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Abstract—Accurate object pose estimation using multi-modal
perception such as visual and tactile sensing have been used
for autonomous robotic manipulators in literature. Due to
variation in density of visual and tactile data, we previously
proposed a novel probabilistic Bayesian filter-based approach
termed translation-invariant Quaternion filter (TIQF) for pose
estimation. As tactile data collection is time consuming, active
tactile data collection is preferred by reasoning over multiple
potential actions for maximal expected information gain. In this
paper, we empirically evaluate various information gain criteria
for action selection in the context of object pose estimation. We
demonstrate the adaptability and effectiveness of our proposed
TIQF pose estimation approach with various information gain
criteria. We find similar performance in terms of pose accuracy
with sparse measurements across all the selected criteria.

Index Terms—Pose estimation, active action selection, infor-
mation theory, tactile perception

I. INTRODUCTION

Pose estimation of objects is a critical component of the
perception pipeline for robots to interact with the real world.
Visual perception techniques have undergone tremendous
progress in the recent times due to the advent of deep learning
methodologies coupled with inexpensive cameras and depth
sensors. However, visual perception is sensitive to environmen-
tal conditions, object properties and scene configuration and
tactile sensing has been used in prior works which provides
robust and high fidelity grounded measurements about the
objects [1]–[6]. However, collection of large amounts of tactile
data is time consuming, cumbersome and leads to sensor
wear-and-tear. Hence intelligent data collection strategies are
required for efficient tactile-based perception [7]–[13].

While tactile data can be gathered in a random fashion or
by a human-teleoperator, active touch tactics are favored since
they allow for autonomous data collection and reduce duplicate
data collection. Uncertainty reduction using information theo-
retic metrics such as Shannon entropy [12], Kullback–Leibler
(KL) divergence [14], mutual information [9] are typically
used for action selection. There are various strategies studied
in literature for next best view selection which can also be
extended to the tactile domain. Delmerico et al. [15] studied
various volumetric information gain metrics for next best view
selection. Zhang et al. [16] devised an active strategy based
on Fisher Information for active visual localisation. Similarly,
Carillo et al. [17] devised a novel strategy based on Shannon

entropy and Rényi entropy for autonomous robot exploration.
In the tactile domain, various strategies have been used for
object property estimation, texture recognition, pose estimation
and so on. Fishel and Loeb [18] implemented an active
texture recognition strategy based on tactile sensing using the
Bhattacharyya coefficient. Kaboli et al. [12] used the variance
in the Gaussian Process model to select the next exploratory
action. Similarly, Shannon entropy has been used for selecting
actions that provides the maximum discriminatory information
for object classification [10], [19]. In our previous works [7],
[8] KL-divergence has been used for tactile action selection
for object pose estimation.

Contribution: In this article, we empirically evaluate var-
ious information theoretic criteria for selection of the next
best action in the context of tactile-based localisation. We
use our novel probabilistic translation-invariant Quaternion
filter (TIQF) for pose estimation proposed in [8]. We em-
pirically evaluate the following criteria: (a) Kullback-Liebler
divergence, (b) Rényi divergence, (c) Wasserstein distance, (d)
Fisher information metric and (e) Bhattacharya distance for
computation of next best touch in simulation.

II. METHODOLOGY

A. Translation-Invariant Quaternion Filter (TIQF)

To solve the point cloud registration problem for pose esti-
mation, we proposed our linear translation-invariant Quater-
nion filter (TIQF) in our previous work [7], [8]. Given
correspondences, the point cloud registration problem can be
defined as:

si = Roi + t i = 1, . . .N , (1)

where si ∈ S denotes the scene point cloud and oi ∈O denotes
the model point cloud. The rotation R ∈ SO(3) and translation
t ∈ R3 are undefined and computed through point cloud
registration by aligning oi with si. We decouple the estimation
of rotation and translation by computing the vectors between
consecutive points:

s j − si = (Ro j + t)− (Roi + t) , (2)
s ji = Ro ji . (3)

We cast the problem of estimating rotation to a Bayesian
estimation framework and estimate it using a Kalman filter. We



define the state x of our filter as the rotation to be estimated.
We can rewrite (3) as:

s̃ ji = x⊙ õ ji ⊙x∗ . (4)[
0 −(s ji −oi j)

