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Abstract When dividing a "manna" Ω of private items (commodities,
workloads, land, time slots) between n agents, the individual guarantee is
the welfare each agent can secure in the worst case of other agents’ prefer-
ences and actions. If the manna is non atomic and utilities are continuous
(not necessarily monotone or convex) the minMax utility, that of our agent’s
best share in her worst partition of the manna, is guaranteed by Kuhn’s gen-
eralisation of Divide and Choose. The larger Maxmin utility — of her worst
share in her best partition — cannot be guaranteed, even for two agents.
If for all agents more manna is better than less (or less is better than

more), the new Bid & Choose rules o§er guarantees between minMax and
Maxmin by letting agents bid for the smallest (or largest) size of a share they
find acceptable.

1 Introduction and the punchlines

The fair division of a common property manna — resources privately con-
sumed — is a complicated problem if its joint owners have heterogenous pref-
erences over the manna. A coarse yet important benchmark is the welfare
guarantee a division rule o§ers to each participant: this is the highest welfare
that a given agent can secure in this rule, irrespective of the preferences and
actions of other agents, even if our agent is clueless about the latter and
assumes the worst. The more an agent is risk averse and the less she knows
about others’ preferences, the more this worst case benchmark matters to
her.
Our goal is to throw some light on the feasible guarantees in the very

general class of non atomic fair division problems, where small changes in
the size of a share result in small utility changes (a continuity property ex-
plained below). Our model places no other restrictions on the structure of
preferences and corresponding utilities, or their direction: the manna may
contain some desirable parts (money, tasty cake, valuable commodities), some
not (unpleasant tasks, financial liabilities, burnt parts of the cake that must
still be eaten: Segal-Halevi [33]); agents may disagree over which parts are
good or bad; utilities can be single-peaked over some parts (teaching loads,
volunteering time, shares of a risky project), single-dipped on others, etc..
Assume that the manna Ω and the domain D of potential preferences,

described for clarity as utility functions ui, are common knowledge. A fair
and feasible guarantee is a mapping (ui, n)! Γ(ui;n) selecting a utility level
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for each ui in D and each number n of joint owners. The mapping is fair
because it ignores agent i’s identity. The guarantee is feasible if for any profile
(ui)

n
i=1 in Dn there exists a partition (Si)ni=1 of Ω such that ui(Si) ≥ Γ(ui;n)

for all i.
Given the division problem (Ω,D) we ask what are the best (highest)

feasible and fair guarantees? and what mechanism implements them in the
simple sense of implementation described in the last paragraph of this sec-
tion?
The first observation is that any such guarantee Γ(u;n) is bounded above

by the utility, denoted Maxmin(u;n), of the worst share for u in the best
n-partition of the manna. Formally we have, for all u 2 D and n:

Γ(u;n) ≤Maxmin(u;n) = max
Π=(Si)ni=1

min
1≤i≤n

u(Si) (1)

where the maximum (that may not be achieved exactly) bears on all n-
partitions Π = (Si)ni=1 of Ω. This follows by fairness and feasibility: at the
unanimous profile where ui = u for all i there is a partition Π such that
u(Si) ≥ Γ(u;n) for all i, hence Γ(u;n) ≤ min1≤i≤n u(Si) ≤Maxmin(u;n).
Therefore if (u, n) ! Maxmin(u;n) is feasible it is the best fair and

feasible guarantee, which answers the first of the two general questions above.
This happens in two well known and much discussed fair division models.
In the cake-cutting model due to Steinhaus [35] the manna Ω is a mea-

surable space endowed with a non atomic measure, and utilities are additive
measures, absolutely continuous with respect to the base measure. Additiv-
ity of u implies Maxmin(u;n) ≤ 1

n
u(Ω); this is in fact an equality because

the cake can be partitioned in n shares of equal utility. Agent i’s share Si
is proportionally fair if ui(Si) ≥ 1

n
ui(Ω): this is feasible for all agents at any

preference profile (ui)ni=1, therefore proportional fairness o§ers the best pos-
sible guarantee in this model. It is the weakest and least controversial test of
fairness throughout the cake-cutting literature (Brams and Taylor [14] and
Robertson and Webb [32]).
In the microeconomic model of fair division the manna is a bundle ! 2 RK+

of K divisible and non disposable items, and D is the set of convex and
continuous preferences over [0,!] (not necessarily monotonic). In D the
inequality Maxmin(u;n) ≤ u( 1

n
!) is also true1, and it is feasible to give an

1Pick a hyperplane H supporting the upper contour of u at 1
n!; the lower contour of

u at 1
n! contains one closed half-space cut by H, and every division of ! as ! =

Pn
1 zi

includes at least one zj in that half-space.
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equal share 1
n
! to every agent. Therefore the equal split lower bound ui(zi) ≥

u( 1
n
!) (where zi is i’s share of !) is the best fair and feasible guarantee. Here

too it is the starting point of the discussion of fairness (see e. g., Thomson
[38] and Moulin [29]).
As soon as we drop either additivity in the former model or convexity

in the latter one, the Maxmin guarantee is not feasible any more, even in
two person problems. In a simple example Ann and Bob share 10 units of
a single non disposable divisible item (e.g., time spent in a given activity).
Ann’s preferences are single-peaked (hence convex), while Bob’s are single-
dipped (see Figure 1: the Figures are collected in Section 8):

uA(x) = x(12− x) ; uB(x) = x(x− 6) for 0 ≤ x ≤ 10

Compute

Maxmin(uA) = 35 at Π1 = {5, 5} ; Maxmin(uB) = 0 at Π2 = {0, 10}

If Bob’s share is worth at least Maxmin(uB) then Ann gets either the
whole manna or at most 4 units: so her utility is at most 32 therefore
(Maxmin(uA),Maxmin(uB)) is not feasible.
A second critical benchmark utility is minMax(u;n), the utility of the

best share for u in the worst possible n-partition of Ω:

minMax(u;n) = min
Π=(Si)ni=1

max
1≤i≤n

u(Si)

where as before the minimum bears on all n-partitions of Ω.
Our first main result, Theorem 1 in Section 4, says that in any non atomic

problem, the mapping u ! minMax(u;n) is a feasible and fair guarantee;
in particular minMax(u;n) ≤ Maxmin(u;n) for all u 2 D and n (by (1)).
Moreover the minMax guarantee is implemented by Kuhn’s little known n-
person generalisation of Divide and Choose (Kuhn [22]), denoted here D&Cn.
The result is clear in two person problems, where the simple Divide and

Choose rule guarantees her Maxmin to the Divider and his minMax to
the Chooser. For instance in the example above Ann would divide as Π1 =
{5, 5} and Bob would get utility −5, exactly his minMax(uB; 2); while Bob
would divide as Π2 = {0, 10}, and Ann would choose 10, thus achieving
minMax(uA; 2) = 20.2

2We give in subsection 3.4 a n-person example where for everyone Maxmin is the best
utility and minMax is the worst; and when any agent gets her Maxmin utility, everyone
else gets his minMax utility.
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In three persons problems D&C3 works as follows. The Divider Ann o§ers
a 3-partition Π = {S1, S2, S3} where all shares are of equal value to her; Bob
accepts all shares worth at leastminMax(uB; 3), and Charles all those worth
at least minMax(uC ; 3). If Bob and Charles can each be assigned a share
they accept, we do so and Ann gets the last piece; if more than one such
assignment is feasible any choice implements the target guarantee, which is
all we need. If both accept a single share in Π, the same one, we give one of
the remaining shares Sk to Ann (it does not matter which one) and then run
D&C2 between Bob and Charles for Ω!Sk (it does not matter who divides
or chooses).
The n-person division rule D&Cn proceeds similarly in at most n − 1

steps of Division and Acceptance between a shrinking set of agents sharing a
shrinking manna. Its only subtlety is a simple combinatorial matching step
(Lemma 2 in Section 4) after each partitioning of the remaining manna.
The hard step in proving Theorem 1 is Lemma 1 in Subsection 3.2, stating

that in each round of D&Cn the current Divider can find an equipartition: a
partition of the remaining manna where all shares are equally valuable to this
Divider. Because we only assume that the manna is measurable and endowed
with a non atomic measure and that utilities are continuous in that measure,
the proof of Lemma 1 requires advanced tools in algebraic geometry: this is
the object of the companion paper Avvakumov and Karasev [4] also discussed
in the next Section.

