

Cheng, L., Feng, G., Sun, Y., Liu, M. and Qin, S. (2022) Dynamic Computation
Offloading in Satellite Edge Computing. In: ICC 2022 - IEEE International Conference
on Communications, Seoul, South Korea, 16-20 May 2022, pp. 4721-4726. ISBN
9781538683477

(doi: 10.1109/ICC45855.2022.9838943)

This is the Author Accepted Manuscript.

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must
be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating
new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.

There may be differences between this version and the published version. You are
advised to consult the publisher’s version if you wish to cite from it.

https://eprints.gla.ac.uk/268950/

Deposited on: 11 April 2022

Enlighten – Research publications by members of the University of Glasgow
http://eprints.gla.ac.uk

https://doi.org/10.1109/ICC45855.2022.9838943
https://eprints.gla.ac.uk/268950/
http://eprints.gla.ac.uk/

Dynamic Computation Offloading in Satellite Edge
Computing

Lei Cheng∗†, Gang Feng∗, Yao Sun†, Mengjie Liu∗, Shuang Qin∗
∗National Key Laboratory of Science and Technology on Communications,

University of Electronic Science and Technology of China
†James Watt School of Engineering, University of Glasgow

E-mail:fenggang@uestc.edu.cn

Abstract—Satellite edge computing (SEC) has become a promis-
ing technology for future wireless networks to provide anywhere
and anytime computing services. Different from terrestrial edge
computing, the computing capacity at Low-Earth-Orbit (LEO)
satellites is usually unstable, due to the limited and consis-
tently changing energy supply of fast-orbiting LEO satellites.
To well exploit the potentials of SEC, an optimal computation
offloading strategy becomes imperative to determine when and
how to offload computing tasks with respect to high dynamics
of satellites. In this paper, we propose a dynamic offloading
strategy to minimize the overall delay of tasks from terrestrial
users in a SEC network, subject to the energy and computing
capacity constraints of the LEO satellite. Based on Lyapunov
optimization theory, a long-term stochastic problem with a time-
varying energy constraint is converted into multiple deterministic
one-slot problems parameterized by the current system state,
where task offloading decisions, computing resource allocation and
transmit power control are jointly optimized. Numerical results
show that our algorithm achieves asymptotic optimality efficiently
while maintaining the mean rate stable of the LEO satellite’s
energy queue, and has a lower delay compared with the other
two comparison approaches with acceptable energy consumption.

I. INTRODUCTION

Satellite network has the prominent advantages of large
capacity, long-distance communication, and immunity to dis-
asters, and has shown great potentials to assist existing terres-
trial network to form the future satellite-terrestrial integrated
network (STIN). More importantly, edge computing servers
deployed at Low-Earth-Orbit(LEO) satellites can provide swift
computing services for users in a large geographical area, which
has become a hot computing paradigm, called satellite edge
computing (SEC). Compared with conventional mobile edge
computing (MEC) in ground networks, on the one hand, SEC
can accommodate more computing tasks offloaded from a wider
coverage area, even the place with no terrestrial infrastructure
deployed [1]. On the other hand, by sinking abundant resources
to LEO satellites, SEC significantly reduces end-to-end trans-
missions so that delay can be further reduced compared with
transmitting to remote terrestrial cloud center.

Before enjoying the great benefits of SEC, it is significant
yet challenging to design an efficient SEC offloading strategy
due to strong spatiotemporal constraints on STIN, which are
brought by the inherent physical characteristics of satellite

networks, such as topology dynamics, long propagation delay,
limited resource, etc. Specially, with steadily increasing en-
ergy consumption of computation-intensive and delay-sensitive
tasks, the energy budgets of LEO satellites have become one
of the most crucial constraints. Typically, the energy supply for
LEO satellites is provided by solar panels and battery cells, and
the energy level consistently changes with energy harvesting
and consumption along movement [2]. As a LEO satellite orbits
earth, it may experience prolonged darkness with insufficient
energy input, leading to an unavailability to serve all offloading
or transmission requests from users within its coverage [3].
Although the energy supply is abundant, the harvestable energy
should be consumed in a cost-effective way, so as to save the
operational expenditure for satellites [4]. Moreover, since the
energy consumption associate with close coupled offloading
decision, computing and communication resource allocation,
a joint optimization should be investigated to make energy-
efficient and performance-optimization decisions subject to
LEO satellite energy constraints in a long-term vision.

