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Abstract
As in public good provisions, in a public bad situation such as abatement, the non-
cooperative interplay of the participants typically results in low levels of quantities
(provision or abatement). In a simple class of n-person quadratic games, we show
how Coarse correlated equilibria, using simple mediation devices, can significantly
outperform Nash equilibrium outcomes in terms of a stated policy objective.
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Efficiency gain
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1 Introduction

In non-cooperative games,mediated communication is a true and testedway to achieve
incentive-compatible coordinated outcomes, using randomisation, commonly known
as, correlation devices. Solution concepts such as correlated equilibrium (CE), as
proposed by (Aumann 1974, 1987) and coarse correlated equilibrium (CCE) (Moulin
and Vial 1978),1 coarsen the set of Nash equilibria and thus may improve upon the
Nash outcome(s). Such correlation devices do have a natural interpretation in a number

1 Moulin and Vial (1978) called this equilibrium concept a ‘correlation scheme’, while Young (2004) and
Roughgarden (2009) called this ‘coarse correlated equilibrium’ and Forgo (2010) called it ‘weak correlated
equilibrium’.
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of real-life economic situations (Arce 1995, 1997) and thus may provide a stylised
representation of the mediating role of government agencies, international bodies or
trade associations like European Union, World Trade Organisation (WTO), United
Nations Framework Convention on Climate Change (UNFCCC), etc. Unsurprisingly
therefore, in the recent past, there have been quite a few applications in the literature
of correlation in non-cooperative games to analyse relevant economic situations.

Randomisation devices are used and interpreted in different ways in two concepts
of correlation, namely, CE and CCE. The most effective way of explaining correlation
in non-cooperative games is via a mediator who could help the players to play a given
game; however, the mediator, is not a part of the game, in any respect. A (direct)
correlation device is simply a probability distribution over all the outcomes for a given
game. In Aumann’s CE, the mediator first uses the device to choose an outcome;
once chosen, each component of the outcome is conveyed to the corresponding player
(privately and separately) as recommendations for them and having received such
private messages, players then play the game. The device is an equilibrium (CE) if all
such recommendations are followed (played in the game) by all the players. In contrast,
the mediator implementing a CCE first reveals publicly the lottery over the outcomes
it recommends, then offers to each player the option to commit to that lottery: any
player i who chooses this option, lets the device choose her strategy qi according to
the lottery in question; if on the contrary she refuses this “help” offered by the device,
she simply picks her own strategy (possibly mixing pure strategies) of the original
game, without any further input from the mediator. A CCE is a lottery such that all the
players committing to this lottery is self-enforcing; that is, for each player, knowing
that every other player is committed, she has no incentive to refuse to commit to the
device. The device can still operate (out of equilibrium), by selecting a strategy only
for those players who agreed to commit, but then the self-enforcement property may
be lost.

Admittedly, between CE and CCE, CE is more popular in the applied literature,
perhaps because, the step from Nash equilibrium to correlated equilibrium can be
justified by appealing to concepts of rationalizability (Aumann 1987), while the step
from Nash or correlated equilibrium to coarse correlated equilibrium might be a bit
harder to visualise and interpret. Still, the CCE structure has been successfully used
in the literature for quite a few games of economic significance, like expending effort
(Fleckinger 2012; Deb et al. 2016), gathering information ( Gromb and Martimort
2007), Cournot duopoly (Gerard-Varet and Moulin 1978; Ray and SenGupta 2013,
public good provision (Moulin et al. 2014), etc. CCE in one-shot games are shown
to approximate Nash equilibria in repeated games (Awaya and Krishna 2019, 2020
). A number of studies relate CCE to no-regret learners (Forgo et al. 2005; Rough-
garden 2009). CCEs have also received widespread attention in recent and growing
literature within algorithmic game theory, as no-regret dynamics converge to approxi-
mate CCEs. There are important findings in implementing CCE, based on experiments
(Reischmann and Oechssler 2018; Georgalos et al. 2020).

The main motivation and purpose, at least initially in the literature, for using corre-
lation devices in many economic situations has simply been that it may be important to
improve upon Nash outcomes (in terms of equilibrium payoffs achieved by the play-
ers). The sets of CEs andCCEs are often fairly large and thus onemay hope to construct
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an efficient (in the sense of Pareto optimality) equilibrium using correlation schemes
for many games. A typical instance is Ray (1996). However, for some (classes of)
games, such as potential games (that include standard oligopoly models), CE cannot
not help (Neyman 1997), whereas CCE does, as it’s now well-known; efficient CCEs
can also be characterised and derived for some important economic models (Moulin
et al. 2014).

We in this paper consider another well-known economic situation, also a potential
game, namely, the n-person symmetric abatement game (Barrett 1994) as our testing
ground for CCE, as CE cannot improve upon Nash. We believe a (direct) correlation
device can be easily interpreted as a commitment mechanism, and if players can be
organised to follow the rules (i.e., if and when they choose to accept the device),
CCE can implement many outcomes. In real life, our abstract mediator (correlation
device) embodies in spirit the kind of commitment shown in the 1992 UNFCCC that
several authors have analysed (see for example, Slechten 2020). In the context of
climate change negotiation, an independent agency (e.g., the European commission
for EU Emissions Trading Scheme) can choose an outcome (with the ultimate goal of
global emission reduction) and recommend the signatories the abatement levels to be
achieved by each of them (see also, Forgo et al. 2005; Forgo 2010, 2011).

