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a b s t r a c t

This paper studies large sample properties of a Bayesian approach to inference about
slope parameters γ in linear regression models with a structural break. In contrast
to the conventional approach to inference about γ that does not take into account
the uncertainty of the unknown break date, the Bayesian approach that we consider
incorporates such uncertainty. Our main theoretical contribution is a Bernstein–von
Mises type theorem (Bayesian asymptotic normality) for γ under a wide class of
priors, which essentially indicates an asymptotic equivalence between the conventional
frequentist and Bayesian inference. Consequently, a frequentist researcher could look
at credible intervals of γ to check robustness with respect to the uncertainty of
the break date. Simulation studies show that the conventional confidence intervals
of γ tend to undercover in finite samples whereas the credible intervals offer more
reasonable coverages in general. As the sample size increases, the two methods coincide,
as predicted from our theoretical conclusion. Using data from Paye and Timmermann
(2006) on stock return prediction, we illustrate that the traditional confidence intervals
on γ might underrepresent the true sampling uncertainty.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

We consider the linear regression with a structural break, following the notations of Bai (1997):

yt =

{
w′

tα + z ′
tδ1 + ϵt , for t = 1, . . . , ⌊τT⌋

w′
tα + z ′

tδ2 + ϵt , for t = ⌊τT⌋ + 1, . . . , T ,
(1)

where wt and zt are dw × 1 and dz × 1 vectors of covariates, and the random variable ϵt is a regression error. ⌊a⌋ is the
largest integer that is strictly smaller than a. The relationship between the outcome yt and the covariate zt , measured by
δ’s, changes across regimes, which are defined by the break location parameter τ ∈ (0, 1). There can be another set of
covariates wt whose relationship with yt , measured by α, stays unchanged across the regimes. The unknown parameters
include the break location τ as well as the slope parameters γ = (α, δ1, δ2). The focus of the current study is on inference
about the slope parameters γ .1

∗ Correspondence to: University Ave, Glasgow, G12 8QQ, United Kingdom.
E-mail address: Kenichi.Shimizu@glasgow.ac.uk.

1 For an extensive review of important aspects in structural break models such as estimation and inference of the number of breaks as well as
reak locations, see Perron (2006).
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Fig. 1. Finite-sample distribution of τ̂LS (blue solid curve) based on the model yt = δ01 (t > ⌊τ0T⌋) + ϵt , ϵt ∼ i.i.d.N(0, 1), τ0 = 0.5, T = 100, with
000 repeated experiments. The horizontal axis is τ − τ0 . We also show finite-sample distribution of the posterior mode of τ (red solid curve with
mall circles). In addition, we randomly chose 3 data realizations out of the 1000 repetitions to plot posterior densities of τ in gray dashed curves
hence each of them represents a realization of one data set).

.1. The classic literature

In the literature, the conventional least-squares estimators
(
τ̂LS, γ̂LS

)
for (τ , γ ) are computed as follows: for each

andidate τ , compute the sum of squared residuals of the regression and denote the minimizing choice by τ̂LS . Plug in
he value τ = τ̂LS in the model and define γ̂LS = γ̂ (τ̂LS), where γ̂ (τ ) is the usual OLS estimator of γ assuming the break
ocation τ . Bai (1997) assumes that the true jump size δ0 is either fixed or shrinks to zero as T → ∞, but at a rate
lower than

√
T → ∞. Bai shows that τ̂LS converges at the rate T−1 in the former case and, in the latter case, finds an

symptotic distribution of τ̂LS that can be used for constructing confidence intervals for τ . In both cases, Bai proves that
he asymptotic distribution of γ̂LS is the same as that of γ̂ (τ0), where τ0 is the true value of τ . This means that one can
gnore the very problem of unknown τ when making inference on γ .

Fig. 1 shows examples of finite-sample distributions of τ̂LS (blue solid curves).2 Note that despite the T -consistency,
ˆLS displays significant variation, especially when the true break size δ0 is small.3 In practice, the conventional approach
o inference on the slope parameters γ would ignore this uncertainty, neglecting all possible values of τ other than τ̂LS .
s a consequence, the corresponding confidence intervals on γ tend to undercover since it might not be the case that

ˆLS = τ0 in a given sample.

.2. Bayesian perspective

For a Bayesian, this non-standard estimation problem4 can be dealt with by placing prior on both τ and γ and by
omputing corresponding posterior probabilities. The uncertainty of τ will be automatically reflected on the marginal
osterior probability of γ . This is because the posterior distribution of γ given the data DT can be written as a mixture
here the weights correspond to the marginal posterior density πT (τ ) of τ :

p (γ |DT ) =

∫
p (γ |τ ,DT ) πT (τ )dτ , (2)

here p (γ |τ ,DT ) is the conditional posterior distribution of γ given τ . The posterior density πT (τ ) reflects the uncertainty
f τ given the data set. Fig. 1 shows three realizations of πT (τ ) (gray dashed curves) which are randomly chosen out of the
000 repetitions. Compared to the conventional approach, the key difference is that the Bayesian approach (2) incorporates
ll possibilities of τ (not just τ̂LS) and weights them according to the posterior density, resulting in longer lengths of
redible intervals of γ which consequently tend to have more reasonable coverages. Note that, unlike conventional
requentist methods, Bayesian inference has a valid interpretation even in finite samples as it does not rely on asymptotic
heory.

2 Fig. 1 also shows distributions (red solid curves with small circles) of a Bayesian point estimator of τ , the posterior mode. We later show that
he posterior mode converges to the same limiting distribution as τ̂LS .
3 In addition, the distributions exhibit three modes as reported in the literature (e.g., Baek, 2018; Casini and Perron, 2021).
4 Estimation of structural break models is considered non-standard in a sense that there is a non-regular parameter (e.g., break location) whose
oint estimator converges faster than T−1/2 , the rate at which the regular parameters (e.g., slope coefficients) converge.
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In this study, we examine the asymptotic properties of the Bayesian approach under the fixed jump size framework.
pecifically, we prove a Bernstein–von Mises type theorem for the slope parameters γ which validates a frequentist
nterpretation of Bayesian credible regions. A frequentist researcher could look at the credible interval of γ to check
obustness with respect to the uncertainty of the break location. Such sensitivity analysis is reasonable as our result
uarantees the credible interval to converge to the conventional confidence interval. We first establish theoretical results
nder normal likelihood and natural conjugate prior. We further extend the results to non-conjugate priors using Laplace
pproximation.
The literature on theoretical properties of Bayesian approaches in non-regular models such as (1) is very scarce despite

heir popularity in applications. To our knowledge, frequentist properties of Bayesian approaches for linear regression
odels with structural breaks have not been studied in the literature. Ghosal and Samanta (1995) consider a general
on-regular estimation problem from a Bayesian perspective and establish conditions under which the Bernstein–von
ises theorem holds for the regular part of the parameter. However, their assumptions are difficult to verify in regard to
ur model in consideration.
Recently, Casini and Perron (2020) propose a Quasi-Bayes estimator of the break location τ , which is defined by an

ntegration rather than an optimization. Their approach provides a better approximation about the uncertainty of τ than
he conventional method. Although our focus of the current paper is on inference about the slope coefficients γ and not
, our Bayesian approach toward inference shares the same spirit; any probabilistic statement about γ is expressed as a
eighted average (2) over the marginal posterior density of τ .
The paper is organized as follows. Section 2 introduces the model and lists a set of assumptions. Section 3 describes a

ayesian approach based on normal likelihood and conjugate prior. The section then establishes frequentist properties of
he approach. Section 4 extends the results to non-conjugate priors. Section 5 presents simulation evidence to assess the
dequacy of the asymptotic theory and to illustrate that conventional confidence intervals on the slope parameters tend
o undercover. Section 6 reports an empirical application to the stock return prediction model of Paye and Timmermann
2006). Section 7 concludes the paper. The mathematical proofs are listed in Appendix A. Proofs of the intermediate results
nd additional tables for simulation studies are provided in the online appendix.

. The model and data generating process

.1. The model

Using the reparametrization xt = (w′
t , z

′
t )

′, β = (α′, δ′

1)
′, and δ = δ2 − δ1, the Eqs. (1) can be rewritten as

yt =

{
x′
tβ + ϵt , for i = 1, . . . , ⌊τT⌋

x′
tβ + z ′

tδ + ϵt , for i = ⌊τT⌋ + 1, . . . , T .
(3)

Note that zt is a subvector of xt . More generally, let zt = R′xt , where R is a dx × dz known matrix with full column rank
nd hence zt is defined as a linear transformation of xt . For R = (0dz×dw , Idz )

′, we obtain model (3). For R = Idx , a pure
change model is obtained. To rewrite the model in matrix form, we introduce further notations. Define Y = (y1, . . . , yT )′,
ϵ = (ϵ1, . . . , ϵT )′, X = (x1, . . . , xT )′, X1τ = (x1, . . . , x⌊τT⌋, 0, . . . , 0)′, and X2τ = (0, . . . , 0, x⌊τT⌋+1, . . . , xT )′. Define Z, Z1τ ,
and Z2τ similarly. Then, Z = XR, Z1τ = X1τR, and Z2τ = X2τR. Now, Eqs. (3) can be written as

Y = Xβ + Z2τ δ + ϵ = χτγ + ϵ, (4)

where χτ = (X, Z2τ ) and γ = (β ′, δ′)′. Let H ⊂ (0, 1) be the space of the break locations. For a given τ ∈ H, define
ST (τ ) = Y ′Y − Y ′χτ

(
χ ′

τχτ

)−1
χ ′

τY . The least-squares estimators of τ and γ are defined as τ̂LS = argminτ∈H ST (τ ) and
γ̂LS = γ̂ (τ̂LS), respectively, where γ̂ (τ ) denotes the usual OLS estimator given the value of τ .