However, the energy constraint of LEO satellites was largely
ignored in previous related works, despite the fact that the
problem of minimizing total energy consumption and/or latency
of tasks has been well addressed [5]–[7]. Most of related work
adopts a two-tier network architecture, in which both terres-
trial networks (including users and base stations) and satellite
networks are considered. With a consideration of backhaul
capacity constraints, the problem of joint user association and
offloading decision in a SEC-enhanced STIN is studied in [5]
to maximize the sum data rate via matching algorithms. By
introducing rich resources of the cloud computing center, a
three-tier computation architecture with both edge and cloud
computing is proposed to provide multifarious services [6],
[7]. A distributed algorithm based on the alternating direction
method of multipliers (ADMM) is developed to minimize the
sum energy consumption of ground users in [6] under the
constraints of LEO coverage time and computing capability. To
deal with environmental dynamics, the authors of [7] present
a model-free reinforcement learning (RL)-based approach to
investigate computation offloading policy. Nevertheless, little
attention has been paid to the energy budgets of satellites, which
is indeed crucial in STIN.

In this paper, we propose a drift-plus-penalty based dynamic
offloading strategy in a LEO satellite edge computing network
to minimize overall delay of computing tasks, subject to the
energy and computing capability constraints of terrestrial UDs
and the LEO satellite. To deal with the randomness of task
arrivals, time-varying channel condition and consistent energy
harvesting, we convert the formulated long-term stochastic op-
timization problem into multiple one-slot problems leveraging
the framework of Lyapunov optimization, which helps optimize
time averages without knowing the future system states, while
maintaining mean rate stable of the energy queue. As the
converted one-slot problem is nonconvex, we decompose it
into multiple equivalent sub-problems, which can be iteratively
solved with high efficiency. Simulation results demonstrate
the asymptotic optimality and effectiveness of the proposed
dynamic offloading algorithm along the movement of the LEO
satellite, and the performance of the proposed algorithm in
terms of overall delay and energy consumption outperforms
other two comparison approaches.

The rest of the paper is structured as follows. Section II
presents the system model and problem formulation. Section
III elaborates the proposed drift-plus-penalty algorithm and
the corresponding one-slot solution. We evaluate the system
performance in Section IV and finally conclude the paper in
Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Model of Satellite and Terrestrial Integrated Network

Fig. 1. Illustration of satellite and terrestrial integrated network architecture.

We consider a satellite-terrestrial integrated network shown
in Fig. 1. The terrestrial user devices (UDs), such as mobile
phones and IoT devices, are located in a wide area. Some
UDs can offload their computing tasks via terrestrial networks,
while the UDs without the support of ground communication
infrastructure have to resort to satellite networks to fulfill
their requirements. As the computing offloading problem in
terrestrial networks has been intensively addressed and many
efficient solutions have been provided in previous work, we
focus on the UDs without the support of terrestrial commu-
nication facility in this work. Over the sky, multiple LEO
satellites constitute constellations to achieve seamless global
coverage. Each LEO satellite orbits the earth periodically
and projects a large coverage area on the ground, in which
multiple satellite-terrestrial communication connections can be

established. Besides allowing multi-access, each LEO satellite
is equipped with a computing server, and thus can provide
computing service for UDs in its coverage. Furthermore, each
LEO satellite is also connected to the cloud computing center
via high-speed backhaul link [6].

