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Finite element modelling of the single fibre
composite fragmentation test with
comparison to experiments

Yanmei Cao1, YangXu2, Philip Harrison1, Edward DMcCarthy3 andDaniel MMulvihill1

Abstract
This paper develops a finite element (FE) model of the single fibre fragmentation test designed for direct comparison with
experimental results on an E-glass/epoxy system by McCarthy et al. (2015). Interface behaviour is modelled via a cohesive
surface, and stochastic Weibull fibre strengths (determined by independent experiments) assigned at random to the
elements along the fibre. Predictions from the model agree with experiment for a range of outputs: The evolution of the
number of fibre breaks with strain is similar and breaks occur at random locations as required. The model also captures a
transition to a Uniform (rather than Weibull) statistical distribution of break locations at later stages of the test consistent
with recent experiments. The evolution of the cumulative distribution of fragment lengths is also similar to that of the
experiment. In addition, fibre axial stress and interfacial shear stress distributions conform with experimental observation.
Correct model predictions of break locations confirm the approach taken on assigning stochastic (Weibull) strengths along
the fibre. The effectiveness of the FE model in capturing a number of key aspects of the fragmentation phenomenon suggest
its usefulness as a tool in analysing and interpreting fibre fragmentation tests, including back-calculation of interfacial shear
strength.
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Introduction

In fibre-based composite materials, excellent specific strength
and stiffness properties are achieved because the reinforcing
fibres (usually glass or carbon fibres) confer high stiffness and
strength while a relatively low density matrix material (often a
polymer) holds the material together. The mechanical prop-
erties of the composite clearly depend on the mechanical
properties of the constituent fibre and matrix materials, but
they are also highly dependent on the properties of the fibre-
matrix interface. Essentially, when load is applied to the
composite matrix, it is transferred to the fibres via shear stress
arising from the inherent strength of the fibre-matrix interface.

Fibre and matrix mechanical properties can be easily
determined by conventional tensile testing. However, the
properties of the interface are more complex and difficult to
access. The main parameter characterising the interface is
the fibre-matrix interfacial shear strength (IFSSh). This is
clearly a critical parameter: for example, a low-strength
interface will tend to debond, while a high-strength interface
will tend to remain bonded and transfer more load into the
fibres. Key practical uses of the IFSSh include its

importance as a key input to micromechanical composite
strength and damage models1,2 and its usefulness as a means
for assessing the interfacial strength of various fibre sizing
(coating) types.3,4 Several testing approaches have been
proposed to measure fibre-matrix interface behaviour: pull-
out tests,5,6 micro-bond tests,5,7 micro-indentation tests8,9
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and, the subject of the present paper: the single fibre
fragmentation test (SFFT).10–12 Among these approaches,
the SFFT (first proposed by Kelly and Tyson13) is con-
sidered one of the most insightful as it allows for deter-
mination of interface properties in-situ while the fibre is
fully embedded in a matrix as would be the case in the real
composite. In general, the SFFT involves tensile testing of a
dog-bone specimen with a single full-length axial fibre
embedded along the central longitudinal axis. A matrix
material with strain-to-failure of three to four times that of
the fibre is generally chosen to ensure fibre breaks occur
instead of matrix failure. Carbon and glass fibres are brittle
materials containing some stochastic distribution of flaws
along their length. When the shear stresses exerted on the
fibre by the matrix have built up enough axial stress in the
fibre, the fibre will fracture at a flaw location where the
stress is sufficient to break the fibre. This process then
repeats as the applied global load is increased and local axial
stresses at other locations become sufficient to cause further
breaks, resulting in the fibre breaking into smaller and
smaller fragments. The fibre is said to be stress-saturated
when the fragments become so short that shear transfer
along their lengths becomes insufficient to generate enough
axial stress to cause further breaks even with increased load.
At saturation, the number of breaks and fragment lengths are
recorded at the final applied strain. The longest fragment
length which cannot incur further breaks is called the critical
fibre fragment length lc. An important disadvantage of the
method is the fact that the IFFSh cannot be measured di-
rectly from the SFFTand has to be back-calculated. Usually,
this involves using parameters determined from the SFFT in
combination with one of the theoretical models describing
the fibre-matrix interaction. Generally, the parameters re-
quired are an approximation of the critical fibre fragment
length lc and the strength of the fibre σf{lc} at the critical
fibre fragment length (stochastic fibre strength is length
dependent) – both can be determined from the SFFT. Typical
examples of theoretical models that have been used include the
models introduced by Kelly and Tyson,14 Cox,15 Nairn,16 Wu
et al.17–19 and Okabe and Takeda.20 However, this means that
the calculation of the IFFSh is tied to the idealisations and
assumptions implicit in the theoretical models. The problem is
that any effective model has to capture a wide range of be-
haviours including correct interface properties, fibre strength
distribution, fibre-matrix debonding, matrix plasticity and
matrix damage (i.e., matrix cracking). The theoretical models
often focus on specific aspects, but a theoretical treatment
becomes extremely complex if all these factors are to be in-
cluded. Advances in computational capability in recent years
make the finite element (FE) method ideal for constructing
more comprehensive models of the SFFT that could poten-
tially be used to back-calculate IFFSh more accurately from
SFFT data.

