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Abstract. The increased use of multiple types of computer systems and
smart devices in several areas, has created massive amounts of data. Con-
currently, the need for a subset of these data by numerous applications
and users for task execution and knowledge extraction, has resulted in
the injection of a massive number of queries per second into distributed
database servers. As a result of this phenomena, a major process is the ef-
ficient response of these queries both in terms of time and the detection of
acceptable data, while rejecting undesired data points. In this paper, we
present a hierarchical query-driven clustering approach, for performing
efficient data mapping in remote databases for future incoming queries.
We distinguish ourselves from current methods, by combining the tech-
nique of Query-Based Learning (QBL) with a hierarchical clustering of
multiple forms of clustering in the same model. The suggested model’s
performance is assessed, using a number of experimental scenarios as well
as numerical data.

Keywords: Data mapping · Data Management · Query-Based Learning
· Hierarchical Clustering · Data Retrieval.

1 Introduction

In the era of the intense escalation of the data production, analysts must cope
with a massive amount of data which are spread across multiple databases.
As a consequence, several challenges have emerged for data management and
information extraction, such as data caching, data quality assurance through
the elimination of anomalies, missing values and data mapping. Data mapping
is the process of combining data from various datasets into a particular dataset
and storing it in a consistent manner. This procedure is essential in various
operations, including data migration, data integration, and data warehousing.

In this paper, we present a hierarchical clustering model for detecting the
suitable data for executing queries delivered to a server by users in the shortest
time possible. We present a model that takes into consideration the required
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data of a number of queries that arrive in the server over a period of time, allow-
ing us to detect and collect the data that a future query will request, without
requiring to scan the distributed databases. We focus on the usage of two dis-
tinct methods of clustering algorithms, i.e. fuzzy clustering and hard clustering,
which are implemented using the Fuzzy C-Means (FCM) and K-Means (KM),
respectively. These clustering methods are used to classify comparable queries
into clusters, based on the data required for execution. The suggested model
examines the queries that come into the server and identifies the clusters that
are the most related to them. Based on previous research, we include a mech-
anism in our model that calculates the overlap of the area of interest between
two queries. The novelty of this paper is that we combine the QBL [13][14] with
a hierarchical clustering scheme into a model that is able to predict which of the
data it has to retrieve for similar future queries. The main contributions of this
paper are as follows:

– We propose an hierarchical clustering-based model combining two different
types of clustering for the detection of the appropriate data in the minimum
possible time and with the minimum error.

– We adopt QBL to retrieve the appropriate data for the user’s query, relying
on the retrieved data of previously executed queries.

– We argue on an area overlap metric between the areas of the queries to detect
the existence of data points of common interest.

2 Related work

The data management processes constitute an important factor for the effective-
ness of various tasks and operations, such as the extraction of analytics from a
set of data etc. The research community has proposed several models and mech-
anisms for the improvement of various data management processes. Caching is a
crucial data management process which prevents the burden of the memory with
unnecessary data. The authors of [1] present a solution for the assigning of the
queries and tasks in the appropriate edge computing nodes in order to reduce
as much as possible the response time. For this purpose, the authors propose a
method for the estimation of the computational burden, that an allocation of
a query will be added to a node. Also, the authors develop an ensemble simi-
larity scheme, responsible to deliver the complexity class for each query or task
and a probabilistic decision-making model. In [2] the authors define the concept
of a Query Controller (QC) that assigns each of the queries into a processor,
which is placed in front of each data partition. Based on this technology, they
develop a framework for query assignment which involves two learning schemes,
i.e., a Reinforcement Learning (RL) and a clustering scheme. Also, they propose
a multiple Q-tables scheme as knowledge base of the QC in the RL case and
a technique for deriving the level of compactness of the created clusters in the
clustering scheme, to deliver the best possible QP for each assignment. In [3] the
authors introduce an adaptive, reciprocity-based Machine Learning mechanism,
to estimate the answers of a variety of aggregate queries (AQs) avoiding the big
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data back-end. The mechanism learns from past analytical-query patterns while
they develop solutions to correspond in the changes in queries’ analytics and
analysts’ interests. In [4] Data Canopy framework is introduced to reduce the
time needed to compute statistics. It is a smart cache designed for statistical
exploratory analysis. Data Canopy calculates and caches the fundamental prim-
itives of statistical measures, allowing it to compose results for future queries
without having to return to the base data. More specifically, it deconstructs
statistics into their underlying primitives, caches and retains them, while us-
ing them to generate future computations of statistics either on the same or
on overlapping data. The authors of [5] propose WANalytics, a geo-didtributed
system that copes with the Wide-Area Big Data problem, a challenge that con-
cerns the supporting rich Directed Acyclic Araphs of computation, over globally
distributed data. WANalytics is formed by two major parts. The first one is a
runtime layer that distributes user DAGs around data centers, and the other
part pertains to a workload analyzer that constantly checks and improves the
user workload. While maintaining data domination requirements, WANalytics
transfers computation to edge data centers, improves workflow efficiency, and
duplicates the base data when needed.