Our agenda however certainly is not to mimic the previously known results in this
exercise (for an abatement game). There are many situations in economics, where
one may find “desirable” outcomes not just in terms of utility of players, but also in
other aspects; one may be interested in improving exogenous social variables, such as,
aggregate effort or aggregate physical output or quantity levels in some contexts (eg.,
see Bramoullé and Kranton 2007; Chadha and Kulkarni 2020). Two such situations
provide the motivation for our work: (i) public good provision game, with constant
marginal cost of contribution and with the benefit from the public good being concave,
quadratic in total contributions, and (ii) emission abatement game (Barrett 1994),
where each agent’s benefit function is a function of the total abatement level chosen
by all agents, and the cost function of each agent is a convex quadratic function of
its own abatement level. In situations like above, a mediator (a public authority or
an environmental agency) may want to reach incentive compatible outcomes which
extract better quantity levels (total contributions or abatement levels) than do the
standard non-cooperative Nash outcomes. Correlation schemes may provide a tool
to find equilibrium outcomes performing better in terms of a criterion other than
utility-maximisation. For example, a mediator might prefer to choose a correlation
device which, at equilibrium, maximises total abatement levels. This is the kind of
“equilibrium design” problem that we address here, and to which the literature has not
paid much attention till date.

To test this approach we take a simple version of one-shot abatement game; we use
a quadratic cost function for tractability and in line with many other models and papers
in the literature (See, Bosetti et al. 2009; Finus et al. 2005; Klepper and Peterson 2006,
amongst others). The version of the abatement game we use here can also be viewed
as a public good game with quadratic costs, hence, with a concave potential function.
Following, Moulin et al. (2014), who explicitly computed utility-maximising CCEs
in a 2-player quadratic game, one may just compute CCEs that obtain better overall
utility than Nash equilibria for the players in this game; however, we use CCEs to
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address the issue of “equilibrium design” based on both abatement and utility. Our
simple game does serve the purpose for a more general analysis.

Barrett (1994) seminal paper became extremely popular in the relevant environmen-
tal literature mainly because it provides a simple and transparent model for countries
to participate in an IEAs (International Environmental Agreements) to sign a bind-
ing contract that specifies abatement targets for the coalition members. International
and transnational environmental agreements have been the subject of many research
papers in last two decades. Following Barrett’s work on the feasibility of creating
stable international environmental agreements (IEAs), a number of cooperative and
non-cooperative game theoretic approaches have been explored including coalition
formation and applications of coalitional form games, (see Finus 2008; Tulkens 1998;
Barrett 2004; McGinty 2007; Finus and Caparros 2015; Hovi et al. 2015; Marrouch
and Chaudhuri 2015, and the references therein).

Our agenda here is to provide a different approach. Our version of “equilibrium
design” involving CCEs does not allow players to sign a binding climate contract.
Instead, it focuses (in its main application) on a non-cooperative abatement game in
a static context (but with the twist that players can commit to accept a randomisation
device, as pointed out above). The question that can be answered by our approach is
how much an externally given randomisation device lead to an outcome that some-
how dominates the usual Nash equilibrium outcome in terms of payoffs or in terms
of abatement quantities. We however do not provide a comparison between use of
correlation devices and IEAs in abatement games as it is not the purpose of this paper.
A more recent literature (Karp and Sakamoto 2020; Kovac and Schmidt 2021) on
dynamic coalition formation applied to IEAs uses some form of external randomi-
sation device to solve inherent coordination problems. However, CE and CCE have
not been explored in our context. Our results provide theoretical underpinnings to the
belief that mediation is instrumental in such discussions.

It should be noted that in the context of CCE, the only decision the signatories
(simultaneously and independently) have tomake iswhether to ‘commit’ to themediat-
ing agencyor not.Once this decision ismade, the ‘committed’ signatories act according
to the recommendation of the agency. This is however different to the literature (Bar-
rett 1994) which involves a participation stage before the coalition formation where
the countries have to first decide whether or not to participate in a climate coalition,
and hence the sequential nature of the games. At a more micro-level, a regulating
agency for a group industrial plants, or a leader of cartel (chosen by the members of
the cartel), can play the role of the mediator. The concept of CCE requires stronger
commitment of the signatories to a treaty, in the sense that the signatories have to
decide (simultaneously) whether to abide by the recommendations of the agency or
act on their own.

To illustrate our main contribution, consider a baseline 2-player abatement game
in which the utility of country i is given by the function q − 2q2 − q2i , where qi is the
choice of abatement level by country i and thus q (= q1 + q2) is the total abatement
level. For this specific game, it can be shown that the CCE which maximises total
utility improves the abatement level over the Nash equilibrium level by only 5.7%.
However, if one’s agenda is to achieve the highest abatement level, then the best
possible abatement-maximising CCE improves theNash abatement level of abatement
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by 53%; unfortunately, at this CCE, the corresponding utility falls about 35% below
the Nash utility level. One may then ask what if we wish to achieve at least the
Nash utility while maximising the abatement level;2 the answer to this question for
this particular game is that we can have a maximum of 11.5% improvement in the
abatement maintaining such a constraint.