Our second main result, Theorem 2 in subsection 5.2, focuses on non
atomic problems where preferences are also co-monotone: that is, increasing
if enlarging a share cannot make it worse and we speak of a good manna; or
decreasing if the opposite holds and we have a bad manna. Either restriction
on preferences opens the door to a new family of division rules significantly
simpler than D&Cn and implementing a better guarantee than the minMax
(weakly better and for some problems strictly better). These rules are in-
spired by the well known Moving Knife (MKn) rules (Dubins and Spanier
[20]) that we recall first.
Assume the manna is good: a knife cuts continuously an increasing share

of the cake; agents can stop the knife at any time; the first agent who does
gets the share cut so far. Repeat between the remaining agents and manna.
For a bad manna, agents can drop at any time and the last one to drop gets
the share cut so far.
A Moving Knife (MK) rule chooses a single arbitrary path for the knife,
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which tightly restricts the range of individual shares and partitions, hence
can result in a very ine¢cient allocation. We introduce the large family of Bid
& Choose (B&Cn) rules: they resemble the MK rules but allow all partitions
in their range. Each rule is defined by fixing a benchmark additive measure
of the shares, diversely interpreted as their size, their market price, etc.. If
the manna is good a bid bi by agent i is the smallest measure of a share that
i finds acceptable: the smallest bidder i∗ chooses freely a share of measure
at most bi∗ , then we repeat between the remaining agents and manna. For
a bad manna the bid bi is the largest size of a share that i finds acceptable,
and the largest bidder i∗ picks any share of size at least bi∗ .
Theorem 2 in section 5 shows that all B&Cn rules, as well as all MKn

rules implement a guarantee between the minMax and Maxmin level.
A handful of examples in subsection 5.3 show that the B&Cn guarantee

improves substantially the minMax guarantee in the microeconomic model
of fair division. There the equal split lower bound is theMaxmin benchmark
(the best possible) for agents with convex preferences, while for agents with
“concave” preferences (convex lower contours) equal split is the minMax
guarantee, significantly below the B&Cn guarantee.

Throughout the paper we speak of implementation in the very simple
sense adopted by most of the cake cutting literature (e. g., Brams and
Taylor [14]; see also the general concept of implementation in “protective
equilibrium” by Barbera and Dutta [7]). A rule implements (guarantees)
a certain utility level γ means this: no matter what her preferences, each
agent has a strategy that depends also upon Ω, n and D, such that whatever
other agents do the utility of her share is no less than γ. Moreover the
“guaranteeing strategy” is essentially unique.

2 Relevant literature

The two welfare levels Maxmin and minMax are key to our results. In
the atomic model where the manna is a set of indivisible items, they are
introduced by Budish [16] and Bouveret and Lemaitre [12] respectively. If
utilities are additive in that model, the basic inequality of our non atomic
model is reversed:

Maxmin(u;n) ≤
1

n
u(Ω) ≤ minMax(u;n)

6



and minMax(u;n) is obviously not a feasible guarantee. It took a couple
of years and many brain cells to check that the Maxmin lower bound may
not be feasible either for three or more agents (Procaccia and Wang [31]),
though this happens in rare instances of the model (Kurokawa et al. [24]).3

Our paper is the first general discussion of these two bounds in the non
atomic model of cake division.
Kuhn’s 1967 [22] n person generalisation of Divide and Choose promptly

implements the minMax guarantee in our model (Theorem 1). Except for a
recent discussion in Aigner-Horev and Segal-Halevi [1] for additive utilities
D&Cn has not received much attention, a situation which our paper may
help to correct. In particular, unlike the Diminishing Share (Steinhaus [35])
Moving Knife (Dubins and Spanier [20]), and Bid and Choose rules, it is very
well suited to dividemixed manna, i. e., containing subjectively good and bad
parts, as when we divide the assets and liabilities of a dissolving partnership.
Introduced in Bogomolnaia et al. [11], [10] for the competitive fair division of
microeconomic commodities, the mixed manna model is discussed in Segal-
Halevi [33] for a general cake and in Aziz et al. [5] for indivisible items.
Privacy preservation is a growing concern in a world of ever expanding

information flows. The D&Cn rule stands out for its informational parsimony:
each Divider only reports a partition with the understanding that she is
indi§erent between its shares, and Choosers only only accept a subset of
these shares. If the manna is mixed, no one is asked to explain which parts
they view as good or bad: for instance if we divide tasks, I may not want
others to know which tasks I am actually happy to perform and which ones
I am not.
The “cuts” selected by Dividers and “queries” answered by Choosers re-

quire only a modest cognitive e§ort: no one needs to form complete prefer-
ence relations over all shares of the cake. Taking this feature to heart, a large
literature in the cake cutting model evaluates the informational complexity
of various mechanisms by the number of cuts and queries they involve: see
Brams and Taylor [14] or Robertson and Webb [32], and more recently Cseh
and Fleiner [17] and Crew et al. [18]. This line of research goes beyond the
test of proportional guarantee, using cuts and queries more complex than in
D&Cn to reach an Envy-free division of the cake. The algorithms in Brams
and Taylor [13], and more recently Aziz and McKenzie [6], do exactly this

3If the manna is atomic and utilities are not necessarily additive, it is easy to construct
examples showing that all six orderings of Maxmin, minMax, and 1

nu(Ω) are possible.

7



when utilities are additive and non atomic; but because they involve an as-
tronomical number of cuts and queries they are of no practical interest and
squarely contradict informational parsimony. See Branzei [15] and Kurokawa
et al. [23] for some fine tuning of these general facts.
For microeconomic fair division under additive utilities, D’All’Aglio [19]

suggests to use an objective “market value” of the manna to limit the dis-
crepancies generated by di§erences in subjective preferences: this is the most
natural interpretation of the benchmark measure defining our Bid and Choose
rules.
The “equipartition” Lemma (section 3.2) is critical to the proof of The-

orem 1 and proved in Avvakumov and Karasev [4] by algebraic geometry
techniques. The latter, or subtle variants of Sperner’s Lemma, demonstrate
the existence of an Envy-free division under very general preferences, where
which share I like best in a given partition can depend upon the partition
itself, not just upon my own share: the seminal insights in Stromquist [36]
and Woodall [39] are considerably strenghtened by the recent results in Su
[37], Segal-Halevi [33], Meunier and Zerbib [26] and Avvakumov and Kara-
sev [3]. However these results do not apply to a mixed manna because they
assume, either that all agents (weakly) prefer any non empty share to the
empty share, or that all weakly prefer the empty share to any non empty
one.
When we divide private goods and preferences are convex, the equal split

lower bound corresponds to the unanimity utility: the common e¢cient util-
ity level in the economy where everyone has the same preferences (Footnote
1). When applied to fair division problems involving production, the una-
nimity utility delivers some compelling fair and feasible guarantees as well
as some meaningful upper bounds on individual welfare: Moulin [28], [27].