Without loss of generality, we consider a scenario that
a LEO satellite, namely L, provides access and computing
complement to a set of UDs D = {D1,D2, ...,DN} , N = |D|,
within its coverage. The time is divided into T slots, denoted
by τ = {1, 2, ..., T}, for ease of discussion of sequential
offloading decision problem. Hypothetically, the number of
computing task arrivals within the coverage of a LEO satellite
in each timeslot t obeys Poisson point progress (PPP), i.e.,
N(t) ∼ P (λ) [3]. We further assume that the tasks will be
generated from a finite application set A , in which each type
a can be denoted by a tuple

(
wina , fa, τ

max
a

)
, where wina , fa and

τ represent data size (bits), required CPU cycles per bit, and
maximum tolerable delay (s) respectively. A type-a computing
task generated by Dn ∈ D in timeslot t is denoted by Aan(t).

Benefiting from code partitioning technology, we assume
that computing tasks are separable in this paper, just like that
in [8]. A task can be partially processed at different places
simultaneously. We introduce an offloading vector xn(t) =[
xln(t), xen(t), xcn(t)

]
to denote the partitioned portions of the

task Aan(t), where xln (t) , xen (t) and xcn (t) denote the percent-
age of a task that processed locally, at the LEO server and
at the cloud computing center, respectively. Due to resource
constraints on UDs and the LEO satellite, a task may be blocked
and dropped, which is denoted by xdn (t) = 1, otherwise
xdn (t) = 0. Therefore, these four variables are constrained by
the following equations:

xln (t) + xen (t) + xcn (t) + xdn (t) = 1,∀t ∈ {1, 2, ..., T} ,
where xln (t) , xen (t) ,xcn (t) ∈ [0, 1] , xdn (t) ∈ {0, 1} .

(1)

B. Delay and Energy Consumption

In this subsection, we present delay and energy consumption
model. In this work, the total delay of each task consists of
delay for transmission, propagation and computation. As the
size of computation results is usually much smaller than that
of the input data, we ignore the delay on downlink transmission.

Local Computing: If the task Aan(t) is partially processed
locally, and the CPU frequency is zDn (t), the delay for local
computing is

dDn (t) =
xln (t) · CPUa

zDn (t)
, (2)

where CPUa = wina fa is the total CPU cycles needed, and
zDn (t) is physically constrained by the local computing capacity
zD, i.e., 0 ≤ zDn (t) ≤ zD. We denote local computing energy
consumption by

eD,ln (t) = κ · xln (t) · CPU · zDn (t)
2
, (3)

where κ is the effective switched capacitance related to hard-
ware structures [6].

Offloading to the LEO satellite: When a part of the task
Aan(t) is offloaded to the LEO satellite for procession, it will

first be transmitted via a satellite-terrestrial link. Assume that
the bandwidth is shared among multiple terrestrial UDs, and
there is no interference with each other due to geographical
isolation. We denote by σ0 the noise power spectral density
at satellite receiver, and the transmission rate rDn (t) of UD
Dn associated with the LEO satellite according to Shannon’s
theorem is given by

rDn (t) =Blog2

(
1 +

gn (t) pDn (t)

σ0B

)
, (4)

where B represents the uplink bandwidth, and pDn (t) denotes
the transmit power. gn (t) is the channel gain composed of
antenna gain, large-scale fading (determined by geographical
distance ln and environmental attenuation, etc.) and shadowed
Rician fading [6]. The task delay den (t) consists of transmission
delay, task computing delay and propagation delay, and can be
expressed as

den (t) = xen (t)

(
wina
rDn (t)

+
CPUa
zSn (t)

)
+

2ln
c
, (5)

where zSn (t) is the amount of computing resource allocated to
task Aan(t), and the maximum capacity that is allocated to each
task is zS , i.e., 0 ≤ zSn (t) ≤ zS .

In this way, the task energy consumption composed of UD’s
transmission consumption ee,Dn (t) and the satellite’s computa-
tion consumption ee,Sn (t), can be respectively expressed as

eD,en (t) = pDn (t)
xen (t)wina
rDn (t)

, (6)

eS,en (t) = κ · xen (t) · CPUa ·
(
zSn (t)

)2
. (7)

Offloading to the cloud server: Similarly, we analyze the
scenario if the task Aan(t) is partially processed at the cloud
computing center. As there is abundant computing resource at
the cloud computing center, we assume that the task compu-
tation delay is negligible. Then the UD’s transmission delay,
satellite’s transmission delay and propagation delay constitute
the task delay dcn (t) as follows

dcn (t) = xcn (t)wina

(
1

rDn (t)
+

1

rSn (t)