3 Preliminaries

3.1 K-Means

KM is one of the most popular and widely used unsupervised clustering algo-
rithms. It groups the given data into K clusters trying to minimize the following
objective function:

J =

K∑
i=1

∑
p∈Gi

∥p− gi∥2 (1)

The minimization of equation (1) is equivalent to the minimization of dis-
tance of points in a cluster Gi with the centroid gi. We consider a set D =
{−→p 1,

−→p 2, . . . ,
−→p n} which consists of n vectors each one can be considered as a

d-dimensional point. KM has as goal to split the n vectors into K clusters, where
K ≤ n and must be defined in advance. The clusters have to have been created
in such way such that G= G1 ∪ Gi ∪ , . . . , ∪ GK where Gi ⊂ G,∀i ∈ [1,K] and
Gi∩Gj = ∅,∀i, j ∈ [1,K]. Each cluster is represented by its centroid. The steps
of the KM algorithm are described below [8][9][10]:

– At first, K points from D are randomly selected to be the centroids of the
clusters.

– In the second step, the algorithm computes for every point in D the distance
from every centroid. Hence, the algorithm assigned the examined point to
the cluster with nearest centroid. The Euclidean distance is the most widely
adopted metric for this step.

– Afterwards the algorithm recalculates the centroids of each cluster. The new
value for each one of d dimensions is equal to the average value that the
members have in that dimension.
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– The algorithm returns to the second step in case the criterion function does
not become the minimum, i.e., the clusters does not remain consistent.

We have to note that the centroids of the clusters may not contained in
the dataset D, since it will arise from the previous iteration process. The time
complexity of KM depending on three parameters; the number n of data vectors
in D, the number of clusters and the number of iterations l that the algorithm
needed to cluster the data. Consequently, the time complexity is O(n ·K · l) [6]

3.2 Fuzzy C-Means

FCM algorithm is a fuzzy clustering algorithm which assigns each data point
into a cluster according to membership value uik ∈ [0, 1]. The membership value
indicates the correlation between a data point and the center ci of the respective
cluster and is assigned to the cluster with the highest membership value [7].
Given a dataset D of n vectors each one has d dimensions the FCM outputs
a n × Γ matrix U which includes the membership values for each data point,
and a set C = {C1, C2, C3, . . . , CΓ } that contains the created clusters. The
FCM requires to be pre-defined three parameters: the fuzzier m ∈ [1,∞) that
controls the fuzziness of the clustering, the number of clusters Γ and the stopping
criterion value β ∈ [0, 1] and intend to minimize the following objective function:

Jm(U, C) =
Γ∑

i=1

n∑
k=1

(uik)
m · ∥pk − ci∥2 (2)

The steps of the algorithm are referred below [8][9][11][12]:

– Choosing of the parameters m,Γ ,β
– Initializing the membership matrix U
– Calculating the centers of every cluster in C
– Updating the membership matrix U
– Repeating steps 3,4 until the divergence is less than β
– Output U,C