3 Non atomic fair division

3.1 Basic definitions

The manna Ω is a bounded measurable set in an euclidian space, endowed
with the Lebesgue measure |·|, and such that |Ω| > 0. A share S is a possibly
empty measurable subset of Ω, and B is the set of all shares. A n-partition
of Ω is a n-tuple of shares Π = (Si)ni=1 such that [ni=1Si = Ω and |Si\Sj| = 0
for all i 6= j; and Pn(Ω) is the set of all n-partitions of Ω. We define similarly
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an n-partition of S for any share S 2 B, and write their set as Pn(S).
If S ⊗ T = (S [ T )!(S \ T ) is the symmetric di§erence of shares,

recall that δ(S, T ) = |S ⊗ T | is a pseudo-metric on B (a metric except that
δ(S, T ) = 0 i§ S and T di§er by a set of measure zero).
A utility function u is a mapping from B into R such that u(?) = 0

and u is continuous for the pseudo-metric δ and bounded. So u does not
distinguish between two shares at pseudo-distance zero (equal up to a set of
measure zero): for instance u(S) = 0 if |S| = 0. Also if the sequence |St|
converges to zero in t, so does u(St). We write D(Ω) for this domain of utility
functions.
A non atomic division problem consists of (Ω,B, (ui)ni=1 2 D(Ω)n). Sev-

eral subdomains of D(Ω) play a role below:

• additive utilities: u 2 Add(Ω) i§ u(S) =
R
S
f(x)dx for all S, where f

is bounded and measurable in Ω;

• monotone increasing: u 2M+(Ω) i§ S ⊂ T =) u(S) ≤ u(T ) for all
S, T ;

• monotone decreasing: u 2M−(Ω) i§ S ⊂ T =) u(S) ≥ u(T ) for all
S, T ;

• separable: u 2 S(Ω) i§ there is a finite set A, a partition (Ca)a2A 2
P|A|(Ω) of Ω, and a continuous function v from RA+ into R, such that
u(S) = v((|S \ Ca|)a2A) for all S 2 B.

The separable domain S(Ω) captures the standard microeconomic fair
division model: A is a set of divisible commodities, the manna is the bundle
! 2 RA+ such that !a = |Ca| for all a, a share Si gives to agent i the amount
zia = |Si \Ca| of commodity a, and the partition Π = (Si)ni=1 corresponds to
the division of the manna as ! =

Pn
1 zi .

In the general non atomic division problem, the set of shares B is not com-
pact for the pseudo-metric δ. It follows that when we maximize or minimize
utilities over shares, or look for a partition achieving a benchmark utility
minMax or Maxmin, we cannot claim the existence of an exact solution to
the program: the minMax is not a true minimum, only an infimum, and
Maxmin is only a supremum, not a true maximum. As this will cause no
confusion, we stick to the min and Max notation throughout.
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However in the microeconomic model, the set of shares and of partitions
are both compact so for this important set of problems (where all our exam-
ples live) the min and Max notation are strictly justified.

One can also specialise the general model by imposing constraints on the
set of feasible shares. The most important instance is the familiar interval
model, where the manna is Ω = [0, 1] and a share must be an interval, so
an n-partition is made of n adjacent intervals. Other instances assume Ω
is a polytope, and shares are polytopes of a certain type: e.g. triangles or
tetrahedrons (Segal-Halevi et al. [34]). Sometimes shares must be connected
subsets of Ω (Berliant et al. [8], Aumann and Dombb [2]) or even separated
by a minimal gap (Elkind et al. [21]).
The Divide and Choosen rules, as well as our Bid and Choosen rules,

do not work in these models. Consider for instance the D&Cn rule (section
4) in the interval model. The first divider can find an equipartition made of
adjacent intervals (Lemma 1), but the agent called next to divide is handed a
set of typically disconnected intervals, so our Theorems 1 and 2 do not apply.
But the interval model is still useful here in a technical sense: the proof of
the critical Lemma 1 in the next subsection starts by projecting the general
problem onto an interval model and proving existence of an equipartition
there.

3.2 Equipartitions

Definition 1 An n-equipartition of the share T 2 B for utility u 2 D(T )
is a partition Πe = (Si)

n
i=1 2 Pn(T ) such that u(Si) = u(Sj) for all i, j 2

{1, · · · , n}; we write u(Πe) for this common value, and EPn(T ;u) for the set
of these n-equipartitions.

It is clear that EPn(S;u) is non empty if u is additive. Let B[S] be the set
of shares included in S: Lyapunov Theorem implies that the range u(B[S])
is convex, so it contains 1

n
u(S); then we replace n by n − 1 and repeat the

argument on the remaining share.
The same is true if u is monotone (u 2M±(Ω)): the proof, outlined in

Remark 1 below, is fairly simple. But proving the next statement is much
harder.

Lemma 1 Avvakumov and Karasev [4]
Fix a share S 2 B and a utility u 2 D(Ω). The set EPn(S;u) of n-
equipartitions of S at u is non empty.
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Proof. Avvakumov and Karasev’s Theorem proves Lemma 1 for the
interval model (which, as mentioned above, is not a special case of our model).
Fix a real valued function f on the set of intervals [a, b] ⊂ [0, 1], continuous in
the standard topology and such that f(a, a) = 0 for all a 2 [0, 1]. Then there
exist n subintervals [0 = x0, x1], [x1, x2], · · · , [xn−1, xn = 1] of [0, 1] forming
an equipartition of f : f(xi−1, xi) is constant for i = 1, · · · , n.
Start now from a share S in the statement of Lemma 1 and pick a point

! in S; let ρ be the radius of the smallest ball B(ρ;!) centered at ! and
containing S up to a set of measure zero (recall Ω is bounded). Then we
define

f(a, b) = u({B(bρ;!)!B(aρ;!)} \ S) for all 0 ≤ a ≤ b ≤ 1

(this is an instance of a moving knife through S, formally define in section
5.1)
The function f is continuous because u is continuous in B, and f(a, a) = 0.

Then an f -equipartition ([xi−1, xi])ni=1 of [0, 1] yields the desired u-equipartition
({B(xtρ;!)!B(xt−1ρ;!)} \ S)ni=1 of S. !
Remark 1 It is easy to prove Lemma 1 if we assume that the sign of u

is constant: all shares are weakly preferred to the empty share, or all are
weakly worse. Assume the former and use as above a moving knife to project
S onto [0, 1], where a n-partition is identified with a point in the simplex of
dimension n− 1. Then apply the Knaster—Kuratowski—Mazurkiewicz Lemma
to the sets Qi of partitions of the interval where the i-th interval gives the
lowest utility: each Qi is closed, contains the i-th face of the simplex, and
their union covers it entirely. Thus these sets intersect.
One can also invoke the stronger results in Stromquist [36] and Su [37]

showing the existence of an Envy-free partition under this assumption. But
recall that a key feature in the division of a mixed manna is that the sign of
u is not constant across shares.

3.3 Two utility benchmarks

Definition 2 Fix n, the manna (Ω,B) and u 2 D(Ω):

minMax(u;n) = min
Π2Pn(Ω)

max
1≤i≤n

u(Si) ; Maxmin(u;n) = max
Π2Pn(Ω)

min
1≤i≤n

u(Si)

(2)
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Recall that minMax is the utility agent u can achieve by having first pick
in the worst possible n-partition of Ω, and Maxmin by having last pick in
the best possible n-partition of Ω.

