participants either
concentrated on sensitive features and their relationships to the target, or to hide
features that were considered irrelevant or unimportant, usually because they did not
have strong relationships with other features.

5.3.3. Features and Relationships Information

Both sets of stakeholders paid attention to the fairness metrics in the information
component or metric indicator in the causal graph. However, possibly because it was
not clear what these fairness metrics captured or how they could be used, they were
much more interested in exploring the relationships. This was useful to explore possible
biases and discrimination in decision-making. For example:

“ah that’s interesting to see the acceptance rating on the age, so we can appreciate that
it’s growing, there’s just one that is decreasing here. Also, we can see the number of
people for each bucket, this is useful. Yeah, the majority are in their 40s and 50s.” – ED09

When exploring the model, both sets of stakeholders found the information pro-
vided useful for exploring possible issues in the decision-making process and identify
fairness issues. Nine data scientists and 6 loan officers stated that feature importance
was useful; 4 data scientists and 3 loan officers commented on the usefulness of the
prediction confidence indicators; 7 data scientists and 5 loan officers mentioned the
usefulness of seeing feature weightings for individual applications.

5.3.4. Feature Combinations

Users were able to combine features and explore their relationship to the target through
the Group Combination UI component. Nine data scientists and 7 loan officers stated
that they would use the combination feature to help them investigate bias. For exam-
ple:

“We can understand the relation between age, citizenship, net monthly income in order to
obtain a loan. And as I expected the rate is growing when net monthly income is growing,
citizenship national and the age is around 40. I expected this result, this acceptance rate.
I believed this acceptance rate could have been higher than 54.2%. . . I think this tool is
fantastic because you can understand where, in what kind of area we have to concentrate
in order to avoid a lot of rejected, to understand why there are a lot of rejected, and to
help avoid this result.” – EL08

However, there were some concerns voiced by participants around scalability of this
functionality to include more feature intersections (we limited this to 3) or how to
facilitate easy comparisons between subgroups (we showed a percentage).

5.3.5. Dataset

Having access to the raw data was appreciated by all participants because it facili-
tated the investigation of individual fairness. This was especially surprising since the
workshops reported in section 3.3.2 seemed to show that data scientists were not as
interested in exploring the dataset from this perspective.

Linking the dataset component to the feature and relationship information compo-
nent was especially liked:
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“[It would be nice to] click on this grey area and click to see how many male or how
many females are in this grey area [the credit risk level group in the bar]. [. . . ] Ahh ok
the dataset updates, cool, cool, this is very useful. This is useful because here I can see
the records and understand why, and if there is any error or something like that. . . to
understand better the data.” - ED06

Participants stated that they liked how the dataset information was interconnected
with other UI components which allowed them to ‘trace’ the decision-making through
to the raw data.

5.3.6. Compare Applications

The compare applications component supported the exploration of individual fair-
ness further. All data scientists and 6 loan officers stated that they would use this
component. Participants contrasted individual applications in an attempt to explain
alternative outcomes and to identify the features and their values that could have
impacted the decisions, for example:

“I can compare the selected one that has been rejected with this one that has been
approved, in order to see if there is some difference that has affected the application.
This is important because for example the first thing that I see is that the loan amount
is very high in the one that has been rejected, while this one is not so high, probably
one of the most important reasons that the application has been rejected for the loan
amount.” – EL06

6. Discussion

Our work has investigated the design space to support domain experts and data sci-
entists to investigate fairness, and how a UI could be implemented for the loan appli-
cations domain and more generally to fulfill their requirements. We will now discuss,
first, the limitations of our study, second, how current tools and our prototype cover
this design space, and third, implications for further extensions to FairHIL. We con-
clude by discussing three areas of supporting human-in-the-loop fairness that warrant
further attention.

6.1. Limitations

The work presented here has some limitations in its scope. First, our workshops and
evaluation drew on a relatively small sample of participants, and thus cannot generate
any robust quantitative findings. However, the value of a qualitative approach is to
provide rich insights into users’ needs that is able to generate novel UI designs. A
related issue is that we have not implemented a fully working prototype that could
be evaluated in a larger field trial, embedded in the practices of domain experts and
data scientists. Both of these concerns would need to be addressed in further work
that goes beyond the scope of this paper.

Second, our investigations were only situated in the loan applications domain. We
have already highlighted that this might affect the datasets used, the ML models and
hence also the UI design and visualizations. Furthermore, we involved loan officers and
data scientists from only one organization. While we do not anticipate that practices
differ significantly between banking institutions in terms of loan applications, we do not
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know how fairness investigations extend to other stakeholders in loan applications, e.g.
loan applicants or regulatory bodies. Similarly, domain experts and data scientists in
other domains might have different criteria and ways to assess fairness which warrants
further investigation.