2.2. Data generating process

The data are assumed to include T observations on a response and a vector of covariates: DT = (Y T ,X T ) =

(y1, . . . , yT , x1, . . . , xT ) where yt ∈ R and xt ∈ Rdx , t = 1, . . . , T . Conditional on X T , the response is generated according
to model (4) with the true parameters (γ ′

0, σ
2
0 , τ0)′. We let θ = (γ ′, σ 2)′ denote the regression parameters. We make the

following assumptions about the true data-generating-process (DGP):

Assumption 1.

(i) δ0 ̸= 0.
(ii) ϵt is i.i.d. with E(ϵt |xt ) = 0, E(ϵ2

t |xt ) = σ 2
0 , where σ 2

0 is unknown to the econometrician.
(iii) ΣX = E[xtx′

t ] = plim 1
T

∑T
t=1 xtx

′
t exists and is positive definite.

(iv) For all τ , τ ∈ (0, 1) with τ < τ , 1 ∑⌊τ2T⌋ x ϵ = O (T−1/2) and 1 ∑⌊τ2T⌋ x x′
= (τ − τ )Σ + O (T−1/2)
1 2 1 2 T ⌊τ1T⌋+1 t t p T ⌊τ1T⌋+1 t t 2 1 X p

204



K. Shimizu Journal of Econometrics 235 (2023) 202–219

τ

a

w
m

h
i

t
R
j
b

w

Under the above assumptions, the classical theoretical results apply. Bai (1997) shows that the convergence rate of
ˆLS is T−1 if δ0 is fixed with respect to the sample size: τ̂LS = τ0 + Op(T−1), and that the least-squares estimator for γ is
symptotically normal with the asymptotic covariance matrix being the same as if τ0 is known:

√
T
(
γ̂LS − γ0

) d
→ N(dx+dz )(0, σ

2
0 V

−1), (5)

where

V = plim T−1

( ∑T
t=1 xtx

′
t

∑T
t=⌊τ0T⌋+1 xtz

′
t∑T

t=⌊τ0T⌋+1 ztx
′
t
∑T

t=⌊τ0T⌋+1 ztz
′
t

)
= plim T−1χ ′

τ0
χτ0 .

This means that τ can be treated as known for the purpose of inference about γ . In other words, the uncertainty of the
break location is essentially ignored, and thus the confidence interval for γ tends to undercover in finite samples (see
Section 5 for simulation).

There are several comments on Assumption 1. In threshold regression models (see Hansen, 2000), the threshold
variable is often one of the regressors. In this case, sorting the threshold variable leads to a trend in the regressors, which
requires an alternative approach for the asymptotic analysis. We do not consider the case with one of the regressors being
the threshold variable in this paper. In addition, we require the regression errors to be i.i.d. with variance σ 2. Adding more
flexibility such as heteroscedasticity and serial correlation would be an important future direction.

3. A Bayesian approach under normal likelihood and conjugate prior

The distribution of covariates is assumed to be ancillary and it is not modeled. Throughout this paper, we assume the
normal likelihood function5

p(Y T |X T , θ, τ ) =

T∏
t=1

1
√
2πσ 2

exp

(
−

(
yt − χ ′

τ ,tγ
)2

2σ 2

)
, (6)

here χ ′
τ ,t is the tth row of the matrix χτ . Note that the normality is not assumed for the true DGP, so the model can be

is-specified.
The break location τ and the regression parameters θ are independent a-priori and the prior on θ is the natural conju-

gate prior. That is, π
(
γ , σ 2, τ

)
= π (γ |σ 2)π (σ 2)π (τ ) where the prior on γ conditional on σ 2 is normal N(dx+dz )(µ, σ 2H−1)

and the prior on σ 2 is inverse-gamma InvGamma(a, b). Note that by taking H → 0, a → −(dx + dz)/2, and b → 0, we
ave the uninformative improper prior π

(
γ , σ 2

)
∝ σ−2 as a special case. The prior on τ can be of any form as long as it

s positive at τ0, and π (τ ) is finite for all τ ∈ H.
The conjugate prior is a popular choice in the Bayesian estimation of linear regression models. Our restriction on

he prior for the break location τ is very mild. For example, the uniform distribution on H satisfies the requirement.
ecently, Baek (2018) investigates the same model (1). As the distribution of τ̂LS might exhibit tri-modality for small
umps, Baek proposes a new point estimator for τ based on a modified objective function. The proposed modification can
e regarded as equivalent to specifying a certain type of prior for τ , and indeed such prior satisfies our restriction.
Under the normal likelihood function and the prior defined above, the posterior distributions are

πT (τ ) ∝
[
det

(
H̄τ

)]−0.5
b̄−ā

τ × π (τ ), (7)

γ
⏐⏐τ ,DT ∼ t(dx+dz )

(
2ā, µ̄τ , (b̄τ/ā)H̄−1

τ

)
, (8)

σ 2
|τ ,DT ∼ InvGamma

(
ā, b̄τ

)
, (9)

here H̄τ = H + χ ′
τχτ , µ̄τ = H̄−1

τ

[
Hµ + χ ′

τY
]
, b̄τ = b + 0.5

[
µ′Hµ + Y ′Y − µ̄′

τ H̄τ µ̄τ

]
, and ā = a + T/2, and tk(v, µ, Σ)

is the k-dimensional t-distribution with v degrees of freedom, a location vector µ ∈ Rk, and a k × k shape matrix Σ . See
the online appendix for a derivation.

Due to the availability of the closed-forms for the posterior distributions conditional on τ , the posterior sampling is
simple and fast. One can first draw τ(1), . . . , τ(S) from the marginal posterior of τ as in (7) via, for example, the Metropolis–
Hastings algorithm, where S is the number of posterior draws. For each τ(s), one can sample posterior draws of σ 2

(s) from
the posterior conditional on τ = τ(s), namely (9). Conditional on τ and σ 2, one can draw γ from p(γ |σ 2, τ ,DT ).6 For
example, a laptop with a 2.2 GHz processor and 8 GB RAM takes about 4.1 s to sample 10,000 posterior draws in an
empirical example in Section 6 that has ten slope coefficients in total.

5 Similarly, Qu and Perron (2007) propose a quasi-maximum likelihood estimator assuming normal errors.
6 It can be shown that γ

⏐⏐σ 2, τ ,D ∼ N
(
µ̄ , σ 2H̄−1

)
.
T (dx+dz ) τ τ
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Fig. 2. Example of T−1ST (τ ) with T = 100 (solid, blue), T = 1000 (dash-dotted, green), and T = 10,000 (dotted, red) and plim T−1ST (τ ) (dashed,
black). τ0 = 0.5.

3.1. Asymptotic theory

We investigate the asymptotic behavior of the Bayesian method under the normal likelihood and the conjugate prior
defined above. We do so in two steps. Section 3.1.1 shows that the marginal posterior of the break location τ contracts to
the true value τ0 at the rate of T−1, the same rate at which the least-squares estimator τ̂LS converges. The proof is based
on studying the behavior of the log ratio of the marginal posterior densities of τ . In addition, we establish the limiting
istribution of the posterior mode of τ . Section 3.1.2 establishes a Bernstein–von Mises type theorem for the regression
lope coefficients γ . The proof is based on the T -consistency of the marginal posterior of τ and the fact that the conditional
posterior for

√
T
(
γ − γ̂LS

)
given τ is asymptotically normal. Proofs of the theorems can be found in Appendix A.

.1.1. Marginal posterior of τ

The first step for proving the Bernstein–von Mises theorem is the marginal posterior consistency of τ at rate T−1.
arginal posteriors have not been studied extensively or systematically in the literature. Here, we directly analyze

he form of the marginal posterior of τ . Let LT (τ ) be the marginal likelihood conditional on τ , that is LT (τ ) =

p(Y T |X T , θ, τ )π (θ, τ )dθ, which is available up to a multiplicative constant under the normal likelihood and the
onjugate prior as can be seen in (7). The marginal posterior density πT (τ ) of τ is defined as

πT (τ ) =
LT (τ )∫
LT (τ )dτ

.

The following theorem establishes the first step for proving the Bernstein–von Mises theorem, the T -consistency of
he marginal posterior of τ . It states that the posterior mass outside of a ball around τ0 with radius proportional to T−1

ill be asymptotically negligible.

heorem 1 (Marginal Posterior Consistency of τ at Rate T−1). Suppose Assumption 1 holds. Then, under the normal likelihood
nd the conjugate prior described above, ∀ξ > 0, ϵ > 0, ∃M > 0 and k > 0 such that T ≥ k H⇒

Pθ0,τ0

(∫
BcM/T (τ0)

πT (τ )dτ < ξ

)
> 1 − ϵ,

where for any constant d > 0, Bc
d(τ0) denotes the set difference H \ (τ0 − d, τ0 + d).