Our paper develops the above discussion and the 2-player example. In an n -person
abatement game,we show that optimising utility and quantity levels are two conflicting
design goals, and illustrate the severity of the trade-off between the CCE maximising
players’ utility and the CCE maximising aggregate abatement.

We formally characterise CCEs in our n-person abatement game and prove that
the improvement in abatement over the Nash level depends on the ratio between
the cost (c) and the benefit (b) parameters of the utility functions; more precisely,
it increases as r(= c

b ) decreases. We also show how CCEs obtain abatement levels
higher than the Nash level, even with the constraint of utility being at least Nash
utility. However, this (relative) improvement diminishes with the number of players,
n; that is, the “mediation value” is higher with fewer players, in other words, mediation
becomes harder with more players involved. We illustrate these features by plotting
the maximum abatement gain by CCE over Nash, with respect to r , for different
values of n, see Fig. 1. Finally, as a by-product of our analysis, we generalise the
result presented in Moulin et al. (2014) to the n-player case by finding an analytical
algorithm to compute the optimal quantity-maximising CCE for such an n-person
game.

2 It should be noted that for a particular game, like CE, the set of CCE is the convex hull of its extreme
points, and one can implement any arbitrary CCE (based on the agenda of the mediator) in the interior of
this hull, without violating the incentive compatibility constraints characterising the CCE.
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2 Model

We present below a class of symmetric n-player games with quadratic payoffs (1) that
include games of economic significance (Cournot oligopoly, Bertrand oligopoly, pub-
lic good games, abatement games, among others), where CEs do not offer anything
more than the NE (Neyman 1997). For this class of games, we provide a CCE-
characterising condition and the precise values for the parameters which supports
existence of the CCE lottery. The results from this section are valid for any quadratic
game, and will be explicitly used in Sect. 3 for our working example of abatement
game. All proofs in this and the following sections are in the Appendix A.

2.1 Coarse correlated equilibrium (CCE)

Consider an n-person normal form game, G = [Q1, Q2, . . . , Qn; u1, u2, . . . , un],
with the strategy sets, Qi = R+, for all i , with Q = ∏

i Qi , with generic elements
qi and q respectively, and where the payoff functions ui : Q → R, i = 1, . . . , n ,
are continuous. We write C(Q) for the set of such continuous functions and similarly,
C(Qi ) for the set of continuous functions on Qi .

Let L(Q) with generic element L and L(Qi ) with generic element �i denote the
sets of probability measures on Q respectively. Let the expectation of ui with respect
to L be denoted by ui (L).

The deterministic distribution at z is denoted by δz , and for product distributions
such as δq1⊗�2⊗· · ·⊗�n wewrite u1(δx1⊗�2⊗· · ·⊗�n) simply as u1(q1, �2, . . . , �n),
and for short u1(q1, �−1) ormore generally for any player i wewrite ui (qi , �−i ). Given
L ∈ L(Q), we write Li for the marginal distribution of L on Qi , defined as follows:
∀ f ∈ C(Qi ), f (Li ) = f ∗(L) , where f ∗(q) = f (x1) for all q ∈ Q.

Definition 1 A coarse correlated equilibrium (CCE) of the game G is a lottery L ∈
L(Q) such that ui (L) ≥ ui (qi , L−i ) for all q ∈ Q.

Note that, in contrast to Definition 1, for a lottery L ∈ L(Q) to be a correlated
equilibrium (CE) a laAumann, we need ui (L) ≥ ui (qi , L|qi )), for all i and qi , where
(L|qi ) is the lottery on Q−i conditional on the choice of qi . The usual interpretation
of CE holds: the mediator reveals to player i the coordinate qi of the outcome of L
and then player i has no incentive to choose another strategy.

2.2 Quadratic games and its CCEs

We consider the following symmetric n-player game that we call a quadratic game;
in this game the payoffs are of the following general (quadratic) form:

ui (q) =
n∑

i=1

dqi +
n∑

i=1

n∑

j=1

eqiq j + f q2i , (1)

where d, e, f are positive constants.
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We now describe the set of CCEs for the above game. If L is the distribution of
a symmetric random variable Z = (Z1, . . . , Zn), consider respectively the expected
values of Zi , Z2

i , and Zi · Z j �=i and denote them as below; for i = 1, . . . , n:

α = EL [Zi ],
β = EL [Z2

i ] and
γ = EL [Zi · Z j ] for any j �= i , j = 1, . . . , n.

We first show that the CCE equilibrium constraint (as in Definition 1) for the n-player
quadratic game can be completely expressed in terms of these three moments of a
lottery L from the set of symmetric lotteries Lsy(Q) ⊂ L(Q).

Lemma 1 Any symmetric lottery L ∈ Lsy(Q) is a CCE of the quadratic game (1) if
and only if

maxz≥0

{
(d + e(n − 1)α)z + f z2

}
≤ dα + e(n − 1)γ + f β;

Lemma 1 shows that a CCE, in the symmetric n-player quadratic game, can be
characterised by the expected quantities of the individual players, by their variances
and by the co-variances between the quantities of any pairs of players, hence, by sym-
metry with only three parameters, α, β and γ . Proof of Lemma 1 is a straightforward
application of Definition 1 above for our n -person quadratic game, and hence is omit-
ted here. We now identify the range of the vector (α, β, γ ) when L ∈ Lsy(Rn+) in the
following lemma.