A number of interesting contributions have been made to
the FE modelling of the SFFT. Budiman et al.21 developed
an axisymmetric elastic model using a non-rigid cohesive
surface to define the traction-separation behaviour of the
fibre-matrix interface. By incorporating a single pre-
existing fibre break, they demonstrated how a critical
length taken from the contour plot of principal stress dif-
ference could be used (via the appropriate formula) to
calculate fibre-matrix interface strength from just a single
break. However, more work is required to determine the
accuracy of this new method in comparison to the con-
ventional SFFT. Wang et al.22 developed a fully elastic
model to handle the repeating fibre break process in
ABAQUS using the user subroutine USDFELD. In Wang el
al.,23 the authors added cohesive zone elements to model the
traction separation behaviour of the interface and a matrix
damage criterion to simulate matrix cracking in an elastic
matrix. These contributions, however, did not incorporate
the stochastic distribution of fibre strengths along the fibre
as is evident from each new break occurring at the centre of
fibre fragments (which is contrary to the random break
locations that occur experimentally). FE models that have
included the key stochastic (Weibull) distribution of fibre
strengths along the length of the embedded fibre include van
der Meer et al.24 and Nishikawa et al.25 and these models
also included matrix plasticity. However, the modelling
results in24 and25 (and those in22,23) were not compared to
equivalent SFFT experiments to determine how well the
models capture certain key behaviour such as evolution of
the distribution of fibre break locations and distribution of
fragment lengths during the test (Budiman et al.21 were
concerned only with the first break so did not use their
model to study break evolution). In fact, there has been
some disagreement concerning the fragment length distri-
butions that have been observed at saturation. Drzal et al.26

studied an epoxy/carbon fibre system and found good
agreement with a Weibull distribution; Netravali et al.27

found good agreement with a lognormal distribution (also
epoxy/carbon); and Bascon and Jensen28 noted corre-
spondence with a Gaussian distribution for their epoxy/
carbon system. Recently, Kim et al.10 and McCarthy et al.11

reported on a very high level of agreement (Probability plot
correlation coefficient (ppcc) ≥ 0.99) of break location data
with a uniform distribution for their glass fibre/epoxy SFFT
system. They noted that a Uniform distribution of break
locations leads to an explicit equation for the ordered
fragment length distribution due to Whitworth.29 Clearly
there is wide variation in the fragment length data observed
and this may be due to obvious variation between materials
(fibre & matrix), interface properties and test setups.
However, it is important, therefore, that an effective FE
model be able to predict the evolution of the distribution of
break locations and fragment lengths.
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In contrast to previous numerical models that are short
and focus on microscopic damage with a constant fibre
strength, the length of the present model is equivalent to
experimental specimen gauge lengths11 and the variation of
the strength along the embedded single fibre is modelled
following an appropriate statistical (Weibull) distribution
with experimentally determined distribution parameters.
This allows us to compare key model predictions to ex-
perimental data (such as distribution of break locations and
stress distributions). In addition, the model is designed to
mimic the experimental SFFT test setup inMcCarthy et al.11

as closely as possible (i.e., identical properties for the E-
Glass fibres and epoxy matrix etc.). The comparison can
reflect the degree to which FE modelling can capture the
underlying physics in these single fibre fragmentation tests.
In summary, the key difference between this work and
previous FE modelling work is that the present paper
compares the FE result directly with experimental data and
is also the first FE paper to study the evolution of the
distribution of fibre break locations (and fragment lengths)
during the test.