)
+

2ln
c
, (8)

where the backhaul transmission rate and power are rSn(t) and
pSn(t) respectively. Furthermore, the task energy consumption
including UD’s transmission consumption ec,Dn (t) and the
satellite’s transmission consumption ec,Sn (t) can be respectively
expressed as

eD,cn (t) = pDn (t)
xcn (t)wina
rDn (t)

, (9)

eS,cn (t) = pSn (t)
xcn (t)wina
rSn (t)

. (10)

In summary, a task Aan(t) can be processed in parallel in
different ways, and thus the execution delay dn (t) for Aan(t)
is expressed as

dn (t) = max(1{xl
n(t)>0} ·dln (t) , 1{xe

n(t)>0} ·den (t) ,

1{xc
n(t)>0} ·dcn (t)),

(11)

where 1{x∈A} =

{
1, if x ∈ A
0, if x /∈ A

.

Nevertheless, some tasks may be dropped due to the energy
and computing capacity constraints of UDs’ and the LEO
satellite. With this regard, we need to count the extra delay
incurred, as the dropped task has to be retransmitted and
executed. Therefore, the delay of task Aan (t) is expressed as

γn (t) = dn (t) + β · 1{xd
n(t)=1}, (12)

where β represents the extra delay introduced by a re-executing
dropped task.

Furthermore, the task needs to be accomplished in a given
time,

γn (t) ≤ τmax
a . (13)

C. Problem Formulation

Typically, solar cells and batteries provide stable energy stor-
age for the payload on LEO satellites. As handovers between
sunlights and darkness frequently occur along the movement,
the LEO satellite may not be able to serve all requests due to
energy limitations. Therefore, in designing the SEC offloading
strategies, we need to take into account the constraints of
energy budgets and model the energy evolution progress of the
LEO satellite. The harvestable energy of the satellite in slot
t, denoted by eh,S (t), is a constraint given by the satellite’s
location, inclination and solar panel configuration [4]. We
denote the battery level of the satellite at the beginning of slot
t as ES (t), which evolves according to the following equation:

ES (t+ 1) = ES (t)− eS (t) + eS,h (t) , (14)

where eS (t) =
N∑
n=1

(
eS,en (t) + eS,cn (t)

)
+ eS,r (t) ≤ ES (t)

is the energy consumption of the LEO satellite in slot t
for transmission, computation and nominal operation eS,r (t),
and is denoted as eS (xn (t) , zn (t) , pn (t)). Besides, in each
timeslot, the energy consumed is generally constrained by
eS (t) ≤ ES,max to eliminate the close coupling effect over
multiple timeslots in constraint (15), where ES,max is the
maximum energy consumption determined by the discharge
depth of the battery [2].

Different from the LEO satellite, UDs in remote area usually
have no addtional energy supply, and its energy consumption
eDn (t) is used for task transmission, local task computation and
nominal operation eD,rn (t), which can be expressed as

eDn (t) = eD,ln (t) + eD,en (t) + eD,cn (t) + eD,rn (t) ≤ ED,max,
(15)

where ED,max is the energy capacity of UDs. Similarly,
the energy consumption of Dn in timeslot t is denoted as
eDn (xn (t) , zn (t) , pn (t)).

In addition, as multiple users in the coverage area can simul-
taneously request a specific satellite for execution/transmission,
task offloading and resource management needs to be optimized
jointly under energy constraints of the satellite. With the aim
to minimize the overall delay of UDs while satisfying the LEO
satellite’s and UDs’ energy constraints, we formulate the joint

task offloading and resource allocation optimization problem as

P0 : min
xn(t),zDn (t),zSn(t),pDn (t),pSn(t)

1

T

T∑
t=1

E

N(t)∑
n=1

γn(t)

s.t.