Lemma 2 1. For any L ∈ Lsy(Rn+) and the corresponding n dimensional random
variable Z = (Zi ), we have

α, γ ≥ 0; β ≥ γ ; β + (n − 1)γ ≥ nα2. (2)

2. Moreover, if α, β and γ meet the system (2), there exists a symmetric lottery L with
precisely these parameters.

3 Abatement game

3.1 Preliminaries

The following model of emission-abatement game played by n countries, is due
to Barrett (1994). The payoff function of a country i = 1, 2, ..., n is a function
of the abatement levels (qi ) chosen by the countries, with the total abatement as
Q = ∑n

i=1 qi . For simplicity we rewrite the payoff function (from Barrett (1994))3

in the following form:

3 The payoff function of country i is given by (Barrett (1994)):

ui
(
qi , q j �=i

) = AB

n
(Q) − B

2n
(Q)2 − C

2
q2i , where A, B and C are all positive.
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ui (qi , q−i ) = a

(
n∑

i=1

qi

)

− b

(
n∑

i=1

qi

)2

− cq2i ; (3)

where a, b and c are all positive. We call the above game an abatement game. The
(symmetric) Nash equilibrium level of abatement (qNeq

i ) and the corresponding payoff

π
Neq
i are given by

qNeq
i = a

2(nb + c)
; πNeq

i = a2[n2b + (2n − 1)c]
4(nb + c)2

.

The abatement game is clearly a potential game with the potential function4

P(q) = a

(
n∑

i=1

qi

)

− b

⎛

⎝
n∑

i=1

n∑

j=1

qiq j

⎞

⎠ − (b + c)
n∑

i=1

q2i ,

which is smooth and concave. Therefore, the only CE is the Nash equilibrium qNeq

(Neyman 1997). Using Lemma 1, the following Proposition characterises the CCE of
this game.

Proposition 1 A symmetric lottery L ∈ Lsy(Rn+) is a CCE of the abatement game if
and only if

max
z≥0

{
[a − 2(n − 1)bα]z − (b + c)z2

}
≤ aα − (b + c)β − 2b(n − 1)γ (4)

and the corresponding utility (for country i) is

ui (L) = naα − (nb + c)β − n(n − 1)bγ .

Furthermore, the lottery L(α, β, γ ) is a CCE of the abatement game if and only if

either, α >
a

2b(n − 1)
and aα ≥ (b + c)β + 2(n − 1)bγ , (5)

or, α ≤ a

2b(n − 1)
and aα ≥ (b + c)β + 2(n − 1)bγ + [a − 2(n − 1)bα)]2

4(b + c)
. (6)

Wenowpresent two further important observations out of the above characterisation
(proofs of which are in the Appendix).

Footnote 3 continued
Note that for Eq. 3, we set a = AB

n , b = B
2n , c = C

2 . Also note that the benefit function in the published
version of Barrett (1994) has a typo that we have corrected here.
4 The potential function P(qi ) is a real valued function on Q (P : Q → R) such that for every strategy
profile q in Q and every zi in Qi , P(zi , q−i ) − P(q) = ui (zi , q−i ) − ui (q). Any point q in Q which
maximises the potential for the above game is a pure strategy Nash equilibrium of this game ( Monderer
and Shapley 1996).
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Claim 1 When n = 2, the case α > a
2b(n−1) is impossible.

Claim 1 shows that an abatement game with three or more players requires separate
analysis as there are more CCEs possible resulting in different outcomes of the game.

Our next observation relates to the benefit and cost parameters of the game. Let us
denote r = c

b .

Claim 2 When r = c
b > 1, the only CCE of the abatement game coincides with the

Nash equilibrium of the game.

Henceforth, we will only consider the case when r = c
b < 1.

3.2 Abatement maximisation

Below, we provide the precise characterisation of the CCE for the abatement game
that maximises the total abatement level, Q = ∑n

i=1 qi and compare it with the Nash
equilibrium abatement level.

Proposition 2 For a fixed r = c
b < 1,

1. when (1 − r) ≥ 2
n , the optimal values of the three moments of the abatement-

maximising CCE for the abatement game are α = a
n(b+c) , β = nα2 and γ = 0,

2. when (1 − r) < 2
n , the optimal values of the three moments of the abatement-

maximisingCCE for the abatement gameareα = a

2b[(n+r)−
√

(n−1)(1−r2)] ,β = nα2

and γ = 0.

As one may observe, in both the cases listed under Proposition 2, the abatement-
maximising CCE for this game involves γ = EL(Zi · Z j) = 0, regardless of the
values of parameters (r and n) of the model. From γ = 0, it follows that Zi and Z j are
never simultaneously positive. As this is true for all pairs, only one coordinate can be
positive at any draw of the lottery; by symmetry this player is selected with uniform
probability. So the structure of L is simple: pick uniformly a player and choose his
random level of abatement with mean and variance following from α and β.

We also note that both α and β decrease with the number of players, n; for
sufficiently large n, the first statement applies in which case, α = a

n(b+c) and

β = nα2 = a2

n(b+c)2
that decrease at the same rate as 1

n . This implies, both the
mean and the variance of the level of abatement chosen by the abatement-maximising
lottery are low when n is high. It is however not easy to identify the actual structure
of the abatement-maximising lottery for this game for any n > 2.