Proposition 1
i) If u 2 Add(Ω) then minMax(u;n) =Maxmin(u;n) = 1

n
u(Ω)

ii) If u 2M±(Ω)

minMax(u;n) = min
Πe2EPn(Ω;u)

u(Πe) ; Maxmin(u;n) = max
Πe2EPn(Ω;u)

u(Πe) (3)

iii) If u 2 D(Ω)

minMax(u;n) ≤ min
Πe2EPn(Ω;u)

u(Πe) ≤ max
Πe2EPn(Ω;u)

u(Πe) ≤Maxmin(u;n)

(4)

Proof
Statement iii) If Πe is an n-equipartition, u(Πe) is the utility of its best share,
hence minMax(u;n) ≤ u(Πe); proving the other inequality in (4) is just as
easy.
Statement i) By additivity of u, for any n-partition Π we have maxi u(Pi) ≥
1
n
u(Ω) implying minMax(u;n) ≥ 1

n
u(Ω); we check symmetrically 1

n
u(Ω) ≥

Maxmin(u;n), and the conclusion follows by comparing these inequalities
to those in (4).
Statement ii) Assume u 2 M+(Ω); the proof for M−(Ω) is identical. The
continuity and monotonicity of u imply: if S, T are two disjoints shares such
that u(S) > u(T ), we can trim part of S and add it to T to get two disjoint
shares with equal utility in between u(S) and u(T ). To check this let B(r)
be a ball with an arbitrary fixed center and radius r; we trim S to S(r) =
S!B(r) and padd T to T (r) = T [ {S \B(r)}: for some choice of r we get
u(S(r)) = u(T (r)).
Expanding this argument, if S1, · · · , Sk and T are disjoint shares such

that
u(S1) = u(S2) = · · · = u(Sk) > u(T )

we can simultaneously trim S1, · · · , Sk, keeping them of equal utility, and
add the trimming to T , so that the resulting k+1 shares are all equally good
and their common utility is between the two utilities above. Iterating this
process, we see that if Π = (Si)

n
i=1 2 Pn(Ω) is such that max1≤i≤n u(Si) >
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min1≤j≤n u(Sj), we can construct an equipartition Πe 2 EPn(Ω;u) such that

max
1≤i≤n

u(Si) > u(Π
e) > min

1≤j≤n
u(Sj)

Now fix " > 0, arbitrarily small, pick Π = (Si)
n
i=1 2 Pn(Ω) such that

min1≤j≤n u(Sj) ≥Maxmin(u;n)− ", and assume that Π is not an equiparti-
tion. By the argument above we can find Πe 2 EPn(Ω;u) such that u(Πe) >
min1≤j≤n u(Sj), thereforeΠe too is an "-approximation ofMaxmin(u;n), and
the right-hand inequality in (3) follows. The proof of the left-hand inequality
is similar. !
We illustrate statement ii) in a microeconomic example with two goods

and the manna ! = (1, 1). For the Leontief utility u(x, y} = min{x, y} we
haveMaxmin(u; 2) = 1

2
at the equal split partition, whileminMax(u; 2) = 0

at the equipartition {(1, 0); (0, 1)}; for the anti-Leontief utility v(x, y) =
max{x, y} the same two equipartitions give dually minMax(v; 2) = 1

2
and

Maxmin(v; 2) = 1. Clearly the utility profile (Maxmin(u; 2),Maxmin(u; 2))
is not feasible. See more striking examples of the incompatibility in the next
subsection.
For statement iii) we use the example of section 1 to show that both

inequalities in (4) can be strict. Recall that Ann’s Maxmin(uA; 2) = 35
is achieved by the equal split partition, while minMax(uA; 2) = 20 obtains
by the partition{0, 10}, not an equipartition. Next Bob has single-dipped
preferences uB(x) = x(x − 6): among three agents he can propose two 3-
equipartitions: equal split achieving minMax(uB; 3) = −8.9; and the more
appealing {2, 4, 4} with the common value −8. But Maxmin(uB; 3) = 0 is
only achieved at the partition {0, 0, 10}.
Remark 2: In the interval model with a monotone utility u, it is easy to

check that any two n-equipartitions have the same utility and in turn this
implies minMax(u;n) = Maxmin(u;n): hence this is the best guarantee.
The example of section 1 can be viewed as an instance of the interval model
where the two agents are indi§erent between [0, x] and [1− x, 1] for all x. It
shows that only the inequality (4) holds true in the general (non monotone)
interval model.

3.4 Guarantees (fair and feasible)

Definition 3 Fix the manna (Ω,B) and a subdomain D∗, D∗ ⊆ D(Ω). A
(fair and feasible) guarantee in D∗ is a mapping Γ : u ! Γ(u;n) such that
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for any profile (ui)ni=1 2 (D∗)n there exists Π = (Si)
n
i=1 2 Pn(Ω) such that

ui(Si) ≥ Γ(ui;n) for all i.
As this will cause no confusion we simply speak of a guarantee without

repeating the hard-wired properties of fairness and feasibility.
In section 1 we observed, by looking at unanimity profiles, thatMaxmin(·;n)

is an upper bound for any guarantee: inequality (1). We also mentioned two
subdomains where Maxmin(·;n) itself is a (hence the optimal) guarantee:
the additive domain Add(Ω) and the subdomain of the separable one S(Ω)
where preferences are also convex. Finally we used the Ann and Bob micro-
economic example with a single commodity to show that Maxmin(·;n) is
not a guarantee in D(Ω), even for n = 2 and a one dimensional manna.
As announced in the introduction (footnote 2) we give now some simple

microeconomic n-person examples where for everyone Maxmin is the best
utility and minMax is the worst, and when any agent gets her Maxmin
utility, everyone else gets his minMax utility. In particular the utility profile
where i gets her Maxmin while others get their minMax is Pareto optimal
in this economy.
We start with a simple three person example with one unit of nine goods

ak, k = 1, · · · , 9. With the compact notation ^,_ for min and max respec-
tively we define the three utilities as follows:

uA(z) = (z1 ^ z2 ^ z3)_(z4 ^ z5 ^ z6)_(z7 ^ z8 ^ z9)

uB(z) = (z1 ^ z5 ^ z9)_(z2 ^ z6 ^ z7)_(z3 ^ z4 ^ z8)

uC(z) = (z1 ^ z6 ^ z5)_(z2 ^ z4 ^ z9)_(z3 ^ z5 ^ z7)

An agent gets his Maxmin utility 1 only by eating all three goods in one of
his complementary triples, and in each case this implies that the other two
agents get their minMax utility 0.
For a general n-person example with the announced features, we select

for each pair of (distinct) agents i, j a set of n2 goods aij(k, `), 1 ≤ k, ` ≤ n.
To get his top utility 1 agent i must, for each j 6= i, eat all ij-goods of a
certain type k (possibly depending on j), while agent j must, for each i 6= j,
eat all ij-goods of a certain type `. Formally

ui(z) = ^j2N!i_nk=1^
n
`=1zij(k, `)
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4 The Divide & Choosen rule

Start by a combinatorial observation. Let G be a bilateral graph between
the sets M of agents and R of shares: interpret (m, r) 2 G as agent m likes
share r. We say that the subset fM of agents are properly matched to the
subset eR of shares if |fM | = | eR|, agents in fM are each matched (one-to-one)
to a share they like in eR, and no one outside fM likes any share in eR.
Lemma 2. Assume |M | = |R| and some agent i1 likes all objects in

R. Then there is a (non empty) largest set M1 of properly matchable agents
containing i1: if fM is properly matched to eR, then fM ⊆M1.