C1 : eS (xn(t), zn(t), pn(t)) ≤ ES,max

C2 : eDn (xn(t), zn(t), pn(t)) ≤ ED,max, n = 1, 2, . . . , N(t)

C3 : 0 ≤ zDn (t) ≤ zD · 1{xl
n(t)>0},

0 ≤ zSn (t) ≤ zS · 1{xc
n(t)+x

c
n(t)>0}, n = 1, 2, . . . , N(t)

C4 : 0 ≤ pDn (t) ≤ pD,max · 1{xe
n(t)+x

c
n(t)>0}

0 ≤ pSn(t) ≤ pS,max · 1{xc
n(t)>0}, n = 1, 2, . . . , N(t)

(1) for task splitting,
(13) for task delay requirement,
(14)(15) for energy constraints.

The objective function of P0 is minimizing the long-term
average of overall delay of tasks, for a specific system state
(e.g., the LEO satellite’s energy level, the terrestrial-satellite
channel state, the number of arrival tasks, etc.) by determining
the task offloading proportion xn (t), computation resource
zn (t), and transmit power pn (t) in each timeslot. Constraints
C1 and C2 indicate the energy limitation for UDs and the LEO
satellite. Constraints C3 and C4 indicate the physical constraints
of UDs’ and the LEO server’s computing capacity and transmit
power. (1) limits the ranges of the offloading variables. (14)
indicates that each task needs to be finished before its deadline.
The energy constraint of the LEO satellite for adjacent timeslots
is given in (15). P0 is a long-term stochastic optimization
problem containing continuous variables and integer variables.

III. LYAPUNOV OPTIMIZATION BASED ONLINE
OFFLOADING STRATEGY

Leveraging the framework of Lyapunov optimization, we are
able to convert this problem into multiple deterministic one-
slot optimization problems P1 at individual timeslots. Then we
solve P1 by iteratively solving the decomposed sub-problems.

A. Optimization by minimizing Drift-plus-penalty

First, we set a virtual energy queue as ÊS(t) = ES (t)− φ,
which has the flavor of keeping the queue energy backlog near a
non-zero auxiliary constant φ [9]. Then we set a backlogvector
as Θ(t) = ÊS(t), and the Lyapunov function is defined as
L(Θ(t)) = 1

2 Ê
S(t)2. Accordingly, the Lyapunov drift function

with respect to L (Θ (t)) is defined as follows:

∆ (Θ (t)) = E {L (Θ (t+ 1))− L (Θ (t)) |Θ (t)} . (16)

Next, in order to minimize the objective function and sta-
bilize the energy queue, we optimize the following Lyapunov
drift-plus-penalty function in each timeslot:

ΦV (t) = V · γ (t) + ∆ (Θ (t)) , (17)

where V ≥ 0 is a tuning factor with unit as J2 · second−1 and

γ (t) =
N(t)∑
n=1

γn (t) is the sum of task delay in slot t.

Algorithm 1 Drift-plus-penalty based Dynamic Offloading
For each time slot t

1: Obtain task arrival distribution N(t), Task type An(t),
channel power gain hn(t), satellite virtual energy queue length
ÊS(t), the harvestable energy eh,S (t);

2: Determine task offloading vector xn(t), computing re-
source zn(t), transmission power pn(t) by solving P1;

3: Update the energy queue according to (14);
4: t = t+ 1;

Until t > T

Lemma 1: For arbitrary feasible decision variables
xn (t) , zn (t) , pn (t) for P0, ΦV (t) is upper bounded as
follows

ΦV (t) = V · γ (t) + ∆ (Θ (t))

≤ B + V ·
(

N∑
n=1

(α · dn (t) + β · qn (t))

)
− ÊS (t) eS (t) .

where B = 1
2 (ES,max + Ψmax)2, Ψmax is the amount of

maximum harvestable energy.
Proof : The proof can be achieved through equivalent trans-

forms to (15)(18)(19), and is omitted due to space limitation.
According to Lemma 1, we can obtain the approximate

optimality of ΦV (t) by minimizing the upper bound of ΦV (t),
and thus a stochastic optimization problem is converted to
multiple one-slot problems. The one-slot problem for a specific
slot t is formulated as

P1 : min
xn(t),zDn (t),zSn(t),pDn (t),pSn(t)

V · γ(t)− ÊS(t)eS(t)

s.t. C1 − C4, (1), (13).