Using Proposition 2, we can immediately measure the relative improvement in the
abatement level from the abatement-maximisingCCEover that of theNash equilibrium

abatement level, given by qCCE

qN .
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Corollary 1 For a fixed r = c
b < 1,

1. when (1 − r) ≥ 2
n ,

qCCE

qN = 2(n+r)
n(1+r) ,

2. when (1 − r) < 2
n ,

qCCE

qN = n+r

(n+r)−
√

(n−1)(1−r2)
.

Corollary 1 requires no detailed proof. Figure 1 gives an illustration of Corollary 1.
We note that the total abatement from the abatement-maximising CCE over the Nash
abatement increases as r decreases. Also, notice that for larger n, the condition (1 −
r) ≥ 2

n is more likely to be satisfied. The coloured vertical lines in Fig. 1 provide the
cutoffs in Corollary 1; case 1 lies to the left of the corresponding line (blue for n = 3,
green for n = 10 and red for n = 50) while case 2 lies to the right.

3.3 Utility maximisation

We can also compare the Nash equilibrium with the utility-maximising CCE. The
expressions (of α, β and γ ) for a general n are messy and are difficult to interpret.
Instead, here we present the simpler case of a 2-player abatement game.

Proposition 3 If r = c
b < 1, the optimal values of the three moments of the utility-

maximising L in a 2-player abatement game are given by (̃α, β̃, γ̃ ):

α̃ = a

b

2 + 2r − r2

2(4 + 5r)
,

β̃ = a2

b2
4 + 8r + r2 − 4r3

4(4 + 5r)2
and γ̃ = a2

b2
4 + 8r − r2 − 4r3 + 2r4

4(4 + 5r)2
;

while the optimal CCE is L̃ = 1
2δ(z,z′) + 1

2δ(z′,z), with

z, z′ = a

b

2 + 2r − r2 ± r
√
1 − r2

2(4 + 5r)
.

Recall from Claim 1 that the CCE in the 2-player case can be very different from
that of the n-player game.

We can illustrate our results in Proposition 3 by considering the baseline example
introduced in the Introduction, where a = 1, b = 2 and c = 1 ; hence, r = 1

2 < 1.
From Proposition 3, the utility maximising CCE corresponds to the optimal values
of α̃ = 11

104 , β̃ = 31
2704 , γ̃ = 59

5408 and the optimal CCE L̃ chooses the two outcomes

( 11+
√
3

104 , 11−√
3

104 ) and ( 11−
√
3

104 , 11+√
3

104 ) eachwith probability 1
2 . The optimal CCE (total)

payoff is 23
104 , which implies an improvement of 5.7% over the Nash abatement levels

and an improvement of 0.5% over the Nash utility (= 11
50 ), which may seem small

in percentage terms, however, can very well be a significant figure if one considers
real-life magnitudes.

It turns out that, for our baseline example, the optimal Abatement maximising CCE
(Proposition 2) has the associated values α = 0.153, β = 0.049 and γ = 0, with the
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Table 1 Abatement level at the optimal CCE with utility constraint

n Maximal abatement of a CCE Abatement at the Nash equilibrium
under the Nash utility constraint

3 0.143 0.132275132

4 0.112 0.10460251

5 0.09 0.08650519

10 0.0474 0.046382189

50 0.009893 0.009846396

100 0.004965 0.004961302

optimal (total) payoff of 0.1438, which is 35% lower than the Nash payoff, but the
corresponding improvement of 53% over the Nash abatement levels.

3.4 Abatement and utility

We observe that in the 2-player abatement game, the utility at the abatement-
maximising CCE is always lower than the Nash utility level. One can thus naturally
ask howmuch improvement in the abatement level can be achieved, keeping the utility
level at least that of Nash. The analytical answer to this question can be found for the
2-player case; the maximum improvement in the abatement level over Nash, keeping
the utility level held at least at the Nash outcome, is at most 25% (Proposition 4 in the
working paper by Dokka et al. 2019). In fact, for our baseline example, the values of
α = 0.1115, β = 0.0135 and γ = 0.01136, correspond to the (constrained) optimal
CCE which results in an improvement of 11.5% over the Nash abatement levels and
0.05% over Nash utility levels.

We perform a simulation for this analysis with n > 2 and observe that even after
imposing the utility constraint, we still achieve improvement over the Nash abatement
level, however this diminishes with n. In Table 1, we illustrate our simulation results
for different value of n (n = 3, 4, 5, 10, 50, 100) for the parameter values a = b = 1
and c = 0.78.

The simulation results presented in Table 15 clearly show that CCEs (maintaining
the same utility as in Nash equilibrium) do obtain higher abatement levels than the
Nash levels; however, this improvement decreases with n.

4 Remarks

Our main objective behind this project has been to investigate whether CCEs may
prove to be analytically interesting in a public bad situation, such as an abatement
game. Our results in this paper suggest this is indeed the case, even if just as a the-
oretical concept. As an example of n-person symmetric quadratic games, we have
characterised the abatement-maximising CCE for a simple n-person abatement game.