The proof of Theorem 1 is built on some intermediate steps, Propositions 1–4. It can be shown that
∫
BcM/T (τ0)

πT (τ )dτ

s bounded by the product of
∫
BcM/T (τ0)

LT (τ )
LT (τ0)

dτ and the inverse of
∫
BcM0/T (τ0)

LT (τ ′)
LT (τ0)

dτ ′ for each T and for any M0 > 0.
Proposition 1 shows that under the normal likelihood and the conjugate prior, due to the availability of the marginal
likelihood conditional on τ up to a normalization constant as in (7), studying the log marginal likelihood ratio boils down
to comparing the sum of squared residuals ST (τ ). Proposition 2 establishes the probability limit of T−1ST (τ ), for which we
how an example in Fig. 2. We then show that the limit of T−1ST (τ ) achieves a unique minimum at τ0 (Proposition 3),
nd study the modulus of continuity of an appropriate empirical process (Proposition 4) in order to derive bounds. The
etail of the proof of Theorem 1 can be found in Appendix A.1.
206
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The Bayesian counterpart of the least-squares estimator τ̂LS would be the posterior mode: τ̂Bayes = argmaxτ∈H πT (τ ).
ai (1997) shows that argmaxm W ∗(m) is the asymptotic distribution of τ̂LS .7 A consequence of the proof of Theorem 1 is
hat τ̂Bayes converges to the same limiting distribution. See Appendix A.2 for a proof.

orollary 1 (Limiting Distribution of the Posterior Mode of τ ). Suppose Assumption 1 holds. Then, under the normal likelihood
nd the conjugate prior described above,

⌊T
(
τ̂Bayes − τ0

)
⌋

d
→ argmax

m
W ∗(m).

.1.2. Bernstein–von Mises theorem for γ

The marginal posterior of γ is a mixture with weights corresponding to the marginal posterior density πT (τ ).
urthermore, due to Theorem 1, we can focus our attention on the values of τ in a T−1 neighborhood of τ0:∫

p(γ |τ ,DT )πT (τ )dτ =

∫
BM/T (τ0)

p(γ |τ ,DT )πT (τ )dτ + op(1).

e are now ready to establish the Bernstein–von Mises type result.

heorem 2 (Bernstein–von Mises Theorem for the Slope Coefficients). Suppose Assumption 1 holds. Then, under the normal
ikelihood and the conjugate prior described above,

dTV

(
π

[
√
T
(
γ − γ̂LS

)⏐⏐⏐⏐DT

]
,N(dx+dz )

(
0, σ 2

0 V
−1))

→ 0,

in Pθ0,τ0 − probability where dTV is the total variation distance.

The proof of Theorem 2 exploits the fact that the conditional posterior for
√
T
(
γ − γ̂LS

)
given τ is asymptotically

ormal, which is close to the asymptotic distribution of γ̂LS when τ is close to τ0. A bound on the Kullback–Leibler (KL)
ivergence between two normal densities together with the T -consistency is used to make the argument precise. The

proof is presented in Appendix A.3.

4. An extension to non-conjugate priors

The previous section establishes the asymptotic properties of the posterior distributions under the conjugate prior. A
natural question is whether these results can be extended to other priors. For example, an independent prior between
the slope coefficients γ and the error variance σ 2, e.g., π (γ , σ 2) = π (γ )π (σ 2) with γ ∼ N(dx+dz )(µ, Σ) and σ 2

∼

InvGamma(a, b), is a popular choice for Bayesian estimation of regression models in practice. Under the normal likelihood
and the conjugate prior, the analytical expressions of the marginal posterior of τ up to a normalization constant (7) and
he conditional posterior of γ given τ (8) facilitate the theoretical analysis. They are not available, for instance, under the
ndependent prior mentioned above. In this section, we extend the theoretical results by keeping the normal likelihood
6) but without requiring the conjugate prior on θ . In order to study the asymptotic behavior of the posterior distributions
without having their closed-form expressions, we employ a Laplace approximation type result of Hong and Preston
(2012). To do so, we make an additional assumption as shown below. Let θ̂ (τ ) be the maximum likelihood estimator
f θ conditional on τ ∈ H, i.e., θ̂ (τ ) = arg supθ∈Θ log p(Y T |X T , θ, τ ). Denote by θ∗(τ ) the corresponding pseudo true
arameter value that minimizes the KL divergence between the model p(Y T |X T , θ, τ ) and the DGP.

ssumption 2.

(i) There is a compact convex subset Θ of Rdx+dz+1 such that θ∗(τ ) ∈ int (Θ) for all τ ∈ H.
(ii) The prior π (θ, τ ) is supported on Θ ×H. It is continuous in θ and bounded away from 0 and ∞ around (θ∗(τ ), τ )

for all τ ∈ H.

7 W ∗(m) is a stochastic process defined on the set of integers as follows: W ∗(0) = 0, W ∗(m) = W1(m) for m < 0, and W ∗(m) = W2(m) for m > 0,
with

W1(m) = −δ0

0∑
i=m+1

ziz ′

i δ0 + 2δ0
0∑

i=m+1

ziϵi, for m = −1, −2, . . .

W2(m) = −δ0

m∑
i=1

ziz ′

i δ0 − 2δ0
m∑
i=1

ziϵi, for m = 1, 2, . . .
207
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nder the normal likelihood and Assumption 1, together with Assumption 2, we can invoke the Laplace approximation
esult, Theorem 3 of Hong and Preston (2012). Note that, under the normal likelihood and Assumption 1, θ∗(τ ) exists and
s a function of parameters in the DGP. In this section, we no longer assume the natural conjugate prior on θ . For instance,
he independent prior π (γ , σ 2, τ ) = π (γ )π (σ 2)π (τ ) mentioned above satisfies the conditions in (ii) of Assumption 2 as
ong as they are truncated on Θ and π (τ ) is positive and finite at all τ .

Theorem 3 establishes the T -consistency of the marginal posterior of τ for non-conjugate priors under the additional
onditions.

heorem 3 (Marginal Posterior Consistency of τ at Rate T−1, Non-Conjugate Priors). Suppose Assumptions 1 and 2 hold. Then,
nder the normal likelihood, ∀ξ > 0, ϵ > 0, ∃M > 0 and k > 0 such that T ≥ k H⇒

Pθ0,τ0

(∫
BcM/T (τ0)

πT (τ )dτ < ξ

)
> 1 − ϵ,

here for any constant d > 0, Bc
d(τ0) denotes the set difference H \ (τ0 − d, τ0 + d).

Recall that while proving the T -consistency under the conjugate prior (i.e., Theorem 1), we utilize the closed-form
xpression of the marginal posterior of τ up to a multiplicative constant (7) in order to study the behavior of the marginal
ikelihood ratio conditional on τ . Under non-conjugate priors, such expression is not available in general. For this reason,
e invoke Theorem 3 of Hong and Preston (2012) to approximate the quantity

∫
p(Y T |X T , θ, τ )π (θ, τ )dθ to prove our

heorem 3. See Appendix A.4 for the detail.
As in the previous section, an implication of the T -consistency of the marginal posterior of τ is that the posterior mode

onverges to the limiting distribution of τ̂LS . Proof is in Appendix A.5.

orollary 2 (Limiting Distribution of the Posterior Mode of τ , Non-Conjugate Priors). Suppose Assumptions 1 and 2 hold. Then,
nder the normal likelihood,

⌊T
(
τ̂Bayes − τ0

)
⌋

d
→ argmax

m
W ∗(m),

here the stochastic process W ∗(m) is defined in Section 3.1.1.

Theorem 4 establishes our main theoretical result, the Bernstein–von Mises theorem for γ , under the prior defined in
ssumption 2 (ii).

heorem 4 (Bernstein–von Mises Theorem for the Slope Coefficients, Non-Conjugate Priors). Suppose Assumptions 1 and 2 hold.
Then, under the normal likelihood,

dTV

(
π

[
√
T
(
γ − γ̂LS

)⏐⏐⏐⏐DT

]
,N(dx+dz )

(
0, σ 2

0 V
−1))

→ 0,

in Pθ0,τ0 − probability where dTV is the total variation distance.

When proving the corresponding result under the conjugate prior (i.e., Theorem 2), we utilize the closed-form
expression of the marginal posterior of γ given τ (8). As this is not available under the prior in this section, we again use
an approximation to study the asymptotic behavior of the marginal posterior. See Appendix A.6 for a proof.

5. Simulation

The main purpose of the simulation studies below is to compare inference on the slope parameters between the
two methods: the conventional least-squares method in Bai (1997) and the Bayesian approach described in our paper.
For the Bayesian approach, we use the uniform prior for τ and the conjugate prior for the regression parameters with
H = 0.1I(dx+dz ), µ = 0(dx+dz ), and a = b = 1. The findings are similar even when we use the uninformative improper
rior. Following the literature (e.g., Casini and Perron, 2021), we set the range of the candidate values of τ to be (ϵ, 1− ϵ)
ith ϵ = 0.05 for all methods.8
We consider the following model: yt = δ01(t > ⌊τ0T⌋)+ ϵt . We let τ0 = 0.5 and consider different values of the jump

ize δ0 ∈ {0.25, 0.5, 1.0, 2.0} and the sample size T ∈ {20, 50, 100, 250, 500, 1000}. In order to compare the methods in
epeated experiments, for each combination of δ0 and T , we generate 1000 data sets. The error ϵt is independently and
dentically generated from N(0, 1). In the online appendix, we present robustness checks under τ0 = 0.3 as well as the
errors generated from a non-normal distribution, and illustrate that the overall findings are similar to what we present
in this section.