P1 can be decomposed and then solved efficiently by using
conventional methods such as interior point method. Based
on the solution of P1 in each timeslot, we propose a drift-
plus-penalty based dynamic offloading strategy, which can be
summarized in Algorithm 1. In each timeslot, the current
system state, i.e., the LEO satellite energy state ÊS(t), task
distribution N (t), arriving task type, and channel gain hn (t),
can be observed. Next, the system decisions (task offloading
proportion, computing resource allocation, transmit power con-
trol) are obtained by solving the one-slot optimization problem
P1 parameterized by current system state, which yields an ω-
only policy. As the virtual energy queue of the LEO satellite
satisfies the boundedness assumptions, the solution of the
proposed algorithm can be arbitrarily closely to optimality
with O(1

V) by setting V to a sufficiently large value, while
maintaining mean rate stable with O(V) for the virtual energy
queue [10].

B. One-slot solution

We solve the one-slot problem P1 in this subsection. To deal
with the coupling issue of variables and the non-convexity of
P1, we further decompose P1 into the following equivalent
convex sub-problems and solve them iteratively:

1) Task offloading (TO) Problem: When the transmit power
and computing resource are given, i.e., zn (t) = zn, pn (t) =
pn, we try to obtain the optimal xn(t)

∗. If xdn (t) , n =
1, 2, ..., N(t) are all relaxed to continuous variables ranging
in [0, 1], the task offloading problem will be convex with
respect to offloading vector xn(t). Then the TO problem can
be efficiently solved by using some mature algorithms, such as
interior point method.

2) Resource Allocation (RA) Problem: When the task of-
floading vectors are given, i.e., xn (t) = xn, we aim to obtain
the optimal solution of zn (t)

∗
, pn (t)

∗. Observing that eS(t)
is only relevant to zSn (t) , pSn (t), we can further decompose
the RA problem into N local RA problems and an edge RA
problem as follows:

Local Resource Allocation: For each terrestrial UD, we get
the optimal zDn (t) , pDn (t) by solving the following problem:

PLRA :
zDn (t),pDn (t)

V · γn(t)

s.t. C2 − C4, (13).

The difficulty of PLRA lies on the cross term pDn (t)
rDn (t)

in C1, as
it is nonconvex with respect to pDn (t). To solve this problem,
we introduce a new variable yDn (t),

yDn (t) = yDn
(
pDn (t)

)
=

1

Bn log2

(
1 +

gn(t)pDn (t)
σ0Bn

) =
1

rDn (t)
.

(18)
Next, by means of variable substitution, we define ξ

(
yDn (t)

)
as follows:

ξ
(
yDn (t)

)
=
pDn (t)

rDn (t)
=
σ0Bn
gn(t)

yDn (t)

(
2

1

yD
n (t)Bn − 1

)
. (19)

As ξ
(
yDn (t)

)
is convex with respect to yDn (t), PLRA can be

solved through solving the following convex problem P
′

LRA,
and we can get the optimal zDn (t)∗ and yDn (t)∗.

P
′

LRA :
zDn (t),yDn (t)

V · γn(t)

s.t. C2 − C4, (13).

Edge Resource Allocation: By means of variable substitution,
we can optimize ySn (t) and ξ

(
ySn (t)

)
defined similarly to (19),

(20) and try to solve the following problem:

P
′

ERA :
zSn(t),ySn(t)

V · γn(t)− ÊS (t) eS (t)

s.t. C1, C3, C4, (13).

On the one hand, when ÊS(t) ≤ 0, it is intuitive that
the objective function and constraints are convex with respect
to ySn (t) and ξ

(
ySn (t)

)
. However, when ÊS(t) > 0, the

objective function is nonconvex due to the negative-definiteness
of −ÊS(t)eS(t), which cannot be directly solved. Observing
the monotony property of objective function with respect to
zSn (t) , ySn (t), we consider two cases:

1) The optimum is not achieved at the boundary of con-
straint C1. Then the optimal solution must be zSn (t)∗ = zS ·
1{xe

n(t)>0}, pSn(t)∗ = pS,max · 1{xc
n(t)>0}.