5 Table 1 provides actual values of α, thereby presenting a better comparison of abatement levels.
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Such a computation using CCEs is new (certainly, for the abatement game) and, this
is why we regard this exercise as a successful first step towards more sophisticated
computations to understand mediation in general for such games.

We realise that one actually may analyse CCEs to find the quantity-maximising
outcome for any n-person symmetric quadratic games, as described in subsection 2.2
in this paper. Given the set of lotteries Lsy(Rn+), it is however difficult to obtain any
further explicit characterisation (of such lotteries); so, we provide a computational
result of L for given parameters that satisfy (2).

Using symmetry, the quantity-maximising CCE can be computed by solving the
following convex quadratic programme:

max
α,β,γ

α (7)

such that β ≥ γ (8)

β + (n − 1)γ ≥ nα2 (9)

(n − 1)bγ + cβ ≥ maxz≥0

{
(a + (n − 1)bα)z + cz2

}
− aα (10)

α, γ ≥ 0; (11)

We claim that the quantity-maximisingCCEcan be obtained (up to a given tolerance
level, call it, tol, say) by solving finitely many linear programs simply by checking
feasibility of the system above using the steps of the algorithm below:

Algorithm 1 Algorithm Quantity-CCE:

1. Fix α and tol.
2. Find a feasible point in the polytope (8)–(11). If there exists such a point go to step

3; else, go to step 4.
3. Set α = α + ε and go to step 2.
4. Set ε = ε

2 . If ε > tol go to step 3 else stop and output α.

The above claim can be proved easily, using Lemmata 1 and 2 in this paper. Since
the objective of (7)–(11) is independent of β and γ , it is enough to find the largest
value of α such that there exists at least one feasible solution to (8)–(11). Algorithm
Quantity-CCE imitates binary search to find this maximum α, which proves our claim.

One may then wish to compare the maximised quantity levels from the optimal
CCE found byAlgorithm 1with that from theNash equilibrium of any quadratic game,
although this would be computationally challenging. Our analysis on abatement game
provides such comparisons only in a subclass of such games.

Ourmain contribution in this paper is abatementmaximisation,maintaining the util-
ity level at the Nash outcome for any n-person abatement game. We should emphasise
here that CCEs have recently received widespread attention in the growing litera-
ture within algorithmic game theory, mainly because no-regret dynamics converge to
approximate CCEs. Our result suggests a form of no-regret play may be seen as an
indirect way of implementation of abatement-maximising CCE. Unfortunately, how-
ever, our current paper does not suggest a way to “implement” it. We believe this is
out of scope of this paper and requires further investigation. The question naturally
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thus arises if there exists a no-regret play which converges to a specific CCE. To the
best of our knowledge, this is indeed an interesting open question and it deserves to be
one of the future directions of research. A thorough simulation providing a possible
answer to this question will change the scope of the current work.

The contribution of this paper is therefore two-fold. First, we characterise the ben-
efit from coarse correlation in a particular, yet very popular, class of games. Second,
as the importance of enforcing agreements is an important theme in the environmental
literature, our characterisation for the abatement game suggests why and how amedia-
tor (an independent agency) could be used in practice for enforcing stable agreements
and commitments in this and in other similar games.

Recent literature in the algorithmic game theory introduces a couple of popular
ratios, known as the price of anarchy (PoA) and price of stability (PoS). While
computing both the PoA and the PoS for CCEs with respect to a measure (say, utility)
could be attempted in this situation, the questions we consider are different as we link
the performance of the equilibria with respect to two measures (players’ utility and
the abatement level).

There are clear limitations to our results. We use a quadratic payoff function, and
not a general differentiable concave function. Quadratic approximation to payoffs is
routinely used in the literature, for instance, in the models by Bosetti et al. (2009);
Finus et al. (2005); Klepper and Peterson (2006). We considered only symmetric
equilibria of our symmetric games. These choices are also common in the literature,
such as, the RICE model in Nordhaus and Boyer (2000) that tries to set up abatement
cost functions fitting real data.

A natural extension of our work could be to the version of our abatement game with
asymmetric quadratic costs; alternatively, asymmetry could arise in player-specific
benefit functions. Simple closed form expressions for the equilibrium parameters in
these cases would be hard to obtain. An alternative payoff function in the literature on
IEAs, which has been frequently used, is the linear benefit and quadratic cost function
for which it is known that the stable coalition comprises 3 countries. It would be
interesting to derive results for CCE for this payoff function, and we postpone this for
future research.
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A Appendix: Proofs

Proof of Lemma 2 Part 1 For L to be feasible, it should be true that the variance-
covariance matrix ML(Z) is positive semi-definite (PSD). Omitting the subscript L
for ease of notation, let Yi = Zi − α for all i :

Var(Zi ) = E[Y 2
i ] = β − α2 = β∗,

Cov(Zi , Z j ) = E[YiY j ] = γ − α2 = γ ∗.

So, we need to express a matrix with β∗ on the diagonal and γ ∗ on the off-diagonal is
PSD. This means that we have for all x ∈ R

n

β∗
(

n∑

1

x2i

)

+ 2γ ∗
⎛

⎝
∑

1≤i≤ j≤n

xi x j

⎞

⎠ ≥ 0. (12)

Standard techniques show that this holds if and only if

β∗ ≥ γ ∗ and β∗ + (n − 1)γ ∗ ≥ 0, (13)

where β∗ ≥ 0 but γ ∗ can be positive or negative. Note that β∗ is necessary, and if
β∗ = 0 then we need γ ∗ = 0 as well. Assume now β∗ > 0.