8 It prevents the break location estimator from being in the first and last 100ϵ% of the sample. The trimming parameter ϵ should not be chosen
oo high otherwise it might introduce bias in the break location estimate. Casini and Perron (2021) find the choice ϵ = 0.05 performs well in general,
hich we also confirm in our simulation exercises.
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Table 1
Simulation results for δ.

Least-squares Bayesian Bayesian (τ fixed at τ̂LS )

δ0 = 0.25 0.50 1.00 2.00 0.25 0.50 1.00 2.00 0.25 0.50 1.00 2.00

Coverage
T = 20 0.68 0.77 0.88 0.95 0.96 0.97 0.96 0.95 0.65 0.70 0.88 0.95
T = 50 0.67 0.84 0.94 0.96 0.96 0.97 0.96 0.95 0.64 0.82 0.93 0.94
T = 100 0.69 0.90 0.96 0.95 0.96 0.97 0.96 0.95 0.69 0.89 0.95 0.95
T = 250 0.83 0.94 0.94 0.96 0.96 0.96 0.94 0.96 0.83 0.94 0.95 0.94
T = 500 0.91 0.95 0.95 0.96 0.97 0.96 0.96 0.96 0.88 0.96 0.95 0.95
T = 1000 0.93 0.94 0.95 0.96 0.96 0.95 0.95 0.96 0.94 0.95 0.95 0.96

Length
T = 20 3.87 3.60 3.20 2.82 4.85 4.59 4.20 3.16 3.46 3.30 2.99 2.76
T = 50 2.31 2.07 1.82 1.76 2.91 2.67 2.13 1.79 2.21 2.04 1.79 1.74
T = 100 1.61 1.38 1.26 1.24 2.10 1.78 1.34 1.25 1.56 1.36 1.23 1.24
T = 250 0.93 0.81 0.78 0.78 1.21 0.92 0.80 0.79 0.93 0.80 0.78 0.78
T = 500 0.61 0.56 0.55 0.55 0.76 0.58 0.56 0.56 0.61 0.56 0.55 0.55
T = 1000 0.41 0.39 0.39 0.39 0.46 0.40 0.39 0.40 0.41 0.39 0.39 0.39

MSE
T = 20 3.85 2.79 1.75 0.60 1.13 0.91 0.86 0.58 3.00 2.59 1.39 0.47
T = 50 1.35 0.78 0.26 0.20 0.42 0.33 0.25 0.20 1.28 0.79 0.28 0.20
T = 100 0.67 0.28 0.11 0.10 0.21 0.15 0.11 0.10 0.65 0.27 0.10 0.10
T = 250 0.18 0.05 0.04 0.04 0.08 0.05 0.04 0.04 0.18 0.05 0.04 0.04
T = 500 0.05 0.02 0.02 0.02 0.03 0.02 0.02 0.02 0.06 0.02 0.02 0.02
T = 1000 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

The columns 2–5 and 6–9 of Table 1 show the simulation results concerning δ for the least-squares estimator and the
Bayesian estimator, respectively. The top panel ‘‘Coverage’’ shows empirical coverages of the true jump size δ0 by the 95%
confidence and credible intervals. The frequentist confidence intervals are computed based on the conventional asymptotic
theory (5). For the Bayesian approach, we report the equal-tailed credible intervals. The middle panel ‘‘Length’’ presents
the average lengths of the aforementioned intervals. The bottom panel ‘‘MSE for δ’’ shows the mean-squared-errors for
the point estimator, which is the least-squares estimator δ̂LS for the conventional method and the posterior mean for the
Bayesian approach.

There are several significant findings. First, for small T and/or small δ0, the conventional confidence intervals signifi-
cantly undercover. Meanwhile, the Bayesian credible intervals have relatively reasonable coverages. Second, the Bayesian
intervals tend to be longer than the conventional confidence intervals for small T and/or δ0. Third, as T increases, the
discrepancy between the two methods decreases, as expected from the Bernstein–von Mises theorem that we establish.

Table 2 shows the results of estimation and inference of the break location τ . Although the main focus of the current
paper is on inference about the slope parameters and not on inference about τ , we report the empirical coverage and
the length of the 95% confidence interval of Bai (1997) and the highest posterior density (HPD) set.9 We also report the
inverted likelihood ratio (ILR) confidence set suggested by Eo and Morley (2015).

Overall, the HPD set and the ILR confidence set of the break location τ behave similarly although the HPD set slightly
undercovers relative to the ILR confidence set for small T and/or δ0. We confirm several findings of Eo and Morley
(2015). First, when T is large, the confidence interval of Bai has longer lengths than the ILR confidence set and the HPD
set.10 Second, when T and δ0 are small, the confidence interval of Bai tends to severely undercover compared to the ILR
confidence set and the HPD set. The interval of Bai indeed has a shorter length than the other two sets for small T , but
its undercoverage raises concerns for small samples in practice.11 The bottom panels of Table 2 show the mean-absolute-
rror (MAE) of the point estimator of τ which is τ̂LS for the conventional method and the posterior mode τ̂Bayes for the
ayesian approach. It is known that the finite-sample distribution of the least-squares estimator τ̂LS tends to be trimodal
see Baek, 2018) when the jump size is relatively small. The same seems to be true for the Bayesian point estimator (see
ig. 1).
To better understand the importance of the uncertainty of the break location τ for inference on the slope parameters,

e conduct a hypothetical experiment. We repeat the simulation exercise but now fixing τ at the least-squares estimate

9 Note that although we prove that the posterior mode of the break location τ converges to the limiting distribution of the least-squares estimator,
hether the posterior distribution of τ converges to the same limit or not is still an open question. The Bayesian literature on the Bernstein–von
ises-like result for non-regular parameters is very scarce. To our best knowledge, the only available work is that by Kleijn and Knapik (2012)
hose results do not seem to be applicable to the model in consideration in this paper. Hence, it is not guaranteed that a credible set of τ has

requentist coverage even asymptotically. However, we emphasize that credible sets on τ still have a statistically valid interpretation even in finite
amples.
10 Eo and Morley (2015) explain that the likelihood ratio test is more powerful than the Wald-type test used to construct the confidence interval
f Bai, which results in a shorter length of the ILR confidence set.
11 In addition, as also reported by Eo and Morley (2015), the ILR confidence set tends to slightly overcover even in large sample.
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Table 2
Simulation results for τ .

Least-squares Bayesian ILR

δ0 = 0.25 0.50 1.00 2.00 0.25 0.50 1.00 2.00 0.25 0.50 1.00 2.00

Coverage
T = 20 0.50 0.58 0.75 0.93 0.83 0.87 0.94 0.97 0.91 0.92 0.92 0.95
T = 50 0.51 0.68 0.87 0.97 0.83 0.92 0.96 0.97 0.93 0.93 0.96 0.98
T = 100 0.53 0.78 0.91 0.96 0.85 0.96 0.95 0.97 0.93 0.96 0.96 0.98
T = 250 0.67 0.87 0.94 0.97 0.91 0.94 0.94 0.97 0.94 0.95 0.96 0.98
T = 500 0.75 0.93 0.96 0.98 0.93 0.95 0.94 0.96 0.95 0.96 0.97 0.98
T = 1000 0.85 0.92 0.96 0.97 0.92 0.90 0.91 0.95 0.95 0.96 0.97 0.98

Length (×100)
T = 20 47.9 50.0 50.1 32.1 83.1 80.5 68.1 29.8 83.5 80.9 62.8 22.9
T = 50 48.3 50.6 40.2 14.0 76.1 69.3 40.0 9.01 80.9 71.4 37.0 9.18
T = 100 46.8 47.5 24.8 6.67 73.8 58.6 19.2 3.92 78.9 58.9 18.0 4.23
T = 250 47.6 34.3 9.78 2.66 64.2 30.6 5.83 1.50 67.7 28.9 6.37 1.68
T = 500 44.0 18.9 4.76 1.31 50.1 12.4 2.60 0.73 51.2 12.7 3.03 0.81
T = 1000 33.8 9.49 2.35 0.64 28.4 5.02 1.21 0.38 28.9 5.99 1.51 0.42

MAE (×10)
T = 20 2.63 2.27 1.43 0.37 3.13 2.72 1.64 0.38
T = 50 2.45 1.84 0.69 0.14 2.88 2.12 0.78 0.14
T = 100 2.32 1.24 0.38 0.06 2.76 1.50 0.39 0.06
T = 250 1.70 0.60 0.13 0.03 2.02 0.69 0.13 0.03
T = 500 1.20 0.27 0.06 0.01 1.31 0.28 0.06 0.01
T = 1000 0.63 0.13 0.03 0.01 0.70 0.14 0.03 0.01

τ̂LS in the Bayesian approach. The columns 10–13 of Table 1 display the results. We see that the credible intervals
undercover for small T and/or small δ0 as is the case with the conventional confidence intervals of δ. They also have
similar lengths in general. Importantly, the credible intervals when τ is fixed at τ̂LS have shorter lengths compared to
the full Bayesian intervals. On average, the full Bayesian credible intervals are 17.1% longer12 than the credible intervals
produced by fixing the value of τ at τ̂LS . Note that a Bayesian equivalent of the conventional approach to inference on
the slope parameters would be to fix the value of τ at the posterior mode (whose value is very similar to τ̂LS as we can
see from Fig. 1 and deduce from Corollary 1). We can see in Fig. 1 that both τ̂LS and the posterior mode of τ display
ignificant amount of variations in finite samples. Fixing τ at a point estimate forces the Bayesian approach to ignore this
uncertainty of τ ; as a result, the credible interval on δ becomes shorter and hence undercovers. The full Bayesian approach
takes into account such uncertainty via the marginal posterior of τ (see examples of the density in Fig. 1), which results
n longer lengths of the credible intervals on the slope parameters that help them avoid undercoverages. In contrast, by
onstruction (i.e., Eq. (5)), the conventional confidence intervals do not have this feature.
In summary, the simulation exercises demonstrate that (1) the credible intervals on the slope coefficient tend to have

ore reasonable coverages than the conventional confidence intervals because of longer lengths, (2) the longer length
f the credible intervals is a reflection of the uncertainty of the unknown13 break location τ , and (3) the two intervals
onverge to each other asymptotically as expected from our Bernstein–von Mises theorem.