Proof. We apply the Gallai-Edmonds decomposition of a bipartite graph:
see e.g. Lovasz and Plummer [25] Chapter 3 or Lemma 1 in Bogomolnaia
and Moulin [9]. If M can be matched with R this is a proper match and the
statement holds true. If M and R cannot be matched, then we can uniquely
partition M as (M2,M1) and R as (R2, R1) such that:
1. |M2| > |R2|, the agents in M2 do not like any object in R1, and they
compete for the over-demanded objects in R2: every subset of R2 is liked by
a strictly larger subset of agents in M2;
2. |M1| < |R1| and the agents in M1 can be matched with some subset of
R1.
By the general Gallai-Edmonds result, M2 and R1 are non empty. Here

M1 is non empty as well because it contains the special agent i1. Every
match of M1 to a subset of R1 is proper. Finally suppose fM is properly
matched to eR and cM = fM \M2 is non empty. Then cM is matched to some
subset bR of R2 but bR is liked by more agents in M2 than there are in cM ,
therefore the match is not proper: contradiction. So fM does not intersect
M2 as was to be proved.!
Definition 4: the D&C n rule.

Fix the manna (Ω,B) and the ordered set of agents N = {1, · · · , n}, each
with a utility in D(Ω).
Step 1. Agent 1 proposes a partition Π1 2 Pn(Ω); all other agents report
which shares in Π1 they like. In the resulting bipartite graph between N and
the shares in Π1, where agent 1 likes all the shares, we use Lemma 2 to match
properly the largest possible set of agents N1 (it contains agent 1) with some
set of shares R; if N1 = N we are done, otherwise we go to
Step 2. Repeat with the remaining manna Ω2 and agents in N!N1. Ask the
first agent in the exogenous ordering to propose a partition Π2 2 Pn−|N1|(Ω2),
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while others report which of these new shares they like. And so on.

At least one agent, the Divider, is served in each step, thus the algorithm
just described takes at most n − 1 steps. But the algorithm matches as
many agents as possible so as to minimize the number of cuts (as well as
information disclosure), and typically takes fewer steps.
There is some flexibility in the Definition of the rule: although the set of

agents matched in each step is unambiguous, we may have several choices for
the set R of shares to assign in each step, and multiple ways to assign these
to the agents.
Our first main result is that minMax is a guarantee (Definition 3) im-

plemented by the D&Cn rule in the full domain D(Ω).
Theorem 1
Fix the manna (Ω,B) and n.

i) In the D&C n rule, an agent with utility u 2 D(Ω) is guaranteed the
minMax(u;n) utility level by 1) when called to divide, proposing an equipar-
tition Πe 2 EPm(S;u) of the remaining share S of manna among the m re-
maining agents, and 2) when reporting shares he likes, accepting all shares,
and only those, not worse than minMax(u;n) (the minMax level in the
initial problem).
ii) The first Divider (and no one else) is guarantees her Maxmin utility
by proposing her Maxmin partition in Step 1. Other agents are guaranteed
more than their minMax utility.

Proof. Statement i). Consider agent u using the strategy in the state-
ment. At a step where he must report which shares he likes among those
o§ered at that step, he can for sure find one worth at least minMax(u;n):
indeed all shares previously assigned are worth to him strictly less than
minMax(u;n), and together with the freshly cut shares they form a par-
tition in Pn(Ω); in any partition at least one share is worth minMax(u;n)
or more.
At a step where our agent is called to cut, he proposes to the remaining

agents an m-equipartition Πe 2 EPm(S;u) of the remaining manna S. To
check the inequality u(Πe) ≥ minMax(u;n) note that Πe together with the
previously assigned shares is a partition of Ω in which the old shares are
worth strictly less than minMax(u;n). Note that after Step 1 an agent can
secure his Maxmin utility for the smaller manna S among m agents, but
this may be below the Maxmin utility in the initial problem.

Statement ii). This is clear for the first Divider. Fix now an agent i with
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utility u and check that if he is not the first Divider, for certain moves of the
other agents he gets exactly his minMax utility. Pick a partition Π 2 Pn(Ω)
achievingminMax(u;n) (as usual, the existence assumption is without loss).
Suppose that the first Divider, who is not agent i, o§ers Π, and all agents
other than i (including the Divider) find all shares acceptable. If agent i
accepts at least one share on o§er, then a full match is feasible; if agent i
rejects all shares on o§er, the other n−1 agents get a share in the first round
and agent i still eats one component of Π. !

5 Bid and Choose and Moving Knives for
good or bad manna

We now assume that the manna is unanimously good, u 2M+(Ω), or unan-
imously bad, u 2 M−(Ω). Because u(?) = 0, we have u(S) ≥ 0 for all
S in the former case and u(S) ≤ 0 in the latter. Recall that in these two
domains, the minMax (resp. Maxmin) utility is the smallest (resp. largest)
equipartition utility: property (3) in Proposition 1.
The profile ofMaxmin utility levels may still not be feasible with monotone

preferences, as illustrated in the microeconomic example following the proof
of Proposition 1 (subsection 3.3). There agent u with Leontief utilities has
minMax(u; 2) = 0 and Maxmin(u; 2) = 1

2
whereas the Bid and Choose

rules described in section 5.3 give her a guarantee of 1
3
. Similarly agent v

with anti-Leontief utilities is guaranteed utility 2
3
by B&Cn, compared to

minMax(v; 2) = 1
2
and Maxmin(v; 2) = 1.

5.1 MKκ
n and B&C

θ
n rules

A moving knife through the manna (Ω,B, | · |) is a path λ : [0, 1] 3 t !
Λ(t) 2 B from Λ(0) = ? to Λ(1) = Ω, continuous for the pseudo-metric δ on
B and inclusion increasing:

0 ≤ t < t0 ≤ 1 =) Λ(t) ⊂ Λ(t0)

The moving knife λ arranges shares (of a good manna) increasingly valuable
to all participants along the specific path of the knife. An example is Λ(t) =
B(tρ) \Ω, where t! B(tρ) is a path of balls with a fixed center and radius
growing from 0 to ρ, where B(ρ) contains Ω. Moving knifes can take many
other shapes, for instance half-spaces of parallel hyperplanes.
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Our Bid and Choose rules o§er more choices than Moving Knives to
the agents. The designer picks a benchmark measure θ of the shares: θ
is a positive σ-additive measure on (Ω,B), normalised to θ(Ω) = 1. It is
absolutely continuous w.r.t. the Lebesgue measure | · | with a strictly positive
density. In particular θ is strictly inclusion increasing:

8S, T 2 B : S ⊂ T and |T!S| > 0) θ(S) < θ(T )

In applications θ can evaluate for instance the market value, physical size, or
weight of a share.
Fixing a moving knife λ and a measure θ, we give parallel definitions of

the Moving Knife (MKλn) and the Bid and Choose (B&C
θ
n) rules. In both

cases a clock t runs from t = 0 to t = 1.

Definition 5 the MK λ
n and B&C

θ
n rules with increasing utilities

Step 1. The first agent i1 to stop the clock, at t1, gets the share Λ(t1) in
MK λ

n, or in B&C
θ
n chooses any share in Ω s.t. θ(S) = t

1, say Si1, and leaves;
Step k: Whoever stops the clock first at tk gets the share Λ(tk)!Λ(tk−1) in
MK λ

n, or in B&C
θ
n chooses any share in Ω![

k−1
`=1Si` s.t. θ(S) = t

k − tk−1,
say Sik , and leaves;
In Step n− 1 the single remaining agent who did not stop the clock takes the
remaining share Ω!Λ(tn−1) or Ω![n−1`=1 Si`.