The updating of the uik and the ci for each cluster are calculated by the
equations (3),(4) respectively.

uik =
1∑Γ

j=1

{
∥pk−ci∥
∥pk−cj∥

} 2
m−1

(3)

ci =

∑n
k=1(uik)

m · pn∑n
k=1(uik)

m
(4)



Query Driven Data Subspace Mapping 5

4 Problem Description

In our scenario we consider a setDB = {DB1, DB2, . . . , DBw} of geo-distributed
databases(DDBs) and a server (SV). Also, we suppose that a group Zi of In-
ternet of Things (IoT) devices is connected with a DDB DBi such that each
Zi is connected with only one DBi and vice versa. The IoT devices collect
and report data into the respective DBi with form of multivariate vectors i.e.,
Xt

j = [xt1, x
t
2, . . . , x

t
d], where the index j expresses the IoT device that reported

the vector and the index t shows the time instance that the vector was re-
ported. The DDBs receive the multivariate vectors and store them in appropri-
ate format to be ready for further processing activities. The SV receives queries
Q = {q1, q2, . . . , qz} from applications and users. We consider that every vector
can be represented as a point in a d-dimensional space. Every query qi requires
a number Φ of points as answer. Every query qi can contain range selection
operators for one or more dimensions of the data, creating the boundaries of
the area in which the data are located. The SV tries to detect the appropriate
data as answer to the incoming queries in the minimum possible time. In this
paper we propose a mechanism for the mapping of the data that the queries
need. Our mechanism is ‘triggered’ every time a query is sent by an application
or user. More specifically, we focus on a hierarchical clustering process where
we try to group the incoming query with previous received queries. The pro-
posed model performs two types of clustering: (a) a fuzzy clustering where the
incoming queries are assigned into one or more clusters; (b) a hard clustering to
identify the subspace where the required data are located.

5 Adopted Methods in Data Mapping Process

The first of the methods for the data mapping is the baseline method (BM).
This method is executed every time that a query is coming to the SV and scans
the data sequentially, selecting those that satisfy the query. This approach, in
particular, identifies all of the required points for every incoming query and is
the optimal solution in terms of error. However, scanning all the data in the
DDBs for every query, is time consuming.

The second method is called Hard Clustering Based Method (HCBM) and
is based on the clustering of the ‘similar’ queries, that the SV receives during a
period of W time instances to serve the upcoming queries. Initially, the HCBM
is trained over z incoming queries, using BM to identify the data required for
their execution, then utilizes KM to cluster them into groups with similar re-
quirements. After the completion of the training phase, the HCBM method is
ready to serve every incoming query in the SV . When a query is sent to the
server, HCBM is ’triggered,’ and it uses a correlation/similarity measurement
to find the top-k similar clusters to the incoming query. In our experiments we
apply the Euclidean distance metric. The HCBM uses the top-k clusters that
have been detected, to retrieve data points that satisfy queries that belong in
these top-k clusters.
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Our proposed model is named Hierarchical Mixed Clustering Model (HMCM).
The suggested model comprises two phases: the ‘warming’ and the ‘performance’
phase. The clusters and subclusters that have been built will be used in the first
phase to map the appropriate data for the response to incoming queries in SV .
During the warm-up stage, when a query is sent by the user to the SV , the
HMCM model performs a sequential scan of the whole database to determine
the suitable data points for query execution. HMCM executes hierarchical clus-
tering after detecting the appropriate data points for each query. Initially, it uses
the FCM to create a set of clusters B = {B1, B2, . . . , BΓ } of the queries that
were sent to the SV in previous W times. Afterward, HMCM divides each Bi

cluster further into a set of S = {S1, S2, . . . , SK} using the KM algorithm. In
the second phase HMCM is activated every time a user sends a query to the SV .
Firstly, the proposed model uses a similarity metric, in this case the Euclidean
distance, to identify the top-k clusters whose members have the same require-
ments as the incoming query. The top-ℓ subspaces with which the incoming query
has the most similarity, are then detected using HMCM. The adoption of the
approach of overlapping between the representations of queries is a modification
to produce more accurate results in the mapping of appropriate data. Each query
provided by the user, is represented by the area of points that it requires as an
answer. The following metric is proposed for the purpose of calculating overlap.