T

(s ji −o ji) (s j + si +o j +oi)
×

]
4×4

x = 0 (5)

Similar to [20], a pseudo measurement model for the Kalman
filter can be defined as:

Htx = zh . (6)

We assume that x and zt are Gaussian distributed and the
Kalman filter is defined as:

xt = x̄t−1 −Kt (Ht x̄t−1) (7)
Σ

x
t = (I−KtHt) Σ̄

x
t−1 (8)

Kt = Σ̄
x
t−1HT

t
(
Ht Σ̄

x
t−1HT

t +Σ
h
t
)−1

, (9)

where x̄t−1 is the normalized mean of the state estimate at
t−1, Kt is the Kalman gain and Σ̄x

t−1 is the covariance matrix
of the state at t − 1. The parameter Σh

t is the measurement
uncertainty that is state-dependent and defined as [21]:

Σ
h
t =

1
4

ρ
[
tr(x̄t−1x̄T

t−1 + Σ̄
x
t−1)I4 − (x̄t−1x̄T

t−1 + Σ̄
x
t−1)

]
,

(10)

where ρ is a constant that is tuned empirically. As the Kalman
filter does not ensure the constraint on the state to represent
a rotation, we normalize the state and associated uncertainty
after a prediction step as

x̄t =
xt

||xt ||2
Σ̄

x
t =

Σx
t

||xt ||22
. (11)

With each iteration of the Kalman filter, a rotation estimate is
obtained and the translation is computed using Equation (1).
The process is repeated until the change in the rotation and
translation between iterations is less than a specified threshold.

B. Next Best Touch Selection

As tactile data collection is time consuming, redundant
data collection must be avoided. The next best touch action
to perform is chosen as the action that reduces the overall
uncertainty of the pose estimate. A set of actions A are
sampled uniformly on the faces of the bounding box on the
current pose estimate of the object. An action is defined as
a ray represented by a tuple a = (n,d), with n as the start
point and d the direction of the ray. The optimal action a∗t
is chosen as the one that maximizes the overall Information
Gain. However, as the predicted measurements zt are hypo-
thetical, we can approximate our action-measurement model
p(zt |x,at) as the ray-mesh intersection of the predicted action
and the mesh of the model at the current estimated pose.
The hypothetical pose for each predicted action and predicted
measurement is calculated using the TIQF algorithm as the
one-step look ahead. In order to calculate the information
gain, we empirically compare a few well known information
theoretic criteria as follows:

1) Kullback–Leibler divergence (KL) [22] (or relative en-
tropy) measures the how different one probability dis-
tribution is from another. For two discrete probability
distributions pi and p j defined in the probability space
s ∈ S, DKL(pi||p j) = ∑s∈S pi(s)log pi(s)

p j(s)
.

2) Rényi divergence [23] generalises the KL divergence and
is defined as: Dα(pi||p j) =

1
1−α

log(∑s∈S
pα

i (s)
pα−1

j (s)
) for 0 <

α < ∞ and α ̸= 1. For limiting case α → 1, the Rényi
divergence is the same as KL divergence.

3) Fisher information metric [24] measures the amount of
information that an observable random variable X carries
about an unknown parameter θ upon which the proba-
bility of X depends. It is defined as second derivative of
the KL divergence.

4) Bhattacharya distance [25] measures the relative close-
ness of two probability distributions. It is defined as
DB(pi||p j) =− ln(∑s∈S

√
pi(s)p j(s)).

5) Wasserstein distance [26] is a way to compare two
probability distributions, where one distribution is de-
rived from the other by small, non-uniform perturbations
(random or deterministic). It is defined as Wp(λ ,ν) =
(in f (E[d(X ,Y )p])1/p for two distributions λ ,ν and the
infimum is taken over all joint distributions of the random
variables X and Y with marginals λ and ν respec-
tively [27].