Definition 5∗ with decreasing utilities
In each step all agents must choose a time to “drop”, and the last agent i1
who drops, at t1, gets Λ(t1) in MK κ

n, or in B&C
θ
n chooses Si1 s.t. θ(Si1) = t

1.
The other steps are similarly adjusted.

Breaking ties between agents stopping the clock (or dropping) at the
same time is the only indeterminacy in these rules, much less severe than in
D&Cn, where we serve at each step an unambiguous set of agents but there
are typically several ways to match them properly.
Up to tie-breaking, the rules B&Cθn and MK

λ
n are anonymous but not

neutral: they do not give a special role to any agent but restrict the choices
of shares along the knife or according to their θ-measure. Compare with
D&Cn that is neutral (placing no restictions on the partitions selected by
successive Dividers) but not anonymous.
In MKλn the share of an agent takes the form Λ(t)!Λ(t0) so it varies in a

set of dimension 2 (and feasible partitions move in a set of dimension n− 1).
By contrast every partition in Pn(Ω) is feasible under the B&Cθn rule.
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To check this fix Π = (Si)ni=1 and assume first |Si| > 0 for all i. Consider
n agents deciding (cooperatively) to achieve Π. By construction of θ the
sequence ti = θ([ij=1Sj) increases strictly therefore they can stop the clock
(or drop) at these successive times and choose the corresponding shares in
Π. If there are shares of measure zero they can all be distributed at time 0.

Remark 3. We can also define static versions of MKλ
n and B&C

θ
n where

agents bid all at once for potential stopping times, and implementing the same
guarantees as in the next subsection; for brevity we do not discuss these rules.

5.2 B&Cθ and MKλ guarantees

In the rest of this section utilities inM+(Ω) orM−(Ω) are uniformly con-
tinuous w.r.t. the pseudo-metric induced by the measure θ (itself absolutely
continuous w.r.t. the Lebesgue neasure)

8" > 09η > 0 : θ(S ⊗ T ) ≤ η =) |u(S)− u(T )| ≤ " (5)

All separable utilities in S(⊗), in particular all in the examples of the next
section 5.3, are uniformly continuous. Because the Lebesgue measure is ab-
solutely continuous w.r.t. θ, the uniform continuity property holds.
We fix a uniformly continuous increasing utility u 2M+(Ω). The results

are identical, and identically phrased, for a bad manna u 2M−(Ω). See also
Remark 4 at the end of this section.
Define the triangle T = {(t1, t2)|0 ≤ t1 ≤ t2 ≤ 1} in R2+ and the set Υ(n)

of increasing sequences τ = (tk)0≤k≤n in [0, 1] s.t.

t0 = 0 ≤ t1 ≤ · · · ≤ tn−1 ≤ 1 = tn

For a moving knife λ, utilities of the shares in MKλn are described by the
function uλ on T :

uλ(t1, t2) = u(Λ(t2)!Λ(t1)) for all (t1, t2) 2 T

For a measure θ, the corresponding definition in B&Cθ is the indirect utility
uθ:

uθ(t1, t2) = min
T :θ(T )=t1

max
S:S\T=?;θ(S)=t2−t1

u(S) for all (t1, t2) 2 T (6)

(where because B is not compact for the pseudo-metric, the min and the max
may not be reached)
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Both uλ and uθ decrease (weakly) in t1 and increase (weakly) in t2. We
show below that uλ and uθ are continuous in t1, t2: and that the guarantees
Γλ and Γθ implemented by MKλn and B&C

θ
n respectively are computed as

Γα(u;n) = max
τ2Υ(n)

min
0≤k≤n−1

uα(tk; tk+1) where α is λ or θ (7)

For instance in MKλ2 with two agents, define τλ to be a (not necessarily
unique) position of the knife making our agent indi§erent between the share
Λ(τλ) and its complement. Then

Γλ(u; 2) = max
0≤t1≤1

min{u(Λ(t1)), u(Ω!Λ(t1))} = u(Λ(τλ)) = u(Ω!Λ(τλ))

In B&Cθ2 the critical bid τ θ makes the best share of size τ θ as good as the
worst share of size 1− τ θ:

Γθ(u; 2) = max
0≤t1≤1

min{ max
θ(S)=t1

u(S), min
θ(S)=t1

u(Ω!S)} = max
θ(S)=τθ

u(S) = min
θ(S)=τθ

u(Ω!S)

(8)
Lemma 4

i) The utility uλ and the indirect utility uθ are continuous.
ii) The maximum of problem (7) (for both rules) is achieved at some τ 2 Υ(n)
where the sequence tk increases in k, all the uα(tk; tk+1) are equal, and this
common utility Γλ(u;n) or Γθ(u;n) is the optimal value of (7).
Proof

Statement i). For uλ we have for any t1 ≤ t2 and s1 ≤ s2

δ(Λ(t2)!Λ(t1),Λ(s2)!Λ(s1)) ≤ δ(Λ(t2),Λ(s2)) + δ(Λ(t1),Λ(s1))

and both S ! u(S) and t! Λ(t) are δ-continuous.
For uθ we replace first in definition (6) the equalities like θ(T ) = t1 with

inequalities θ(T ) ≤ t1. Then we fix t1, t2, " > 0, and a corresponding η in
the uniform continuity property (5). Next we assume s1, s2 is s.t. |s1 − t1|+
|s2 − t2| ≤ η and we distinguish two cases.
Case 1. uθ(t1, t2) ≥ uθ(s1, s2). Start with an arbitrary share T s.t. θ(T ) ≤

s1. We can choose T ∗ ⊆ T s.t. θ(T ∗) ≤ t1 and θ(T ∗ ⊗ T ) ≤ η (if t1 ≥ s1

then T ∗ = T will do). By definition of uθ(t1, t2) we can then choose a share
S∗ disjoint from T ∗ and such that

θ(S∗) ≤ t2 − t1 and u(S∗) ≥ uθ(t1, t2)− "

20



Trimming S∗ of its intersection with T!T ∗, if any, leaves us with S∗∗ disjoint
from T and s.t. u(S∗∗) ≥ uθ(t1, t2)−2" (because θ(T!T ∗) ≤ η). If s2− s1 <
t2− t1 we again trim S∗∗ to S such that θ(S) = s2−s1 and θ(S∗∗!S) ≤ η; or
we simply set S = S∗∗ if t2−t1 ≤ s2−s1. Thus we have u(S) ≥ uθ(t1, t2)−3".
If the initial choice of T is optimal up to " for uθ(s1, s2) any S disjoint

from T of θ-size s2− s1 is s.t. u(S) ≤ uθ(s1, s2)+ ". We conclude uθ(t1, t2) ≤
uθ(s1, s2) + 4".
Case 2. uθ(s1, s2) ≥ uθ(t1, t2). The symmetric argument simply exchanges

the roles of ti and si.