6.2. Coverage of design space by existing tools

Table 5 shows how requirements that we uncovered during our workshops—which
constitute the design space for tools to support investigating fairness—map to func-
tionality by existing tools, including FairHIL. Currently, there are no tools that fulfill
all of the requirements that we uncovered during our work. However, FairHIL is so far
the first to integrate most of these requirements to support both stakeholder groups
to investigate fairness. Still, particular gaps exist in providing advanced data manipu-
lation functionality, comparing individual cases, and mitigating fairness by adjusting
feature weights or ’deleting’ features. These are areas that future design endeavours
could target.

[Table 5 near here]

6.3. Design Implications for Human-in-the-loop Fairness Tools

Our findings have concrete ramifications for the design of human-in-the-loop fairness
UIs. We here summarize these insights.

While metrics are useful for assessing fairness, data scientists sometimes had diffi-
culties in understanding fairness metrics, as found in section 5.3.1. Hence, in addition
to describing the metrics on a high level, as we did in FairHIL, the details of how they
are calculated should be given. Furthermore, users will need to be given guidance as
to the expected ranges of these metrics, or when a metric indicates that there are dis-
criminatory outcomes. This information could be integrated into visualizations. Loan
officers would also benefit from this improvement, since they have less background
knowledge about fairness and ML concepts.

From 5.3.3, we found that allowing users to see the features’ relationship to the
target and to each other was pivotal. We suggest that this could be used to identify
potential biases in decision-making, and that this could lead to further discussions
within the organization for changing policy or applying fairness mitigation.

As we have seen in 5.3.4, exploring subgroup fairness was viewed positively by both
stakeholder groups and could be a powerful way to explore intersectional bias (Kearns
et al., 2018). However, further work needs to consider how to extend combinations of
features, possibly automatically as discussed in section 4.5, while easing comparisons
between subgroups through visual means. To make the assessment of feature combina-
tion more effective, it is necessary to extend the number of features taken into account
when comparing the combinations, and to show the number of applications included
in a specific subgroup.

Users want a way to explore the raw data and its relationship to the target, as we
found in 5.3.5. This allows users to trace decisions back to individual data instances,
and gain a deeper understanding of the data as it relates to fairness. Current interfaces
rarely support this (Ahn & Lin, 2020) yet its inclusion, especially to drive further
detailed comparisons with other applications is warranted. Our work has shown that
comparing applications was intuitive and useful for assessing fairness in loan applica-
tions, as we found in 5.3.6. Yet there are few human-in-the-loop fairness UIs, FairSight

24



(Ahn & Lin, 2020) being a notable exception, that currently support this approach.
This component also clearly supports the exploration of individual fairness in loan
decisions, helpful for both stakeholder groups. Yet, the Compare Applications compo-
nent could be further extended. While only data scientists asked to compare clusters’
i.e. more than one application, this ability may be useful for both stakeholder groups.
Identifying these subgroups could also be automatically supported through, for exam-
ple, k-nearest neighbor approaches. Comparisons could be extended even further, by
letting users choose similarity metrics, or by letting the user build a custom similarity
metric by re-weighting features.

6.4. Supporting the Human-in-the-loop Fairness Process

Our work also raises three wider questions.

6.4.1. How to Explain ML and Fairness Concepts?

Our findings confirm that transparency and explanations of ML and fairness concepts
are necessary (Hohman, Head, Caruana, DeLine, & Drucker, 2019; Lim & Dey,
2009). Adopting common XAI approaches (Kulesza et al., 2015; Lundberg & Lee,
2017; Ribeiro et al., 2016) to explain models in a way that is understood by non-
technical domain experts and technically-savvy data scientists alike might be one way
forward. To ensure understandability, information needs to be carefully encoded to
support intuitive exploration and easy visual processing. While general principles for
explaining ML concepts have been suggested e.g. ’be iterative, sound and complete
but do not overwhelm’ (Kulesza et al., 2015), there is still much work to be done to
translate these principles into concrete design guidelines or design patterns.

A lack of understanding around fairness measures often meant that they are not
transparent as to what they capture, how they are calculated and how they should be
used. For example, in our studies, both domain experts and data scientists wanted more
information and explanations of when measures indicated unfairness or discrimination.
There also seemed confusion when decision-making bias tipped over into unfairness,
for example, older applicants had an easier time getting a loan because their credit
rating was higher due to a longer credit history yet does this mean it is unfair? Fairness
measures could be made more transparent through a UI but solving these issues might
also involve education of stakeholders around ML concepts and fairness principles.