Given that the prior and posterior are multivariate Gaussian
distributions, we have closed form solutions for each of
the divergence or distance metrics as described in Table I.
Therefore we perform the most optimal action a∗t given by

a∗t = argmax
ât

D(p(x|ẑ1:t , â1:t)||p(x|z1:t−1,a1:t−1) . (12)

III. EXPERIMENTAL RESULTS

We performed simulation experiments on the Bunny dataset
of the Stanford Scanning Repository for calculating the next
best touch using various information gain criteria. Noise was
added that was randomly sampled from a normal distribu-
tion N(0,5× 10−3) to the model cloud. The initial pose is
randomnly sampled from [−50,50]mm and [−30o,30o] for
translation and rotation respectively. The initial state x0 is
set as the initial pose and the initial covariance Σx

0 is set
to 104 ∗ I4. To initialise the TIQF algorithm, a minimum
number of measurements (3 points) are needed which are
sampled by performing random touch actions. The active touch
action selection is started from the 4th touch onwards. In
particular for Rényi divergence, we used an α = 0.3 that was
empirically tuned. All simulation experiments were executed
on a workstation running Ubuntu 18.04 with 8 core Intel i7-
8550U CPU @ 1.80GHz and 16 GB RAM. We show the
results of the simulation experiments for 6 repeated runs on
each metric and show the average L2 norm of the absolute
error in position (m), rotation (o) and Average Distance of
model points with Indistinguishable views (ADI) metric [28].



TABLE I: Divergence/ distance measures for multivariate Gaussian distributions pi =N(µi,Σi) and p j =N(µ j,Σ j)

Name D(pi||p j) Comments

Kullback-Leibler divergence 1
2 [log |(Σ j)|

|(Σi)|
+ tr(Σ−1

j Σi))−d +(µi −µ j)
′Σ−1

j (µi −µ j)] d = 4 in our case

Rényi divergence α

2 (µi −µ j)
′(Σα )

∗(µi −µ j)− 1
2(α−1) log |(Σα )∗|

|Σ1−α
i ||Σα

j |
(Σα )

∗ = αΣ j +(1−α)Σi

Fisher Information metric |Σ−1
j (µi −µ j)|2 + tr(Σ−2

j Σi −2Σ
−1
j +Σ

−1
i )

Bhattacharya distance 1
8 (µi −µ j)

′Σ−1(µi −µ j)+
1
2 log( |Σ|√

|Σi||Σ j |
) Σ =

Σi+Σ j
2

2-Wasserstein distance2 |(µi −µ j)|2 + tr(Σi +Σ j −2
√√

ΣiΣ j
√

Σi))

(a) (b) (c)

Fig. 1: Simulation results on the Stanford Scanning Bunny dataset for the various information gain metrics: (a) Average L2
norm of the position error with number of touch measurements, (b) average L2 norm of the rotation error with number of
touch measurements, (c) average ADI with number of touch measurements for 6 repeated runs.

(a) (b) (c) (d) (e)KL Divergence Renyi Divergence Fisher Information Metric Bhattacharya Distance Wasserstein Distance

Fig. 2: Box-and-whisker plots of the ADI metric for each criteria with increasing number of measurements.

A. Discussion

The results of the experiments are presented in the Figure 1
and Figure 2. Across all the selected criteria, the pose error
iteratively reduces with increasing number of measurements
that are actively selected. In fact, for all the criteria the ADI
metric is < 1cm for 15 measurements. Hence it shows that
the active touch strategy using any information gain criteria
with our proposed pose estimation approach helps to reduce
the pose error with few measurements. We note very similar
performance for each criteria and it is not straightforward to
conclude if any particular criteria is better. We see compar-
atively lower variance for Rényi divergence and Wasserstein
distance. In terms of accuracy, we note that KL divergence
has comparatively slightly lower accuracy with other criteria
however still within the acceptable accuracy range of < 1cm.

Hence, we provide initial empirical evaluation in simulation
showing the adaptability of our proposed TIQF pose estima-
tion approach with various information gain criteria.

IV. CONCLUSION

In this work, we empirically evaluated various information
gain criteria for action selection in the context of object pose
estimation in simulation. Our proposed TIQF algorithm for
pose estimation allows for all criteria to have closed form so-
lutions for the next best action with marginal computation time
overhead. This work also provides the theoretical framework
for employing various well known and uncommon information
theoretic criteria for action selection. As future work, we will
investigate the same criteria with real world data collected
from novel tactile sensors [29]–[32].
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