. Application

In this section, we illustrate difference in estimation and inference of the regression parameters in linear regression
odels with a structural break between the conventional approach and the Bayesian approach that we consider in this
aper. Paye and Timmermann (2006) consider the problem of ex-post prediction in stock returns under a structural break
n the coefficients of state variables. Their multivariate model with a structural break is

Rett =

{
δ
(1)
1 + δ

(2)
1 Divt−1 + δ

(3)
1 Tbillt−1 + δ

(4)
1 Spreadt−1 + δ

(5)
1 Deft−1 + ϵt , if t ≤ ⌊τT⌋,

δ
(1)
2 + δ

(2)
2 Divt−1 + δ

(3)
2 Tbillt−1 + δ

(4)
2 Spreadt−1 + δ

(5)
2 Deft−1 + ϵt , if t > ⌊τT⌋,

here Rett is the excess return for the stock index during month t , Divt−1 is the lagged dividend yield, Tbillt−1 is the
agged local country short interest rate, Spreadt−1 is the lagged local country term spread, and Deft−1 is the lagged U.S.
efault premium. The authors estimate the model using the conventional frequentist approach: they first compute τ̂LS

12 The difference is larger when T and/or δ0 are/is smaller.
13 When τ0 is known, the two intervals behave very similarly. To illustrate this point, we conduct another hypothetical experiment by repeating the
simulation exercise as before but now fixing the value of τ at the true value τ0 in both conventional and Bayesian approaches. Table 3 summarizes the
esults. In this case, we see that both confidence and credible intervals have coverages quite close to 95% in all cases. They also have similar lengths.
ote that when the true value τ0 is given, the usual asymptotic normality and the regular Bernstein–von Mises theorem apply. As a consequence,
oth frequentist and Bayesian intervals seem to converge faster to the limit compared to the case with unknown τ .
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Table 3
Simulation results for δ, τ fixed at τ0 .

Least-squares Bayesian

δ0 = 0.25 0.50 1.00 2.00 0.25 0.50 1.00 2.00

Coverage
T = 20 0.93 0.95 0.96 0.95 0.94 0.95 0.95 0.94
T = 50 0.95 0.95 0.94 0.94 0.94 0.94 0.94 0.94
T = 100 0.96 0.96 0.96 0.96 0.96 0.96 0.95 0.96
T = 250 0.95 0.95 0.95 0.94 0.94 0.96 0.94 0.94
T = 500 0.96 0.95 0.95 0.96 0.96 0.95 0.95 0.96
T = 1000 0.95 0.96 0.96 0.95 0.95 0.96 0.96 0.95

Length
T = 20 2.77 2.77 2.77 2.77 2.72 2.74 2.73 2.74
T = 50 1.75 1.75 1.75 1.75 1.75 1.74 1.74 1.75
T = 100 1.24 1.24 1.24 1.24 1.23 1.24 1.24 1.23
T = 250 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78
T = 500 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55
T = 1000 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39

MSE
T = 20 0.53 0.50 0.47 0.52 0.51 0.47 0.45 0.50
T = 50 0.21 0.20 0.21 0.21 0.21 0.20 0.20 0.20
T = 100 0.10 0.09 0.10 0.09 0.10 0.09 0.10 0.09
T = 250 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04
T = 500 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
T = 1000 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

and then obtain point estimates as well as confidence intervals for the slope coefficients by fixing τ at τ̂LS . We examine
hether the Bayesian method performs differently from the conventional approach.
Monthly series are collected from Global Financial Data and Federal Reserve Economic Data (FRED). In this paper, we

onsider estimating the model for the United Kingdom and Japan.14 The indices used to define the total return and the
ividend yield are the FTSE All-share for the U.K. and Nikko Securities Composite for Japan. The dividend yield is expressed
s an annual rate and is constructed as the sum of dividends over the preceding 12 months, divided by the current price.
or each country, a 3-month Treasury bill rate is used as a measure of the short interest rate while the yield on a long-term
overnment bond is used as a measure of the long interest rate. Excess returns are defined as the difference between the
otal return on stocks in the local currency and the local short rate. A term spread is the difference between the long and
hort local country interest rates. The U.S. default premium is defined as the difference in yields between Moody’s Baa
nd Aaa rated bonds. For each country, the sample spans between January 1970 and December 2003.
For both approaches, we set the range of the candidate values of τ to be (ϵ, 1 − ϵ) with ϵ = 0.05 as we do in the

imulation studies in the previous section. For the Bayesian approach, we use the uniform prior on (ϵ, 1 − ϵ) for τ and
he conjugate prior for the regression parameters with H = 0.1I(dx+dz ), µ = 0(dx+dz ), and a = b = 1. The findings are
imilar even when we use the uninformative improper prior. For the break date, we compute the least-squares estimator
ˆLS and the posterior mode τ̂Bayes of τ as well as the 95% confidence interval of Bai (1997), the highest posterior density
HPD) set, and the inverted likelihood ratio (ILR) confidence set of Eo and Morley (2015). For the slope parameters, we
ompute γ̂LS and the posterior mean of γ as well as the 90% confidence intervals of Bai (1997) based on the asymptotic
esult (5) and the equal-tailed credible intervals.

When the uncertainty about τ is small, estimation and inference of the slope parameters roughly match between the
onventional least-squares approach and the Bayesian approach, as illustrated by our simulation studies and indicated
y our proven Bernstein–von mises theorem. See Table 4 for the results for the U.K. Both methods estimate a break
t 1975:01. The confidence interval of Bai (1997), the Bayesian highest posterior density (HPD) set, and the inverted
ikelihood ratio (ILR) confidence set by Eo and Morley (2015) are all similar and narrow, indicating that the uncertainty
bout τ is small. This can be seen also from the posterior density on the break date in Panel (a) of Fig. 3, which has a sharp
eak around 1975:01.15 Paye and Timmermann (2006) explain that the break in the mid-1970s might be related to the
arge macroeconomic shocks reflecting oil price increases. As a result of the small uncertainty about τ , the point estimates
f the slope parameters as well as the corresponding confidence/credible intervals are similar between the conventional
nd the Bayesian approach. Importantly, when the confidence interval of a given slope parameter includes (or does

14 Paye and Timmermann (2006) conduct the sequential method suggested by Bai and Perron (1998), Bai and Perron (2003), and Perron (2006) for
determining the number of breaks and find multiple breaks for some countries. They find single breaks for the U.K. and Japan, but, for example, two
breaks for the U.S. A fully Bayesian approach would be to place a prior on the number of breaks and use a trans-dimensional estimation method
such as a reversible jump MCMC, which is beyond the scope of this paper.
15 The mean and the standard deviation of the excess return of the FTSE All-share index during the sample period are −1.53 and 6.94 respectively.
t t =1974:12, we have Rett = −9.9 while at t =1975:01, Rett = 43.75, where the change is about 7.7 standard deviations. Therefore, the change
n the dependent variable is large enough for the break point to be detected with small uncertainty.
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Table 4
Estimation results for the U.K. stock return.

Slopes Least-squares Bayesian

Estimate LB UB Estimate LB UB

δ
(1)
1 −21.2 −28.1 −14.2 −18.6 −25.2 −11.9

δ
(2)
1 −0.35 −3.01 2.30 0.07 −2.51 2.64

δ
(3)
1 −0.77 −1.52 −0.03 −0.96 −1.70 −0.23

δ
(4)
1 0.80 −0.57 2.19 0.80 −0.56 2.14

δ
(5)
1 19.4 11.8 27.0 16.5 9.18 23.8

δ
(1)
2 19.1 11.9 26.4 16.5 9.62 23.3

δ
(2)
2 1.42 −1.43 4.29 0.99 −1.77 3.77

δ
(3)
2 −0.36 −1.20 0.47 −0.16 −0.99 0.64

δ
(4)
2 −0.98 −2.42 0.45 −0.98 −2.39 0.41

δ
(5)
2 −19.4 −27.2 −11.6 −16.5 −23.9 −8.95

τ
Least-squares Bayesian

Estimate LB UB Estimate LB UB

0.150 0.145 0.155 0.150 0.149 0.152
(75:01) (74:11) (75:03) (75:01) (74:12) (75:02)
ILR

Estimate LB UB

0.149 0.151
(74:12) (75:02)

LB = lower bound and UB = upper bound.