Case 1 γ ∗ ≥ 0. In this case, we can write (12) as

(

1 − γ ∗

β∗

)(
n∑

1

x2i

)

+ γ ∗

β∗

(
n∑

1

xi

)2

≥ 0, (14)

which holds if and only if β∗ ≥ γ ∗.
Case 2 γ ∗ < 0. In this case, (12) is

(

1 − −γ ∗

β∗

)(
n∑

1

x2i

)

≥ −γ ∗

β∗

(
n∑

1

xi

)2

. (15)

If we fix the sum
∑n

1 xi , the minimum of the LHS above is achieved when all xi are
equal, so that the inequality holds for all x if and only if it holds for x on the diagonal,
i.e.,

1 + −γ ∗

β∗ ≥ n
−γ ∗

β∗ ⇐⇒ β∗ + (n − 1)γ ∗ ≥ 0.

Combining both cases and switching back to β and γ , we get the result.
Part 2 Note that, given α, β and γ satisfying (2), it should be true that for some

k1
k2

= ξ > 1,

β = (k1 + 1)α2 (16)
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γ = n − 1 − k2
n − 1

α2 (17)

Now observe that there exist distributions of the symmetric random variable
(Q1, . . . , Qn) with the mean vector (E(Q1) = E(Qn) = α) and co-variance matrix:

∑
= k1α

2

⎡

⎢
⎢
⎢
⎣

1 ρ · · · ρ

ρ ρ
...

. . .

ρ ρ 1

⎤

⎥
⎥
⎥
⎦
,

where ρ = − 1
ξ(n−1) .. ��

Proof of Proposition 1 First note that the expected utility (for a country) from any
lottery L ∈ Lsy(Rn+) can be written as

ui (L) = a
n∑

j=1

EL [Z j ] − b
n∑

j=1

EL [Z2
j ] − 2b

n∑

j=1

n∑

j �=k=1

EL [Z j · (Zk)] − cEL

[
Z2
i

]
,

which is, by symmetry, for i �= j ,

ui (L) = naEL [Zi ] − (nb + c)EL [Z2
i ] − n(n − 1)bEL [Zi · Z j ]

= naα − (nb + c)β − n(n − 1)bγ .

We write the expected payoff when country i plays a pure strategy z and country
j �= i commit to L , as

ui (z, L
2) = az + a

n∑

i �= j

EL [Z j ]

− bz2 − b
n∑

i �= j=1

EL [Z2
j ]

− 2bz
n∑

i �= j

EL(Z j ) − (n − 1)(n − 2)

2
2b

⎛

⎝
n∑

i �= j

n∑

k= j+1

EL(Z j .Zk)

⎞

⎠ − cz2

= [a − 2(n − 1)bα]z − (b + c)z2

+ a(n − 1)α − b(n − 1)[β + (n − 2)γ ].

Hence, L is a CCE if and only if

max
z≥0

{
[a − 2(n − 1)bα] z − (b + c)z2

}
+ a(n − 1)α − b(n − 1)

[
β + (n − 2)γ

]

≤ naα − (nb + c)β − n(n − 1)bγ ,
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which after rearranging, gives us the condition in the statement. ��
Proof of Claim 1 Fix α and consider the system of conditions on the vector (β, γ ). The
line (b+c)β+2(n−1)bγ = aα is flatter than the line β+γ = 2α2; therefore, the two
corresponding half spaces intersect in the positive orthant if and only if aα

b+c ≥ 2α2.
But the latter contradicts α > a

2b . ��
Proof of Claim 2 Consider the following polytope for a fixed � = {(β, γ )|β ≥ γ, β +
(n − 1)γ ≥ nα2} under the additional constraint 6. Note that � is unbounded from
above and bounded from below by the interval [P, Q], where P = (α2, α2) and
Q = (nα2, 0). Theminimum in� of (b+c)β+2(n−1)bγ is achieved at P. Therefore,
if P meets 6 it is our optimal pair of (β(α), γ (α)); if not there is no CCE. P meets 6 if

and only if ((2n−1)b+c)α2 ≤ − b2α2−a(nb+c)α+ a2
4

b+c , which is (a−2(nb+c)α)2 ≤ 0.
This is only possible when α = a

2(nb+c) which is nothing but Nash outcome. ��
Proof of Proposition 2 (First part). Increasing the value of α shrinks the feasible region
of the polytope

{
(β, γ )|β ≥ γ ;β + (n − 1)γ ≥ nα2; (b + c)β + 2b(n − 1)γ ≤ aα

}

eventually to a single point which is the intersection of the half-lines (b + c)β +
2b(n − 1)γ = aα and β + (n − 1)γ = nα2 on the β-axis. This point gives α =

a
n(b+c) . However, this is only valid when resulting α ≥ a

2b(n−1) , that is, we must have

(1 − r) > 2
n . ��

Proof of Proposition 2 (Second part). For the second case, the intersection point of β =
nα2 and (b + c)β + 2b(n − 1)γ = aα − (a−2b(n−1)α)2

4(b+c) is the positive root of the
following quadratic equation:

[
(n − 1)2 + (1 + r)2n

]
α′2 − (n + r)α′ + 1

4
= 0,

where α = a
bα′. ��

Proof of Proposition 3 First consider the equilibrium condition in Proposition. Note
that if a − 2bα < 0 ⇐⇒ α > a

2b , the LHS. of that inequality (the maximum over
z ≥ 0) is 0; therefore, the equilibrium condition in Proposition becomes

aα ≥ (b + c)β + 2bγ = b(β + γ ) + cβ + bγ > b(β + γ ) ≥ 2bα2,

which is a contradiction. So, we must have α ≤ a
2b ; then, the LHS. of the equilibrium

condition is (a−2bα)2

4(b+c) and the condition is now

(b + c)β + 2bγ ≤ aα − (a − 2bα)2

4(b + c)
= −b2α2 − a(2b + c)α + a2

4

b + c
. (18)
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We now fix α and solve step 1 in Lemma 3: we must minimise (2b + c)β + 2bγ in
the polytope � = {(β, γ )|β ≥ γ, β + γ ≥ 2α2} under the additional constraint (18).
Note that� is unbounded from above and bounded from below by the interval [P, Q],
where P = (α2, α2) and Q = (2α2, 0). We distinguish two cases here.

Here, the minimum of (b+ c)β + 2bγ in � is achieved at Q; so, if Q fails to meet
the constraint (18), this constraint does not satisfy anywhere in �. Thus, we must
choose α such that

2(b + c)α2 ≤ −b2α2 − a(2b + c)α + a2
4

b + c
(19)

⇐⇒ �(α) = (3b2 + 4bc + 2c2)α2 − a(2b + c)α + a2

4
≤ 0 (20)

The discriminant of the right-hand polynomial �(α) is a2(b2 − c2); therefore, (19)
restricts α to an interval [α−, α+], between the two positive roots of �(α). For such
a choice of α, the constraint (18) cuts a subinterval [R, Q] of [P, Q], where R meets
(18) with an equality. Note that R = P only if α = qN

i (from Case 1 and the fact that
�(qN

i ) < 0); otherwise R �= P . Clearly, R is our optimal choice for (β(α), γ (α))

and it solves the system

β + γ = 2α2; (b + c)β + 2bγ = −b2α2 − a(2b + c)α + a2
4

b + c
.

Therefore,

β(α) = 1

b2 − c2

[

b(5b + 4c)α2 − a(2b + c)α + a2

4

]

and

γ (α) = 1

b2 − c2

[

−(3b2 + 4bc + 2c2)α2 + a(2b + c)α − a2

4

]

.

Now in step 2 of Lemma 3, we must maximise 2aα − (2b + c)β(α) − 2bγ (α) under
the constraints α ≥ 0 and �(α) ≤ 0. Developing this objective function yields the
programme

1

b2 − c2
max

α

{

−b2(4b + 5c)α2 + a
(
2b2 + 2bc − c2

)
α − a2c

4

}

(21)

under the constraints

α ≥ 0 and �(α) =
(
3b2 + 4bc + 2c2

)
α2 − a(2b + c)α + a2

4
≤ 0.

The unconstrained maximum of the objective function is achieved at α̃ =
a(2b2+2bc−c2)
2b2(4b+5c)

.
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We now show that �(̃α) ≤ 0. With the change of variable r = c
b , this amounts to

(
3 + 4r + 2r2

) (
2 + 2r − r2

)2

4(4 + 5r)2
− (2 + r)

(
2 + 2r − r2

)

2(4 + 5r)
+ 1

4
≤ 0

⇐⇒ 4 + 8r − 5r2 − 12r3 + 3r4 + 4r5 − 2r6 ≥ 0.

The above polynomial is 0 at r = 1; it is also easy to check, numerically, that it is
non-negative on [0, 1]. The proof is now complete if we express α̃, β̃ and γ̃ in terms
of r . This is indeed easy for α̃. One may also verify, using the expression for α̃ that

β̃ = β(̃α) = 1

b2 − c2

[

b(5b + 4c)̃α2 − a(2b + c)̃α + a2

4

]

= a2

b2
4 + 8r + r2 − 4r3

4(4 + 5r)2
and

γ̃ = γ (̃α) = 1

b2 − c2

[

−
(
3b2 + 4bc + 2c2

)
α̃2 + a(2b + c)̃α − a2

4

]

= a2

b2
4 + 8r − r2 − 4r3 + 2r4

4(4 + 5r)2
.

Finally,we construct the optimalCCE L̃ . For n = 2, our Lemma2 implies β̃+γ̃ = 2α̃2

; moreover, fromLemma 2i i i) inMoulin et al. (2014), we see that L̃ is an anti-diagonal
lottery of the form L̃ = 1

2δ(z,z′)+ 1
2δ(z′,z), where z and z′ are non-negative numbers such

that z + z′ = 2α̃ and z2 + z′2 = 2β̃. This implies 2zz′ = (2α̃)2 − (2β̃) = 2γ̃ ; hence,

z, z′ solve Z2 − 2α̃Z + γ̃ = 0. The discriminant is α̃2 − γ̃ = β̃ − α̃2 = a2

b2
r2(1−r2)
4(4+5r)2

;

thus, the expressions for z and z′ follow. ��
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