6.4.2. What is fair?

It is becoming clear from our as well as others’ work (Kasinidou, Kleanthous, Barlas,
& Otterbacher, 2021; Lee, Jain, Cha, Ojha, & Kusbit, 2019; Saxena et al., 2020;
Woodruff, Fox, Rousso-Schindler, & Warshaw, 2018) that different stakeholders might
have different conceptualizations of what fairness is, how it should be measured, and
how fairness considerations should be integrated into the wider decision-making pro-
cess when using ML. We found that in our domain, loan officers preferred to pay
attention to aspects related to individual fairness while data scientists tend to employ
notions of group fairness. It could be argued that existing fairness measures capture
both of these perspectives, and thus could be integrated in a UI to support both do-
main experts and data scientists. However, as previously covered in section 2.1, often
these measures are not compatible or there needs to be a trade-off between fairness
measures and accuracy. So who gets to decide which fairness measures to apply? We

25



suggest that this is a question that urgently needs attention within an organizational
and also a socio-technical context.

6.4.3. How and when to investigate fairness?

Our study suggests that requirements to support investigating fairness are very rich
and varied. While we found that domain experts and data scientists might go about
investigating fairness slightly differently, it was surprising to us that in the main these
two stakeholder groups agreed on the information and functionality required for them
to ably investigate fairness. This begs the question whether different toolkits are in-
deed necessary for these user groups, or whether we can find a way to communicate
effectively across different user types. Current perspectives in XAI argue that different
UIs might be necessary for different stakeholder groups (Gunning et al., 2019) but
our work suggests that it might be possible to craft UIs that suit a variety of users.

An interesting yet open question is how fairness investigations should be integrated
into the AI model development. Most existing tools, such as What-if Tool and AI
Fairness 360, adopt a mitigation strategy after AI models have been developed. While
tools such as ours and Silva can be used on datasets as well as AI models, urgent
discussion is needed on how to integrate fairness in all steps in the AI development
process, from data collection to after-deployment.

There are several opportunities to actively involve humans in the design process of
an AI-enabled system. A tool such as ours could be used once data has been collected
to explore bias and potential unfairness in a dataset, even before a model is developed.
This could involve business stakeholders but also people affected by the decisions of
such an AI system, to better understand whether the collected data is acceptable.
Furthermore, these stakeholders could again be involved once models have been de-
veloped, before the deployment. Their input could contribute to the choice between
models for deployment, or to assess whether a model is indeed ready to be deployed.
We also see the potential for use of our tool after an AI system has been deployed, to
keep checks on the continuing fairness of the AI system.

7. Conclusion

In this paper, we presented our findings from a series of investigations to understand
the design space to support investigating AI fairness for domain experts and data
scientists. We ran design workshops to gather requirements for human-in-the-loop
fairness UIs. We then presented 7 UI components that support data scientists as well
as loan officers in assessing fairness and finding potential fairness issues, instantiated
in FairHIL, a prototype UI. We addressed how these UI components could be adapted
and extended for other domains. Finally, we evaluated FairHIL through a user study.

Our findings show that:

• Requirements underlying the design space are rich and varied. Surprisingly, do-
main experts and data scientists share many requirements to investigate fairness.

• AI and fairness concepts need to be carefully explained, especially how they
should be applied and what might indicate fairness issues.

• Causal graphs, alongside relevant and easy-to-process information about features
and relationships, were an intuitive way to support fairness investigations by both
stakeholder groups.

• Both stakeholder groups appreciated access to the underlying data and the abil-

26



ity to explore and compare individual applications.
• Comparing subgroups is important to users.

This work will help researchers, designers and developers to better understand how
domain experts and data scientists investigate fairness, and to build better human-
centred AI tools to support them. We hope that this will lead to AI systems that are
fairer and more transparent for everyone.
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Table 1. A comparison of UI functionality among existing tools described in section 2.2.

Functionality

What-if Tool

(Wexler et al.,

2020)

FairVis

(Cabrera et al.,

2019)

FairSight

(Ahn and Lin,

2020)

Silva

(Yan et al.,

2020)

Fairness

Elicitation Tool

(Cheng et al.,

2021)

Show performance

metrics
X X X

Show statistical

fairness metrics
X X X X

Select sensitive/

protected features
X X

Show data in groups X X X X X

Show sub-groups X X

Show counterfactuals

to data points
X X

Show decision

boundaries
X

Provide descriptive

stats for features
X X

Show feature

contributions
X X X

Show causal graph X

Show data similarity X X
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Table 2. Overview of workshop participants’ details.