Statement ii). We check first the existence of τ 2 Υ(n) where all the
uα(tk; tk+1) are equal. For simplicity we assume n = 3, the general proof is en-
tirely similar. Fixing u and t1 there is some t2 such that uθ(t1; t2) = uθ(t2; 1).
To see this note that the function f(x) = uθ(x, 1)− uθ(t1, x) is well defined,
continuous and weakly decreasing on [t1, 1], while f(t1) ≥ 0 ≥ f(1).
This common value is unique (though t2 may not be) and defines a func-

tion g(t1) = uθ(t1; t2) = uθ(t2; 1). The continuity and monotonicity proper-
ties of uθ imply easily that g is weakly decreasing and continuous; moreover
g(0) ≥ 0 = g(1). Then the function x ! g(x) − uθ(0;x) decreases weakly
and changes sign in [0, 1]. So for t1 s.t. g(t1) = uθ(0; t1), with associated t2

we have
uθ(0; t1) = uθ(t1; t2) = uθ(t2; 1)

as desired.
Check finally that if at τ ∗ 2 Υ(n), for α = θ or λ, all the terms uα(tk∗; tk+1∗ ),

0 ≤ k ≤ n−1, are equal to a common value δ, then τ ∗ solves program (7). If it
does not there is a τ such that uα(tk; tl+1) > δ for 0 ≤ k ≤ n−1. Applying this
inequality at k = 0 gives t1 > t1∗; next at k = 1 we get u

α(t1, t2) > uα(t1∗, t
2
∗)

implying t2 > t2∗; and so on until we reach a contradiction with the fact that
both τ and τ ∗ are in Υ(n).
Finally, the optimal sequence tk increases in k, strictly if u is not every-

where zero because u(t, t) = 0 for all t. !
Theorem 2

Fix the manna (Ω,B), the number of agents n, and a utility u 2 M+(Ω).
Write τλ, τ θ the solutions of program (7) for the rules MK λ

n and B&C
θ
n.

i)With the MK λ
n rule, an agent is guaranteed the utility Γ

λ(u;n) by commit-
ting, for all k, to stop the knife at tkλ if exactly k− 1 other agents have been
served before;
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ii) With the B&C θ
n rule, she is guaranteed Γ

θ(u;n) by stopping the clock at
tkθ if exactly k − 1 other agents have been served before; and choosing then
the best available share of size tk − tk−1.
iii) minMax(u;n) ≤ Γα(u;n) ≤Maxmin(u;n) where α is λ or θ.
Proof.

Statement i) and iii) for MK λ
n. By construction of τλ the equipartition

Π = (Λ(tkλ)!Λ(t
k−1
λ ))n1 has u(Π) = Γλ(u;n). Thus (3) in Proposition 1

implies the inequalities iii). Next if the knife has been stopped k − 1 times
before our agent is served, the last stop occured at or before tk−1λ therefore if
she does stop the knife at tkλ (and wins the possible tie break) her share is at
least Λ(tkλ)!Λ(t

k−1
λ ). If she never gets to stop the knife, the last stop is at or

before tn−1λ so she gets at least Ω!Λ(tn−1λ ) = Λ(1)!Λ(tn−1λ ) and the utility
uλ(tn−1λ , 1).

Statement ii). If she is the first to stop the clock (perhaps also winning the
tie break) at step k, in step k − 1 the clock stopped at tk−1 ≤ tk−1θ and the
share T already distributed at that time had θ(T ) = tk−1: therefore she can
choose a share with utility uθ(tk−1; tkθ) ≥ uθ(t

k−1
θ ; tkθ) = Γ

θ(u;n). If she is the
last to be served, having never stopped the clock (or lost some tie breaks)
the share assigned to all other agents has θ(T ) = tn−1 ≤ tn−1θ therefore her
share is worth uθ(tn−1; 1) ≥ uθ(tn−1θ ; 1) = Γθ(u;n).

Statement iii) for B&C θ
n.

Right hand inequality. We know since Definition 3 (and section 1) that
any guarantee is bounded above by Maxmin(u;n), and we just proved that
Γθ(u;n) is such a guarantee.

Left hand inequality. Recall from Lemma 4 that Γθ(u;n) = uθ(tk−1θ ; tkθ) for
each k = 1, · · · , n. We construct now a partition Π = (Rk)n1 s. t. u(Rk) ≤
uθ(tk−1θ ; tkθ) for 1 ≤ k ≤ n: this implies minMax(u;n) ≤ maxk=1,··· ,n u(Rk) ≤
Γθ(u;n) and the claim. The construction is by a decreasing induction in n.
In (the first) step n of the induction we define the 2-partition Πn =

(Tn−1, Rn) ofΩ where Tn−1 is any solution of the programminT :θ(T )=tn−1θ
u(Ω!T ),

and Rn = Ω!Tn−1. If exact solutions are not available, it is enough to pick
approximate solutions; we omit the straightforward details.
Thus u(Rn) = uθ(tn−1θ ; 1) and θ(Tn−1) = tn−1θ .
Assume that in step k we constructed the (n − k + 2)-partition Πk =

(Tk−1, Rk, Rk+1, · · · , Rn) s.t. θ(Tk−1) = tk−1θ and u(R`) ≤ uθ(t`−1θ ; t`θ) for
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k ≤ ` ≤ n. Pick eT a solution of

min
T :θ(T )=tk−2θ

max
S:S\T=?;θ(S)=tk−1θ −tk−2θ

u(S) = uθ(tk−2θ ; tk−1θ )

As θ(eT \Tk−1) ≤ tk−2θ and θ(Tk−1) = tk−1θ we can choose Tk−2 s.t. eT \Tk−1 ⊆
Tk−2 ⊆ Tk−1 and θ(Tk−2) = tk−2θ . Then we set Rk−1 = Tk−1!Tk−2 so that
u(Rk−1) ≤ uθ(tk−2θ ; tk−1θ ) follows from Rk−1 \ eT = ? and the definition of
eT . This completes the induction step. We note finally that each set Rk thus
constructed is of θ-size tkθ − t

k−1
θ , and that maxk u(Rk) = Γθ(u;n). !

It is easy to check that no agent can secure more utility than Γλn in MK
λ
n

or Γθn in B&C
θ
n.

Remark 4. The minMax guarantee and Maxmin upper bound for u 2
M"(Ω) and −u 2 M−"(Ω), where " = ±, are related: minMax(−u;n) =
−Maxmin(u;n). With two agents the guarantees Γλ(u; 2) and Γθ(u; 2) are
similarly antisymmetric:

Γα(−u; 2) = −Γα(u; 2) where α is λ or θ (9)

and they obtain from the same partition. This is clear for Γλ and it follows
for Γθ by the change of variable S ! S 0 = Ω!S:

Γθ(−u; 2) = − min
0≤t1≤1

max{ min
θ(S)=t1

u(S), max
θ(S)=t1

u(Ω!S)} =

− min
0≤t1≤1

max{ min
θ(S0)=1−t1

u(Ω!S 0), max
θ(S0)=1−t1

u(S 0)} =

− min
0≤t0≤1

max{ max
θ(S0)=t0

u(S 0), min
θ(S0)=t0

u(Ω!S 0)}

Where the last equality is because if two continuous functions t ! f(t) and
t! g(t) intersect in [0, 1] and one increases while the other decreases, then
min0≤t≤1max{f(t), g(t)} = max0≤t≤1min{f(t), g(t)} are both attained at the
intersection point.
The identity (9) generalises to n ≥ 3 for the MK λ guarantee, but not for

the B&C θ one.

5.3 Microeconomic fair division

We must divide a good manna ! 2 RK+ in n shares zi 2 RK+ . Utilities
u 2M+(!) are continuous and weakly increasing on [0,!].
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A Moving Knife is a continuous increasing path t ! Λ(t) from 0 to
!: a natural choice is Λ(t) = t!, 0 ≤ t ≤ 1: the corresponding guarantee
Γλ(u;n) = u( 1

n
!) is the equal split utility u( 1

n
!). A positive and additive

measure θ defining B&Cθ is a “price” θ(z) = p · z, p 2 RK+!{0}, and we
write the corresponding guarantee as Γp.
Recall from section 1 that if an agent’s preferences are convex her equal

split utility is her Maxmin utility, the upper bound on all guarantees ((1)),
therefore it is weakly larger than the B&Cp guarantee for any p. The converse
inequality holds for concave preferences.