TABLE I: SIMULATION PARAMETERS

Parameter Value

LEO satellite altitude 1500 km
Uplink/Backhaul bandwidth 1 MHz/20 MHz

ED,max 5 mJ
ES,max 10 kJ
zD 0.1 Gcycles/s
zS 3 Gcycles/s

PD,max 24 dBm
PS,max 46 dBm
A {(10, 100k, 1000), (10, 400k, 1000)}
β = τmax

a = 10s
σ0 -174dBm/Hz
κ 10−25

2) The optimum is achieved at the boundary of constraint C1.
Then −ÊS(t)eS(t) in objective function will be eliminated by
constraint C1, and P

′

SRA can then be solved.

IV. PERFORMANCE EVALUATION

In this section, we conduct simulations to implement dy-
namic offloading algorithm under different environmental set-
tings, evaluate the performance of the proposed algorithm in
terms of total task delay and required energy capacity, and
compare with other two algorithms. In simulations, we use
the LEO satellite power supply model used in [4], and other
parameters for the STIN are shown in Table 1.

(a) Harvestable energy level vs. t. (b) Energy level of the LEO satellite vs. t.

Fig. 2. Energy evolution at a LEO satellite.

In the first experiment, we verify the feasibility of the pro-
posed drift-plus-penalty algorithm under different absorption
power of LEO satellite and peturbed index φ. Fig. 2(a) shows
the harvested energy as a function of time, where p and α in
the legend denote the absorption power and the angle between
the orbital plane of the LEO satellite and the sunlight. It can be
observed that the harvested energy varies even if the satellite
is exposed to the sun. And the eclipse period with no energy
supply is also shown. Fig. 2(b) presents the energy evolution
corresponding to the harvested energy in Fig. 2(a). Please note
that the energy consumption in each timeslot is optimized
according to the solution given in Section. III. First, we observe
that the energy level increases rapidly in the beginning, and
eventually stabilizes around the perturbed energy level φ for
all the four settings. This is achieved through the minimization
of the upper bound of the Lyapunov drift-plus-penalty function
in the proposed algorithm, as is indicated by Lemma 1. The
energy evolution curve grows faster to the perturbation index

with a greater p. The eclipse period is also reflected in each
curve, where the energy level nearly remains unchanged. This is
due to the fact that local computing and offloading to the cloud
center are largely chosen, as these two offloading strategies only
consume little energy of the LEO satellite while guaranteeing a
satisfactory performance in the current setting of the simulation.

(a) Overall delay vs. V . (b) Required energy capacity vs. V .

Fig. 3. Delay and required energy capacity vs. tuning factor.

Next, we examine the relationship between the average
overall delay of tasks/the required LEO satellite energy capacity
and tuning factor V , when the task arrival rate is set to be 10
per slot in Fig. 3. In Fig. 3(a), it can be observed that when V
approaches 0, the average total task delay reaches maximum. As
V increases, the average overall delay reduces sharply to around
1, and eventually converges to the optimality of P1, which
confirms the asymptotic optimality in aforeanalysis. However,
as is indicated in Fig. 3(b), for a certain perturbation index,
the required battery capacity increases linearly with V , since
it takes longer time for the energy queue to achieve mean rate
stable, which implies a larger battery capacity is needed. For
instance, with only 5% performance improvement, more than
four times energy capacity is needed for V = 2×104 compared
to V = 40. Thus, V should be chosen for a good tradeoff
between the overall delay and the required battery capacity.

(a) Total task delay vs. λ. (b) Avearge energy consumption vs. λ.

Fig. 4. Total task delay and energy consumption vs. task arrival rate.