ID Gender Age Education Role

WL01 Male 36 Bachelor Loan Officer

WL02 Male 33 Master Loan Officer

WL03 Male 39 Master Loan Officer

WL04 Male 42 Master Loan Officer

WL05 Male 34 Master Loan Officer

WL06 Female 35 Master Loan Officer

WD01 Female 28 Master Data Scientist

WD02 Male 38 Doctorate Data Scientist

WD03 Female 27 Master Data Scientist

WD04 Male 28 Master Data Scientist

WD05 Male 28 Master Data Scientist

WD06 Female 29 Master Data Scientist
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Table 3. Requirements arising from design workshops. In the Stakeholder row, L stands for the requirements

from loan officers, D from data scientists, and B from both stakeholders.

Area Use Requirement Stakeholder

1. Attribute

Informational

1.1 attributes, number of records and attribute value distributions B

overviews 1.2 amount of missing data B

1.3 fairness metrics for model and individual protected attributes B

1.4 target distribution B

1.5 protected attributes D

1.6 explanation how attribute values are calculated or derived D

1.7 Identify if the data is subjective/ objective D

1.8 Identify where the data has come from (applicant, bank, third
party) / attribute provenance

D

2. Investigate

Informational

2.1 distribution of protected attributes with other attributes B

Relationships
2.2 distribution of user-selected attribute values (e.g. credit risk
ratings) and target values

B

between attributes 2.3 distribution of two user-selected attributes’ values B

2.4 Credit risk rating traffic light system D

Functional

2.5 Support data transformations (e.g. categorical into numerical,
binning)

D

2.6 support filling in missing values D

2.7 Support creation of new attributes (i.e. calculated from other
attributes e.g. affordability)

B

2.8 Ability to create/include own fairness metric (if not already in
system)

B

2.9 Allow creation of subgroups based on a combination of
attributes and see their distribution on target

B

Adjust model

2.10 Input custom thresholds to affect AI model B

2.11 Change weights on attributes to adjust AI model B

2.12 Remove attributes B

2.13 Change weightings of attribute variables (the variables that
make up the attribute) on attributes

D

2.14 Identify similar attributes which do not contain protected
attributes and substitute attribute from these choices

D

2.15 Optimise model against fairness metrics and accuracy
automatically

D

2.16 Feedback to data scientists on ‘questionable’ attributes
that should not be used for decision-making

L

3. Causal Graph

Informational

3.1 Node weight and impact on target B

3.2 Relationships between nodes, their ‘strength’ and direction B

3.3 Explanation of how the graph was derived B

Adjust model
3.4 The ability to remove nodes and relationships to adjust
AI model

B

4. Individual cases

Informational

4.1 specific application and attribute values B

4.2 fairness metric for individual case B

4.3 Level of similarity between cases B

4.4 Select specific cases to compare and show which attributes
are similar

B

4.5 Show decision boundaries B

Functional
4.6 See ’What If’ results on target based on changes to
attribute values

L

5. Model

Informational

5.1 how model works B

5.2 how it was created, rationale for decisions in modelling B

5.3 who created it B
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Table 4. Overview of evaluation participants’ details.

ID Gender Age Education AI Fairness Knowledge Role

EL01 Female 37 Doctorate I am aware of fair machine learning Loan Officer

EL02 Female 40 Master None Loan Officer

EL03 Male 42 Master None Loan Officer

EL04 Male 43 Master None Loan Officer

EL05 Male 41 Master I am aware of fair machine learning Loan Officer

EL06 Female 30 Master None Loan Officer

EL07 Male 38 Master None Loan Officer

EL08 Male 33 Master None Loan Officer

ED01 Female 32 Master I am aware of fair machine learning Data Scientist

ED02 Female 29 Master I actively work in fair machine learning Data Scientist

ED03 Male 34 Doctorate I am aware of fair machine learning Data Scientist

ED04 Female 31 Master None Data Scientist

ED05 Male 34 Doctorate I am aware of fair machine learning Data Scientist

ED06 Male 35 Master None Data Scientist

ED07 Male 27 Master I am aware of fair machine learning Data Scientist

ED08 Female 37 Doctorate
I consider myself up to date with what’s

in the fair machine learning space
Data Scientist

ED09 Male 27 Master I am aware of fair machine learning Data Scientist
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Table 5. Requirements arising from design workshops covered by conventional tools and ours. In the Stake-
holder row, L stands for the requirements from loan officers, D from data scientists, and B from both stake-

holders. WiT, FV, FS, SV, FET, and HFIL stand for What-if Tool (Wexler et al., 2020), FairVis Cabrera

et al. (2019), FairSight (Ahn & Lin, 2020), Silva (Yan et al., 2020), Fairness Elicitation Tool (Cheng et al.,
2021), and FairHIL (our tool), respectively.