Fig. 3. Posterior density of the break date.

ot include) zero, the corresponding credible interval also includes (or does not include) zero. Hence, the conventional
pproach to inference about the slope parameters for the U.K. sample seems to be robust with respect to the uncertainty
f the break date.
In contrast, when the uncertainty of τ is large, the conventional and the Bayesian results on inference about the slope

arameters might disagree. Table 5 shows the results for Japan. Although both τ̂LS and the posterior mode of τ are at
996:05, the HPD set and the ILR confidence set are much wider than the confidence interval of Bai (1997), indicating a
arge uncertainty of the break date. The posterior density on τ in Fig. 3 also illustrates that the uncertainty of the break date
s much larger for Japan than for the U.K. during the sample period.16 The large uncertainty of τ is reflected on Bayesian
nference about the slope parameters. In the upper panel of Table 5, we see that in general the Bayesian credible intervals
re wider than the confidence intervals. Importantly, this can have a qualitative consequence on statistical importance of

16 In addition, the posterior on τ for Japan exhibits tri-modality, which would be similar to the tendency of a finite-sample distribution of τ̂LS to
ave three modes as reported in the literature (e.g., Baek, 2018; Casini and Perron, 2021).
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Table 5
Estimation results for the Japanese stock return.

Slopes Least-squares Bayesian

Estimate LB UB Estimate LB UB

δ
(1)
1 2.41 0.24 4.57 1.49 −1.89 5.27

δ
(2)
1 1.17 0.44 1.89 1.31 0.29 3.26

δ
(3)
1 −1.98 −2.45 −1.50 −2.00 −3.53 −1.23

δ
(4)
1 −0.85 −1.55 −0.16 −0.29 −1.43 3.59

δ
(5)
1 2.76 1.39 4.12 2.29 0.15 4.11

δ
(1)
2 −16.8 −29.6 −4.07 −9.39 −23.4 8.77

δ
(2)
2 12.4 2.35 22.4 6.22 −5.91 16.8

δ
(3)
2 −7.11 −14.1 −0.04 −3.86 −13.1 5.32

δ
(4)
2 4.76 1.25 8.27 1.70 −5.86 6.59

δ
(5)
2 −8.35 −14.9 −1.78 −4.65 −12.1 4.98

τ
Least-squares Bayesian

Estimate LB UB Estimate LB UB

0.780 0.777 0.782 0.779 0.068 0.934
(96:05) (96:04) (96:06) (96:05) (72:03) (01:10)
ILR

Estimate LB UB

0.080 0.890
(72:08) (00:02)

LB = lower bound and UB = upper bound.

some parameters. For seven of the ten slope coefficients, the confidence intervals do not include zero while the Bayesian
credible intervals do. Hence, the conventional approach to inference on the slope parameters might not be robust with
respect to the uncertainty of the break date, for the Japanese sample.

7. Conclusion and future direction

In this paper, we establish a Bernstein–von Mises type theorem for the slope coefficients in linear regression with a
structural break. By doing so, we bridge the gap between the frequentist and the Bayesian approaches for inference on
this model. On the one hand, a frequentist researcher can look at Bayesian credible intervals for the slope coefficients as
a robustness check to see whether the uncertainty of the break location affects inference on the slope parameters. Such
sensitivity analysis is reasonable as our theoretical result guarantees the credible interval to converge to the conventional
confidence interval that the frequentist researcher would use otherwise. On the other hand, Bayesian inference can be
conveyed to frequentists via our proven result.

Potential extensions include several directions. First, the homoscedasticity assumption could be too strong in some
applications, and hence extending the results to the case of heteroscedasticity and autocorrelation would be of interest.
Second, a popular Bayesian method of Chib (1998) is different from the approach we took in this paper in that we place
an explicit prior on τ and that Chib’s framework can be naturally extended to the case of multiple breaks. It would be
interesting to study frequentist properties of Chib’s approach.
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Appendix A. Proofs of theorems and corollaries

Here, we provide proofs of Theorems 1–4 and Corollaries 1–2. Proofs of intermediate results, Propositions 1–4, can be

found in the online appendix.
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.1. Proof of Theorem 1

roof of Theorem 1. Note that

πT (τ ) =
LT (τ )∫
LT (τ ′)dτ ′

=
LT (τ0)∫
LT (τ ′)dτ ′

LT (τ )
LT (τ0)

= πT (τ0)
LT (τ )
LT (τ0)

,

πT (τ0) =
LT (τ0)∫
LT (τ ′)dτ ′

≤
LT (τ0)∫

BcM0/T (τ0)
LT (τ ′)dτ ′

=

[∫
BcM0/T (τ0)

LT (τ ′)
LT (τ0)

dτ ′

]−1

,

or any M0 > 0. Hence for each T and for any M0 > 0,∫
BcM/T (τ0)

πT (τ )dτ = πT (τ0)
∫
BcM/T (τ0)

LT (τ )
LT (τ0)

dτ ≤

[∫
BcM0/T (τ0)

LT (τ ′)
LT (τ0)

dτ ′

]−1 ∫
BcM/T (τ0)

LT (τ )
LT (τ0)

dτ . (A.1)

herefore, we want to find

1. an upper bound for
∫
BcM/T (τ0)

LT (τ )
LT (τ0)

dτ and

2. a lower bound for
∫
BcM0/T (τ0)

LT (τ ′)
LT (τ0)

dτ ′ for some M0 > 0

We can write the marginal likelihood ratio as

LT (τ )
LT (τ0)

= exp
[
T
{
1
T
log
(

LT (τ )
LT (τ0)

)}]
.

The proof of Theorem 1 is built on some intermediate steps, Propositions 1–4. Proposition 1 shows that, under the
ormal likelihood and the conjugate prior, studying this ratio boils down to comparing the sum of squared residuals
T (τ ).

roposition 1. Suppose Assumption 1 holds. Then, with the normal likelihood and the conjugate prior described above, under
θ0,τ0 , for all τ ,

1
T
log
(

LT (τ )
LT (τ0)

)
=

1
2
log
(
ST (τ0)
ST (τ )

)
+ Op(T−1).

Let us first examine the limit of the quantity QT (τ ) = T−1ST (τ ). Proposition 2 states that QT (τ ) converges in probability
o some deterministic function Q (τ ). See Fig. 2 for examples of QT (τ ) and Q (τ ).

roposition 2. Suppose Assumption 1 holds. Then, under Pθ0,τ0 , for all τ ,

QT (τ ) = Q (τ ) + Op(T−1/2),

here

Q (τ ) = σ 2
0 +

{
(τ0 − τ ) (1−τ0)

(1−τ ) δ′

0R
′ΣXRδ0, if τ ≤ τ0

(τ − τ0)
τ0
τ

δ′

0R
′ΣXRδ0, if τ > τ0

≡ σ 2
0 + ∆(τ ).

Define GT (τ ) = g (QT (τ )) and G(τ ) = g(Q (τ )) where g(x) = −
1
2 log(x). Due to Proposition 1, we can write

T−1 log
(

LT (τ )
LT (τ0)

)
= GT (τ ) − GT (τ0) + Op(T−1). (A.2)

Proposition 3 says that the limit G(τ ) of GT (τ ) attains its maximum at τ0.

roposition 3. G(τ ) attains its unique maximum at τ0

Proposition 4 establishes the modulus of continuity of the empirical process {GT (τ ) − GT (τ0)} − {G(τ ) − G(τ0)} outside
f a ball around τ0 with radius proportional to T−1.

Proposition 4. Suppose Assumption 1 holds. Then, under ∀ξ > 0, ∀ϵ > 0, ∃M > 0 and k > 0 such that T ≥ k H⇒

Pθ0,τ0

(
inf

τ∈Bc (τ0)

| {GT (τ ) − GT (τ0)} − {G(τ ) − G(τ0)} |

|τ − τ0|
< ξ

)
> 1 − ϵ.
M/T
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By Proposition 3, G(·) attains its unique max at τ0. Note that the convex function G(τ ) is not differentiable at τ0. Hence
e have,

G(τ ) − G(τ0) < |τ − τ0|B1,

G(τ ) − G(τ0) > |τ − τ0|B2,

or some B1, B2 < 0. By Proposition 4, given ξ1 > 0, ∃M > 0 : with Pθ0,τ0 → 1,

GT (τ ) − GT (τ0) < ξ1|τ − τ0| + G(τ ) − G(τ0) < |τ − τ0|{ξ1 + B1}, (A.3)

or all τ ∈ Bc
M/T (τ0). Similarly, given ξ2 > 0, ∃M0 > 0 : with Pθ0,τ0 → 1,

GT (τ ) − GT (τ0) > −ξ2|τ − τ0| + G(τ ) − G(τ0) > |τ − τ0|{−ξ2 + B2}, (A.4)

or all τ ∈ Bc
M0/T (τ0). Recall, by Eq. (A.2), we have

LT (τ )
LT (τ0)

= exp
[
T
(
GT (τ0) − GT (τ )

)
+ Op(1)

]
.

ence, from Eq. (A.3), given ξ1 > 0, small compared to −B1, there is B′

1 < 0, which is independent of M: we have with
θ0,τ0 → 1,

LT (τ )
LT (τ0)

≤ exp
[
T |τ − τ0|B′

1 + Op(1)
]

= exp
[
T |τ − τ0|B′

1

]
Op(1), (A.5)

or all τ ∈ Bc
M/T (τ0). Note that the statement above still holds with a larger value of M > 0 as the area outside of the ball

ill be contained by that for the original M . Similarly, from Eq. (A.4), there is B′

2 < 0 and M0 > 0 : with Pθ0,τ0 → 1,

LT (τ )
LT (τ0)

≥ exp
[
T |τ − τ0|B′

2 + Op(1)
]

= exp
[
T |τ − τ0|B′

2

]
Op(1), (A.6)

or all τ ∈ Bc
M0/T (τ0). Now, by Inequality (A.5) and the fundamental theorem of calculus,∫

BcM/T (τ0)

LT (τ )
LT (τ0)

dτ ≤

∫
BcM/T (τ0)

exp
[
T |τ − τ0|B′

1

]
dτOp(1) =

1
TB′

1

(
eTB

′
1 − eB

′
1M
)
Op(1).