Area Overlap Metric(qinc, qmember) =
qinc ∪ qmember

incoming query area
(5)

In the Area Overlap Metric (AOM) the numerator is the overlap area between
two queries. The qinc is the incoming query in the SV , while the qmember is the
query which is member of one of the top-ℓ subspaces of one cluster which belongs
to top-k clusters. The denominator is the area which contains the required data
points for the incoming query. The result of the AOM indicates the percentage
of the qinc area which is covered by the area of the qmember. Hence, the HMCM
after the detection of the appropriate clusters and subspaces, it examines the
members of the detected subspaces, to find the queries with which the AOM
overcomes a threshold θ and it retrieves only the data points that belong to
them. The approach of selection of the members gives the ability to obsolete
queries that belong into the top-ℓ subspaces of top-k clusters, but they do not
require data from a common area. This approach also allows the HMCM to
ignore queries with which the incoming query shares a common area, but the
overlap is less than the threshold, preventing the HMCM from increasing the
error in its predictions.

6 Experimental Setup and Evaluation

The experimental evaluation of the proposed model is relying on the Query An-
alytics Workloads Dataset The dataset contains three files of range/radius query
workloads from Gaussian distributions over a real dataset. In our experiments we
focus on range queries, and we are based on the file Range Queries Aggregates to
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create three datasets which are named Warming Dataset (DW ), Dataset of two-
dimensional points (D2d) and Test dataset (DT ). Each range-query in the file
is stored on the following format {X,Y,Xr, Y r, Count, SUM,AV G}. However,
we take into consideration only the first four attributes which refer to the range
query. The first two attributes are the coordinates for the x-axis and y-axis for
the center of rectangle respectively. The third and fourth attribute represent the
ranges of the first two attributes. The Dw consists of 1.000 queries of the format
qi = {Xi, Yi, Xri, Y ri}. We randomly generate for each qi a number ωi ∈ [20, 30]
of two-dimensional data points which are located inside the rectangle of qi. The
total number of two-dimensional points is equal to 24.923 and constitutes the
D2d dataset. The last dataset DT contains ψ = 1.000 incoming Range queries
with the same distribution and format with the Dw. Our goal is to confirm that
the proposed model has the ability to detect the data that an incoming query
into an SV needs. We use the Dw to ‘train’ the HCBM and HMCM model while
the DT dataset is used to test the performance of the models BM, HCBM and
HMCM.

We evaluate the described models both the error levels and the time that
they need to detect the data. The evaluation of the models is relying on the
metrics of Precision (PRE), Recall (REC), Accuracy (ACC), False Positive Rate
(FPR) and F1-score (FSC) as they ensue from the calculation of True Positives
(TP), True Negatives (TN), False Positives (FP), False Negatives (FN). We
define as TP the number of data that an incoming query qi needs and they
detected while TN the number of data that the qi does not need and the model
correctly reject them. On the other hand, FP is the number of data that the qi
does not need but the model retrieved them, and FN is the number of data that
the qi needs but the model does not detect them. The required time for each
query is symbolized as τi .The formulas of Precision, Recall, FPR and F1-score
is defined as follows: PRE = TP / (TP+FP); REC = TP / (TP+FN) ; ACC
= (TP+TN) / (TP+TN+FP+FN); FPR = FP / (FP+TN); FSC = (2 · TP)
/ (2 · TP+FP+FN).