Lemma 5
i) If the upper contours of the utility u 2M+(!) are convex, then Γp(u;n) ≤
u( 1

n
!) =Maxmin(u;n).

ii) If the lower contours of the utility u 2M+(!) are convex, then minMax(u;n) =
u( 1

n
!) ≤ Γp(u;n).
The proof of statement ii) mimicks that of statement i) in footnote 2

(section 1).
We turn to a handful of numerical examples where K = 2, ! = (1, 1),

and p · z = 1
2
(x + y). Shares are z = (x, y), utilities are 1-homogenous and

normalised so that u(!) = 10. We compute our three guarantees: Bid and
Choose Γp, equal split, and minMax, and compare them to the Maxmin
upper bound.
The first three utilities (Leontief, Cobb Douglas and CES) define convex

preferences, the last two define concave preferences (represented by quadratic
and “anti-Leontief” utilities).
Our first table assumes two agents, n = 2, and illustrates Lemma 5. An

agent with convex preferences prefers the equal split guarantee to Γp; the
opposite is true for agents with concave preferences.

u(x, y) minMax(u; 2) Γp(u; 2) u(1
2
!) Maxmin(u; 2)

10min{x, y} 0 3.3 5 5
10
p
x · y 0 4.1 5 5

5
2
(
p
x+

p
y)2 2.5 4.4 5 5

5(x+ y) 5 5 5 5

5
p
2(x2 + y2) 5 5.9 5 7.1

10max{x, y} 5 6.7 5 10

The equal split partition delivers the Maxmin utility for the first four
preferences, and the minMax utilities for the last three. The equipartition
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Π = {(1, 0), (0, 1)} gives similarly the minMax utilities of the first four, and
the Maxmin ones for the last three.
To compute Γp(u; 2) we know from (8) that the optimal bid t1 (denoted

t for simplicity) solves

max
1
2
(x+y)≤t

u(x, y) = min
1
2
(x+y)≤t

u(1− x, 1− y) = min
1
2
(x+y)≥1−t

u(x, y)

This equality implies 0 ≤ t ≤ 1
2
. If u represents convex preferences symmetric

in the two goods, u(x, y) is maximal under 1
2
(x + y) ≤ t at x = y = t, and

minimal under x + y ≥ 2(1 − t) at x = 1, y = 1 − 2t. So we must solve
u(t, t) = u(1, 1− 2t): see Figure 2.
If u represents concave symmetric preferences its maximum under 1

2
(x+

y) ≤ t is at x = 0, y = 2t, and its minimum under x + y ≥ 2(1 − t) at
x = y = 1− t, so we solve u(0, 2t) = u(1− t, 1− t): see Figure 3.
We compute finally the same guarantees with three agents:

u(x, y) minMax(u; 3) Γp(u; 3) u(1
3
!) Maxmin(u; 3)

10min{x, y} 0 2 3.3 3.3
10
p
x · y 0 2.4 3.3 3.3

5
2
(
p
x+

p
y)2 2 2.5 3.3 3.3

5(x+ y) 3.3 3.3 3.3 3.3

5
p
2(x2 + y2) 3.3 4.1 3.3 4.1

10max{x, y} 3.3 5 3.3 5

The minMax equipartition for u = 5
2
(
p
x +

p
y)2 and the Maxmin

equipartition for u0 = 5
p
2(x2 + y2) have the same formΠ = {(x, 0), (0, x), (1−

x, 1 − x)}: in the former case we find x = 4
5
and minMax(u; 3) = 2, in the

latter we get x = 2 −
p
2 and Maxmin(u0; 3) = 10(

p
2 − 1). Lemma 5 and

the partition Π0 = {(1, 0), (0, 1
2
), (0, 1

2
)} fill the remaining values of minMax

and Maxmin.
To compute Γp(u; 3) we know by Lemma 4 that the three terms in (7)

are equal. They are
up(0, t1) = max 1

2
(x+y)≤t1 u(x, y)

up(t1, t2) = min 1
2
(x1+y1)≤t1 max 1

2
(x+y)≤t2−t1 and (x1+x,y1+y)≤(1,1) u(x, y)

up(t2, 1) = min 1
2
(x2+y2)≤t2 u(1− x2, 1− y2)

Clearly t1 ≤ 1
3
(as t2 − t1 < 1

3
< t1 and 1 − t2 < 1

3
< t1 are both

impossible). Therefore up(0, t1) = up(t1, t2) is achieved by t2 = 2t1 (the
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constraint (x1 + x, y1 + y) ≤ (1, 1) does not bind). Writing t = t1 = t2 − t1

it remains to solve

max
1
2
(x+y)≤t

u(x, y) = min
1
2
(x2+y2)≤2t

u(1− x2, 1− y2) = min
1
2
(x+y)≥1−2t

u(x, y)

When u represents convex preferences symmetric in the two goods, the
minimum on the right-hand side is achieved by (x, y) = (1−4t, 1) so we solve
u(t, t) = u(1− 4t, 1). See Figure 4.
If u represents concave symmetric preferences, the minimum on the right-

hand side is achieved by (x, y) = (1 − 2t, 1 − 2t) so we solve u(2t, 0) =
u(1− 2t, 1− 2t). See Figure 5.

6 Concluding comments

Comparing B&Cn and D&Cn rules The exogenous ordering of the
agents greatly a§ects the outcome of D&Cn, whereas B&Cn treats the agents
symmetrically. On the other hand the choice of the benchmark measure in
B&Cn is exogenous, which allows much, perhaps too much flexibility to the
designer.
In D&Cn the dividing agent may have many di§erent strategies guaran-

teeing her minMax utility. By contrast in B&Cn the solution to programs
(8) and (7) is often unique. Multiple choices and the resulting indeterminacy
of the outcome may be appealing for the sake of privacy preservation, less so
from the implementation viewpoint.

Some challenging open questions 1). Fix the manna (Ω,B) as in The-
orem 1, and each of the n agents with his own utility in D(Ω). As mentioned
in sections 2 and 3.2 (Remark 1), Stromquist ([36]) showed that an Envy-free
partition of Ω exists if all utilities are non negative for all shares. Without
the sign assumption on utilities, Avvakumov and Karasev ([3]) prove exis-
tence of an Envy-free partition if n is a power of a prime number. Whether
the latter remains true for all n is still an open question.

2) If the utilities vary in a domain U(Ω) where theMaxmin utility is not
feasible, we would like to describe the family of undominated guarantees u!
Γ(u;n). For instance in the microeconomic domainM+(!) of Subsection 5.3,
the equal split guarantee is clearly undominated. We conjecture that in the
domainsM±(Ω) the B&Cn guarantees Γθ are undominated as well.
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3) Divide and Choose, even with two agents, has no easy generalisation
when agents have unequal rights to the good manna (or unequal liability
for the bad manna). Consider two agents with shares 3

7
, 4
7
: if utilities are

additive, the Divider with a 3
7
th share can partition the manna in seven pieces

and let the Chooser pick four of them. This becomes quickly unmanageable
if the shares have high denominators, or utilities are not additive. It is also
unclear how to adapt the Bid and Choose rules to account for unequal rights.

7 Figures
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