Similarly, by Inequality (A.6),∫
BMc

0/T (τ0)

LT (τ )
LT (τ0)

dτ ≥

∫
BMc

0/T (τ0)
exp

[
T |τ − τ0|B′

2

]
dτOp(1) =

1
TB′

2

(
eTB

′
2 − eB

′
2M0
)
Op(1).

This means, together with the bound (A.1),∫
BcM/T (τ0)

πT (τ )dτ ≤

[∫
BMc

0/T (τ0)

LT (τ ′)
LT (τ0)

dτ ′

]−1 ∫
BcM/T (τ0)

LT (τ )
LT (τ0)

dτ ≤
B′

2

B′

1

eB
′
1T − eB

′
1M

eB
′
2T − eB

′
2M0

Op(1),

hich can be made arbitrarily small by choosing M > 0 and T sufficiently large. □

.2. Proof of Corollary 1

roof of Corollary 1. The main structure of the proof follows Proposition 2 of Bai (1997) and relies on an implication of
ur Theorem 1. First, note that we have

τ̂Bayes = argmax
τ∈H

πT (τ )

= argmax
τ∈H

LT (τ )

= argmax
τ∈H

1
T
log
(

LT (τ )
LT (τ0)

)
,

which converges in distribution to argmaxτ∈H log
(

ST (τ0)
ST (τ )

)
by Proposition 1. We have

argmax
τ∈H

log
(
ST (τ0)
ST (τ )

)
= argmin

τ∈H
ST (τ )

= argmax
τ∈H

VT (τ ) − VT (τ0),
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here VT (τ ) = δ̂(τ )′
(
Z ′

2MZ2
)
δ̂(τ ). Bai (1997) shows that VT (τ ) − VT (τ0) converges in distribution to W ∗ (⌊T (τ − τ0)⌋)

niformly on any bounded interval around τ0. Let m∗
= argmaxm W ∗(m), which is Op(1). Hence, ∀ϵ > 0, ∃R1 >

: P (|m∗
| > R1) < ϵ. Our Theorem 1 implies that τ̂Bayes = τ0 + Op(T−1). In other words, ∀ϵ > 0, ∃R2 > 0 :(

T |τ̂Bayes − τ0| > R2
)

< ϵ. Take R = max{R1, R2}.

Define τ̂R = argmaxT |τ−τ0|≤R VT (τ ) − VT (τ0) and m∗

R = argmax|m|≤R W ∗(m). Then we have T |τ̂R − τ0|
d

→ m∗

R. In other
ords,

⏐⏐P (⌊T (τ̂R − τ0)⌋ = j
)
− P

(
m∗

R = j
) ⏐⏐ < ϵ as T → ∞ ∀|j| ≤ R.

Note that if T |τ̂Bayes − τ0| < R, then τ̂R = τ̂Bayes. Similarly, if |m∗
| < R, then m∗

R = m∗. Hence,
⏐⏐P (⌊T (τ̂Bayes − τ0)⌋ = j

)
−

(m∗
= j)

⏐⏐ is bounded by
⏐⏐P (⌊T (τ̂R − τ0)⌋ = j

)
− P

(
m∗

R = j
) ⏐⏐ + P

(
T |τ̂Bayes − τ0| ≥ R

)
+ P (|m∗

| ≥ R) < 3ϵ. As ϵ can be
ade arbitrarily small, the desired result holds. □

.3. Proof of Theorem 2

roof of Theorem 2. Define z =
√
T
(
γ − γ̂LS

)
and let φ(x; µ, Σ) be the multivariate normal density with mean µ and

covariance matrix Σ evaluated at x.

dTV

(
π [z|DT ] ,N(dx+dz )

(
0, σ 2

0 V
−1))

=

∫
|π (z|DT ) − φ(z; 0, σ 2

0 V
−1)|dz

≤

∫∫
|π (z|τ ,DT ) − φ(z; 0, σ 2

0 V
−1)|dzdπ (τ |DT )

=

∫
dTV

(
π (z|τ ,DT ), φ(z; 0, σ 2

0 V
−1)
)
dπ (τ |DT )

=

∫
BM/T (τ0)

dTV

(
π (z|τ ,DT ), φ(z; 0, σ 2

0 V
−1)
)
dπ (τ |DT ) + op(1),

here the last equality is due to Theorem 1.
From (8), asymptotically, the posterior of γ conditional on τ is normal:

γ
⏐⏐τ ,DT

a
∼ N(dx+dz )

(
µ̄τ , (b̄τ/ā)H̄−1

τ

)
H⇒ z|τ ,DT

a
∼ N(dx+dz )

(√
T
(
µ̄τ − γ̂LS

)
, (T b̄τ/ā)H̄−1

τ

)
.

The total variation distance is bounded above by 2 times square root of the KL divergence. In general, the KL divergence
between two p-dimensional normal distributions Np(µ1, Σ1) and Np(µ2, Σ2) is bounded above by⏐⏐det (Σ−1

2

)
− det

(
Σ−1

1

)⏐⏐
min(det

(
Σ−1

1

)
, det

(
Σ−1

2

)
)  

I

+ p∥Σ−1
2 − Σ−1

1 ∥∞∥Σ1∥∞  
II

+ ∥µ1 − µ2∥
2
2∥Σ−1

2 ∥2  
III

, (A.7)

here ∥Σ∥∞ = maxij |Σij| is the largest element of Σ in the absolute value, and ∥Σ∥2 = supµ∥Σµ∥2/∥µ∥2 is a matrix
orm induced by the standard norm on Rp, ∥µ∥2 =

∑p
i=1 µ2

i . We can bound the total variation distance between the
osterior density of z conditional on τ and that of N(dx+dz )(0, σ

2
0 V

−1) using the bound (A.7), with µ1 =
√
T
(
µ̄τ − γ̂LS

)
,

1 = (T b̄τ/ā)H̄−1
τ , µ2 = 0, and Σ2 = σ 2

0 V
−1.

To show III = op(1), we write
√
T
(
µ̄τ − γ̂LS

)
=

√
T
(
µ̄τ − γ̂ (τ )

)
+

√
T
(
γ̂ (τ ) − γ̂LS

)
. (A.8)

By definition,

µ̄τ =

[
1
T
H +

1
T

χ ′

τχτ

]−1 [ 1
T
Hµ +

1
T

χτY
]

= γ̂ (τ ) + Op(T−1),

so the first term in (A.8) is op(1). To show that the second term in (A.8) is op(1) for τ ∈ BM/T (τ0), write
√
T
(
γ̂ (τ ) − γ̂LS

)
=

T
(
γ̂ (τ ) − γ0

)
−

√
T
(
γ̂LS − γ0

)
. Note that Y = Xβ0 + Z2τ0δ0 + ϵ = Xβ0 + Z2τ δ0 + ϵ∗

τ , where ϵ∗
τ = (Z2τ0 − Z2τ )δ0 + ϵ. This

mplies

√
T
(
γ̂ (τ ) − γ0

)
=

[
1
T

(
X ′X X ′Z2τ
Z ′

2τX Z ′

2τZ2τ

)]−1 1
√
T

(
X ′ϵ∗

τ

Z ′

2τ ϵ
∗
τ

)
=

[
1
T

(
X ′X X ′Z2τ
Z ′

2τX Z ′

2τZ2τ

)]−1 1
√
T

(
X ′ϵ + X ′(Z2τ0 − Z2τ )δ0

Z ′

2τ ϵ + Z ′

2τ0
(Z2τ0 − Z2τ )δ0

)
.
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or |τ − τ0| < M
T , we have

1
T
X ′Z2τ −

1
T
X ′Z2τ0 = op(1),

1
T
Z ′

2τZ2τ −
1
T
Z ′

2τ0Z2τ0 = op(1),

1
√
T
X ′(Z2τ0 − Z2τ ) = op(1),

1
√
T
Z ′

2τ0 (Z2τ0 − Z2τ ) = op(1),

1
√
T
Z ′

2τ ϵ −
1

√
T
Z2τ0ϵ = op(1),

which implies

√
T
(
γ̂ (τ ) − γ0

)
=

[
1
T

(
X ′X X ′Z2τ0
Z ′

2τ0
X Z ′

2τ0
Z2τ0

)]−1 1
√
T

(
X ′ϵ

Z ′

2τ0
ϵ

)
+ op(1).

imilarly, since the least-square estimator τ̂LS ∈ BM/T (τ0) for sufficiently large T , we can show
√
T
(
γ̂LS − γ0

)
=

√
T
(
γ̂ (τ̂LS) − γ0

)
=

[
1
T

(
X ′X X ′Z2τ̂LS

Z ′

2τ̂LS
X Z ′

2τ̂LS
Z2τ̂LS

)]−1 1
√
T

(
X ′ϵ + X ′(Z2τ0 − Z2τ̂LS )δ0

Z ′

2τ̂LS
ϵ + Z ′

2τ0
(Z2τ0 − Z2τ̂LS )δ0

)
=

[
1
T

(
X ′X X ′Z2τ0
Z ′

2τ0
X Z ′

2τ0
Z2τ0

)]−1 1
√
T

(
X ′ϵ

Z ′

2τ0
ϵ

)
+ op(1).