The aforementioned metrics are used to calculate the performance of models
for each qi. However, the performance of the models has to be estimated over
all the incoming queries, thus we use the average values of the previous metrics
to calculate the overall performance of the models. Except from the metrics for
the error calculation we also calculate the average time that every model needs
to detect the data which satisfy the incoming queries. The overall metrics are
defined as follows:

µΩi =

∑
qi∈DT

Ωi

ψ
,Ω ∈ {PRE,REC,ACC,FPR,FSC} (6)

The models have the best performance when the metrics µAcc, µPRE , µREC ,
µFSC reach the unity and the metrics µFPR and µTime are closer to zero. In
our experiments we pay great attention in the metrics µFPR and µTime because
the former one gives the average rate of data that the models retrieve but the
incoming queries do not need them, while the latter one gives the average time
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that one of the methods needs to respond into the incoming queries. We present
the performance of models for different number of clusters regardless of the
way that they are created i.e., from the hierarchical clustering (HMCM) or the
non-hierarchical clustering (HCBM). We have to mention that in the plots for
the error metrics we do not include the BM model because it detects all the
requirement data without error since it scans sequentially the databases.

Fig. 1. Comparison between HMCM and HCBM for Γ=6, M=4 and K=24

Fig. 2. Average Time comparison between the models for Γ=6, M=4, K=24

In figure 1 we compare the HMCM and HCBM when they created 24 clusters.
As we can easily see, the HMCM has better performance for all metrics except
the µREC where two models have the same performance. The dominance of the
HMCM is revealed clearly from the figure 2 where the average time that the
HMCM needs to respond to the incoming queries is significant less from the BM
method and much less from the HCBM model.

Figure 3 shows the comparison of the HMCM and HCBM for 42 clusters.
We observe that the HMCM overcomes the HCBM for all metrics except from
the µREC , where the HMCM has slightly lower performance. Nevertheless, both
µFSC and µFPR metrics confirm that the HMCM has better performance in error
metrics. The figure 4 strengthens the conclusion that we deduce from figure 4
since HMCM achieve better performance in less time.
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Fig. 3. Comparison between HMCM and HCBM for Γ=6, M=7 and K=42

Fig. 4. Average Time comparison between the models for Γ=6, M=7, K=42

Fig. 5. Comparison between HMCM and HCBM for Γ=6, M=10 and K=60

In figures 5 & 6 the comparison of error and time metrics is presented be-
tween the models for 60 clusters respectively.In figure 5, same as previous the
HMCM has better performance in the majority of the error metrics. As far as
the time metric is concerned, the HMCM maps the data in less time that the
other models, as it is presented in figure 6. Again, in the most important metrics
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for inferring the conclusion of the designation of the best model, the HMCM
clearly outperforms the HCBM.

Fig. 6. Average Time comparison between the models for Γ=6, M=10, K=60

Fig. 7. Performance of error metrics for different number of subclusters in HMCM

Fig. 8. Comparison of the time metric for different number of subclusters in HMCM
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In figures 7 & 8 we evaluate the effect of the number of subclusters in the
performance of our model both for error and time. We can easily observe that
the increase of the number of subclusters clearly improves the performance of
the HMCM model and simultaneously decrease the average required time for the
mapping of data.

Fig. 9. Performance metrics for different number of clusters in HMCM

Fig. 10. Comparison of the time metric for different number of clusters in HMCM

7 Conlusions and Future Work

Data mapping is a significant data management process which plays important
role in many applications domains. This process become more complex when the
data are geo-distributed in different databases around the world. Data mapping
can be improved if we identify relations between the data in the DDBs and
the queries that the users send to the server. In this paper, we focus on the
efficient mapping of data and propose a solution for an effective data mapping
in the minimum possible time. We are based on the answers of past queries,
and we propose an hierarchical clustering scheme which groups the past queries
relying on the similarity of the requirements of the queries. Also, we involve a
mechanism for the calculation of common interest data area between two queries.
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We adopt this type of strategy to create small groups of queries with similar data
requirements and try to benefit from the exclusion of non-similar groups with
an incoming query to reduce the time of response and to prevent the caching
of unneeded data. We perform an extensive set of experiments to evaluate the
proposed model in order to confirm the ability of the proposed model to map
the data in short time with a small amount of extra unneeded data. A possible
extension of this work could be the involvement of a more complex methodology
for the improvement both of error and time metrics. Also, we could adopt a
deep learning model that will be able to adapt our model to changes in user
requirements expressed through queries.
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