Finally, we compare the average total task delay and energy
consumption when the task arrival rate λ increases from 10
to 30 per slot in Fig. 4. Following the comparison algorithms
developed in [7], the first strategy for comparison is greedy
on edge strategy, in which tasks are incessantly offloaded
to the LEO server as long as there is enough energy. The
other one is random allocation strategy, in which the power
and computing resource are randomly allocated. In Fig. 4(a),
with the assist of computing resource of cloud center and

UDs, dynamic offloading strategy achieves a lower delay than
greedy on edge strategy. With optimal resource allocation, the
delay can be reduced by 46.2% on average compared with
random allocation strategy. In Fig. 4(b), it is noticable that the
energy consumption of greedy on edge strategy remains the
highest, hence the availiable energy may be exhausted when
the harvestable energy is insufficient. The energy consumption
of random allocation strategy is the lowest, which indicates that
a higher energy capacity is needed, or the unused energy will be
disgarded. Since the dynamic offloading strategy makes full use
of availiable energy, it has a slight higher energy consumption
than random allocation strategy to achieve the minimum delay.
As task arrival rate increases, more tasks are offloaded to the
cloud computing center in dynamic offloading strategy, the
energy consumption nearly remains at the same level.

V. CONCLUSIONS

In this paper, we have proposed a dynamic offloading strategy
by leveraging the framework of Lyapunov optimization in a
LEO satellite edge computing network. We jointly optimize
task offloading, computing resource allocation and transmission
power control by iteratively solving the decomposed sub-
problems, while maintaining energy queue mean rate stable.
The near-optimality and effectiveness of the proposed algorithm
are verified through simulations. By choosing appropriate con-
trol parameters, the overall delay of terrestrial users can be
minimized with an acceptable energy capacity. The proposed
algorithm has significantly reduces the overall delay when
compared with greedy on edge, and random allocation strategy.

REFERENCES

[1] J. Liu, X. Du, J. Cui, M. Pan, and D. Wei, “Task-oriented intelligent
networking architecture for space-air-ground-aqua integrated network,”
IEEE Internet of Things Journal, vol. PP, no. 99, pp. 1–1, 2020.

[2] R. Liu, M. Sheng, K. S. Lui, X. Wang, Y. Wang, and D. Zhou, “An
analytical framework for resource-limited small satellite networks,” IEEE
Communications Letters, vol. 20, no. 2, pp. 1–1, 2016.

[3] A. Fu, E. Modiano, and J. Tsitsiklis, “’optimal energy allocation and ad-
mission control for communications satellites,” IEEE/ACM Transactions
on Networking, 2003.

[4] Y. Yuan, M. Xu, W. Dan, and W. Yu, “Towards energy-efficient routing in
satellite networks,” IEEE Journal on Selected Areas in Communications,
vol. 34, no. 12, pp. 3869–3886, 2016.

[5] B. Di, H. Zhang, L. Song, Y. Li, and G. Y. Li, “Ultra-dense leo: Integrating
terrestrial-satellite networks into 5g and beyond for data offloading,” IEEE
Transactions on Wireless Communications, pp. 1–1, 2018.

[6] Q. Tang, Z. Fei, B. Li, and Z. Han, “Computation offloading in leo
satellite networks with hybrid cloud and edge computing,” IEEE Internet
of Things Journal, vol. PP, no. 99, pp. 1–1, 2021.

[7] N. Cheng, F. Lyu, W. Quan, C. Zhou, H. He, W. Shi, and X. Shen,
“Space/aerial-assisted computing offloading for iot applications: A
learning-based approach,” IEEE Journal on Selected Areas in Commu-
nications, vol. PP, no. 5, pp. 1–1, 2019.

[8] Y. Deng, Z. Chen, X. Yao, S. Hassan, and A. Ibrahim, “Parallel offloading
in green and sustainable mobile edge computing for delay-constrained
iot system,” IEEE Transactions on Vehicular Technology, vol. PP, no. 99,
pp. 1–1, 2019.

[9] Y. Mao, J. Zhang, and K. B. Letaief, “Dynamic computation offloading for
mobile-edge computing with energy harvesting devices,” IEEE Journal
on Selected Areas in Communications, vol. 34, no. 12, pp. 3590–3605,
2016.

[10] M. Neely, Stochastic Network Optimization with Application to Commu-
nication and Queueing Systems. Morgan and Claypool, 2010.

	IEEE.pdf
	268950