Hence,
√
T
(
γ̂ (τ ) − γ̂LS

)
= op(1).

To show I and II are op(1), note that Σ1 − Σ2 equals

(T b̄τ/ā)H̄−1
τ − σ 2

0 V
−1

=

[
(T b̄τ/ā)H̄−1

τ −
TST (τ )

T − (dx + dz)
(χτχτ )−1

]
+

[
TST (τ )

T − (dx + dz)
(χτχτ )−1

− σ 2
0 V

−1
]

. (A.9)

For the first term in (A.9), we have

(T b̄τ/ā)H̄−1
τ =

b̄τ

a + T/2

[
1
T
H +

1
T

χ ′

τχτ

]−1

=

1
T b̄τ

a/T + 1/2

[
1
T
H +

1
T

χ ′

τχτ

]−1

.

Note that (1/T )b̄τ =
1
2T ST (τ ) + Op(T−1), so we have (T b̄τ/ā)H̄−1

τ = ST (τ )
[
χ ′

τχτ

]−1
+ Op(T−1). Therefore, the term in the

irst square brackets in (A.9) is op(1). For the second term in (A.9), we have that for |τ − τ0| < M
T ,

TST (τ )
T − (dx + dz)

(χτχτ )−1
− σ 2

0 V
−1

= (QT (τ ) − QT (τ0))  
=op(1)

V̂−1
T (τ ) + QT (τ0)

(
V̂−1
T (τ ) − V̂−1

T (τ0)
)

  
=op(1)

+
(
QT (τ0) − σ 2

0

)  
=Op(T−1/2)

V̂−1
T (τ0) + σ 2

0

(
V̂−1
T (τ0) − V−1

)
  

=op(1)

+op(1) = op(1),

here V̂T (τ ) =
1
T χ ′

τχτ .
This implies that Σ−1

2 − Σ−1
1 = op(1). Hence II = op(1). By continuity of determinants, we also have that I = op(1) for

τ ∈ BM/T (τ0).
Finally, for τ ∈ BM/T (τ0)

dTV
(
π (z|τ ,DT ),N(dx+dz )(0, σ

2
0 V )

)
≤ 2

√
op(1) = op(1).

herefore dTV
(
π [z|DT ] ,N(dx+dz )(0, σ

2
0 V

−1)
)
is bounded above by∫

BM/T (τ0)
dTV

(
π (z|τ ,DT ), φ(z; 0, σ 2

0 V
−1)
)
dπ (τ |DT ) + op(1) = op(1). □

.4. Proof of Theorem 3

roof of Theorem 3.
Recall that the proof of Theorem 1 is an implication of Propositions 1–4. Assumption 1 implies Propositions 2–4.

roposition 1 establishes that under the normal likelihood and the conjugate prior, Assumption 1 implies

1
log
(

LT (τ )
)

=
1
log
(
ST (τ0)

)
+ Op(T−1). (A.10)
T LT (τ0) 2 ST (τ )
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herefore, Theorem 3 can be proved if we establish the above equality under the normal likelihood together with
ssumptions 1–2.
As we do not have a closed-form expression (up to a normalization constant) for LT (τ ) =

∫
p(Y T |X T , θ, τ )π (θ, τ )dθ

nder the non-conjugate priors defined in Assumption 2(ii), we utilize a Laplace approximation type result to investigate
his integral. For a given τ , denote by FT (θ, τ ) = log p(Y T |X T , θ, τ ) the log likelihood function conditional on τ . Under
he normal likelihood and Assumption 1, Assumptions 2 and 3 of Hong and Preston (2012) are satisfied. Now with our
ssumption 2, we can invoke Theorem 3 of Hong and Preston (2012) (see their page 361) which establishes that

log
∫

eFT (θ,τ )−FT (θ̂ (τ ),τ )π (θ, τ )dθ = log
[
π (θ∗(τ ), τ )(2π )(dx+dz+1)/2 det (−TAθ (τ ))−1/2]

+ op(1),

or each τ , where −Aθ (τ ) is the probability limit of −
1
T

∂2

∂θ∂θ ′ FT
(
θ̂ (τ ), τ

)
and is positive definite.

Note that

LT (τ )
LT (τ0)

=
eFT (θ̂ (τ ),τ )

∫
eFT (θ,τ )−FT (θ̂ (τ ),τ )π (θ, τ )dθ

eFT (θ̂ (τ0),τ0)
∫
eFT (θ,τ0)−FT (θ̂ (τ0),τ0)π (θ, τ0)dθ

,

which implies that

1
T
log
(

LT (τ )
LT (τ0)

)
=

1
T
FT (θ̂ (τ ), τ ) −

1
T
FT (θ̂ (τ0), τ0)

+
1
T
log
[
π (θ∗(τ ), τ )(2π )(dx+dz+1)/2 det (−TAθ (τ ))−1/2]

−
1
T
log
[
π (θ∗(τ0), τ0)(2π )(dx+dz+1)/2 det (−TAθ (τ0))−1/2]

+ Op(T−1)

=
1
T
log

[
p(Y T |X T , θ̂ (τ ), τ )

p(Y T |X T , θ̂ (τ0), τ0)

]
+

1
T
log
[

π (θ∗(τ ), τ )

π (θ∗(τ0), τ0)

]
−

1
2T

log
[
det (−Aθ (τ ))
det (−Aθ (τ0))

]
+ Op(T−1).

Note that we assumed that π (θ∗(τ ), τ ) and π (θ∗(τ0), τ0) are finite and non-zero. Hence, the term involving the ratio of
the priors is Op(T−1). Also, −Aθ (τ ) is a positive definite matrix hence its determinant is a finite positive number. We have

p(Y T |X T , θ̂ (τ ), τ ) ∝

(
1

σ̂ 2(τ )

)T/2

exp
[
−

1
2σ̂ 2(τ )

T∑
t=1

(
yt − χτ ,t γ̂ (τ )

)2
  

=ST (τ )

]
=

(
1

σ̂ 2(τ )

)T/2

exp (−T/2) ,

here the last equality is due to the fact that σ̂ 2(τ ) = ST (τ )/T . This implies the desired result i.e., (A.10). Note that
ropositions 2–4 hold under Assumption 1. Therefore, given (A.10), the rest of the proof of Theorem 3 follows the same
rgument in the proof of Theorem 1 in A.1. □

.5. Proof of Corollary 2

roof of Corollary 2. By definition, we have

τ̂Bayes = argmax
τ∈H

πT (τ ) = argmax
τ∈H

1
T
log
(

LT (τ )
LT (τ0)

)
,

In the proof of Theorem 3, we have shown that Eq. (A.10) holds under the normal likelihood and Assumptions 1–2.
Therefore, τ̂Bayes converges in distribution to argmaxτ∈H log

(
ST (τ0)
ST (τ )

)
= argmaxτ∈H VT (τ ) − VT (τ0).

Furthermore, Theorem 3 implies that τ̂Bayes = τ0 + Op(T−1). Based on these two facts, the rest of the proof follows the
ame argument as in the proof of Corollary 1 in A.2. □

.6. Proof of Theorem 4

roof of Theorem 4.
Under the normal likelihood and Assumptions 1–2, the proof of Theorem 3 of Hong and Preston (2012) (see their

age 367) implies that the posterior of
√
T
(
γ − γ̂ (τ )

)
conditional on τ converges in total variation in probability to the

multivariate normal distribution N(0, −A−1
γ (τ )), where A−1

γ (τ ) is the sub-matrix of A−1
θ (τ ) obtained by deleting the last

ow and the last column, −A (τ ) is the probability limit of −
1 ∂2 F

(
θ̂ (τ ), τ

)
, and F (θ, τ ) = log p(Y |X , θ, τ ) is the
θ T ∂θ∂θ ′ T T T T
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T

og likelihood function conditional on τ . This means that the total variation between the posterior of z =
√
T
(
γ − γ̂LS

)
given τ and N

(√
T
(
γ̂ (τ ) − γ̂LS

)
, −A−1

γ (τ )
)
converges to 0 in probability.

The bound (A.7) on the KL divergence between two normal densities can be used again now with µ2 = 0, Σ2 = σ 2
0 V

−1,
µ1 =

√
T
(
γ̂ (τ ) − γ̂LS

)
, and Σ1 = −A−1

γ (τ ) = plim σ̂ 2(τ )V̂−1
T (τ ) where V̂T (τ ) =

1
T χ ′

τχτ . Note that from the proof of
heorem 2 in A.3, we know that µ1 = op(1) for |τ − τ0| < M

T .
For |τ − τ0| < M

T ,

Σ1 − Σ2 = −A−1
γ (τ ) − QT (τ )V̂−1

T (τ )  
=op(1)

+ (QT (τ ) − QT (τ0))  
=op(1)

V̂−1
T (τ )

+ QT (τ0)
(
V̂−1
T (τ ) − V̂−1

T (τ0)
)

  
=op(1)

+
(
QT (τ0) − σ 2

0

)  
=Op(T−1/2)

V̂−1
T (τ0)

+ σ 2
0

(
V̂−1
T (τ0) − V−1

)
  

=op(1)

+op(1) = op(1),

which implies

Σ−1
2 − Σ−1

1 = op(1).

The rest of the proof can be done similarly as in the proof of Theorem 2 in A.3 by applying the bound (A.7). □

Appendix B. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jeconom.2022.03.006.
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