Area Use Requirement
Stake-
holder

WiT FV FS SV FET
FHIL
(ours)

1. Attribute
overviews

Informational

1.1 attributes, number of records
and attribute value distributions

B X X X X X

1.2 amount of missing data B

1.3 fairness metrics for model and
individual protected attributes

B X X X X X X

1.4 target distribution B X X X

1.5 protected attributes D X X X
1.6 explanation how attribute
values are calculated or derived

D

1.7 Identify if the data is
subjective/ objective

D

1.8 Identify where the data has
come from (applicant, bank, third
party) / attribute provenance

D

2. Investigate
Relationships
between attributes

Informational

2.1 distribution of protected
attributes with other attributes

B X X X

2.2 distribution of user-selected
attribute values (e.g. credit
risk ratings) and target values

B X X X

2.3 distribution of two user-
selected attributes’ values

B X X

2.4 Credit risk rating traffic light system D

Functional

2.5 Support data transformations
(e.g. categorical into numerical, binning)

D X

2.6 support filling in missing values D X
2.7 Support creation of new
attributes (i.e. calculated from other
attributes e.g. affordability)

B X X

2.8 Ability to create/include own fairness
metric (if not already in system)

B X

2. Investigate
Relationships
between attributes

Functional
2.9 Allow creation of subgroups based
on a combination of attributes and
see their distribution on target

B X X X X

Adjust model

2.10 Input custom thresholds to affect AI model B

2.11 Change weights on attributes to
adjust AI model

B X

2.12 Remove attributes B X
2.13 Change weightings of attribute
variables (the variables that make
up the attribute) on attributes

D X

2.14 Identify similar attributes which
do not contain protected attributes
and substitute attribute from these choices

D

2.15 Optimise model against fairness
metrics and accuracy automatically

D

2.16 Feedback to data scientists on
‘questionable’ attributes that should
not be used for decision-making

L

3. Causal Graph

Informational

3.1 Node weight and impact on target B X
3.2 Relationships between nodes, their
‘strength’ and direction

B X X

3.3 Explanation of how the graph was derived B

Adjust model
3.4 The ability to remove nodes and
relationships to adjust AI model

B

4. individual cases

Informational

4.1 specific application and attribute values B X X X X X

4.2 fairness metric for individual case B

4.3 Level of similarity between cases B X X
4.4 Select specific cases to compare
and show which attributes are similar

B X X X

4.5 Show decision boundaries B X X

Functional
4.6 See ’What If’ results on target
based on changes to attribute values

L X

5. Model

Informational

5.1 how model works B X
5.2 how it was created, rationale for
decisions in modelling

B

5.3 who created it B
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(a) The What-if Tool UI (Wexler et al., 2020) (b) FairVis UI (Cabrera et al., 2019)

(c) FairSight UI (Ahn & Lin, 2020) (d) Silva UI (Yan et al., 2020)

(e) Fairness Elicitation Interface (Cheng et al.,
2021)

Figure 1. Human-in-the-loop Fairness Toolkits
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Figure 2. Workshop causal graph example.

Figure 3. Initial prototype.
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Figure 4. Sankey graph showing relationships between nationality and credit level.

Figure 5. Main UI Components.
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Figure 6. Setup: metrics.
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Figure 7. Metric builder.
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Figure 8. Causal graph in the dataset view showing a selected node: ”net monthly income”
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Figure 9. Causal graph in the model view showing feature importance (saturation).

Figure 10. Detailed Information on Features.
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Figure 11. Detailed Information on Relationships.

Figure 12. Feature Combinations Component.
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Figure 13. Dataset Component in Dataset View.

Figure 14. Dataset Component in Model View.

45



(a) Dataset View. (b) Model View.

Figure 15. Compare Application component.
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Figure 16. Mean Post-session Usefulness Questionnaire Responses. Error bars show standard deviation.

Figure 17. Mean Post-session NASA-TLX Responses. Error bars show standard deviation.
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