Numerical simulation

Finite element model

The purpose of the FE model here is to compare FE results
with the single fibre fragmentation experiments in Mc-
Carthy et al.11 In McCarthy et al.,11 the single fibre
fragmentation tests were carried out on epoxy dog-bone
specimens with E-glass fibres. Fibre break data were
recorded optically in the central 16 mm of the gauge
length. Here an axisymmetric FE model is used to simulate
the 16 mm observation length. The model (developed in
ABAQUS Implicit) is illustrated schematically in Figure 1.
Boundary conditions (Figure 1(a)) were defined by fixing
one end of the model (A) and allowing the fibre axi-
symmetric boundary to apply along the model length.
Tensile elongation is applied to the matrix at the opposite
end (B). A mesh dependency analysis was performed to
ensure a fine mesh is selected and the mesh details are
illustrated in Figure 1(b). The glass fibre mesh is composed
of 2133 four-node bilinear 7:5 µm× 7:5 µm elements
(CAX4R) – the element size being the same as that of the
glass fibre radius (Table 1). Doubling the number of ele-
ments in the fibre to 4266 altered the maximum fibre axial
stress by only 0.06%. The matrix is meshed with biased
and gradually size increased elements and has 844 three-
node linear elements (CAX3) in a zone close to the fibre-
matrix interface and 59959 four-node bilinear elements
(CAX4R) elsewhere.

The fibre was assumed to be mechanically elastic until
the onset of damage (see Fibre damage and stochastic fibre
strength), and the matrix was assumed to be elastic-

perfectly plastic. General properties of the fibre and ma-
trix are chosen to be those of McCarthy et al.,11 and are
outlined in Table 1. The properties of the matrix
(a DGEBA/m-PDA resin system) are taken directly from,11

while the general fibre properties are taken from the da-
tasheet for Owens Corning 495 E-glass fibres30 (as these
are the fibres used in McCarthy et al.11). For simplicity,
viscoelastic effects were not incorporated, and the model
was run quasi-statically. Strain was increased by applying
0.75 mm extension increments to the 16 mm gauge length
up to 5% strain (which was sufficient to reach saturation of
fibre breaks).

Fibre damage and stochastic fibre strength

In the case of the SFFT, the fibre has lower strain-to-failure
(than the matrix) and carries most of the applied load, so it is
the fibres that begin to fail first. A fibre break happens when
the local stress in the fibre exceeds the local strength:

σ > σf , (1)

where σ is local fibre axial tensile stress, and σf is the local
fibre strength. In this paper, according to equation (1), two
ABAQUS/Standard user subroutines, USDFLD and
GETVRM, are implemented to achieve the fibre breaks. The
tensile strength of each fibre element is defined in the
USDFLD subroutine, and maximum axial stresses of
the fibre elements are recorded in each increment by calling
the GETVRM subroutine. When the axial stress in any fibre
element exceeds its fibre strength, the fibre element fails and
a new fibre break appears. The process is described in the

Figure 1. (a) Finite element model schematic and (b) finite
element mesh with local inset showing mesh detail.
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flowchart in Figure 2. In some studies,22,23 equation (1) has
been implemented (with these subroutines) based on a
single homogenous strength for the entire fibre, and this
results in the somewhat artificial situation where breaks
occur at the middle of fragment lengths. Of course, fibres are
generally brittle materials having a stochastic distribution of
flaws along their length. Fibres will generally fail when the
local stress is sufficient to cause a break at a given flaw.
Generally, this will be the weakest flaw. Failure then
progresses to less weak flaws as the loading is increased.
Thus, fibre strength generally follows a stochastic

distribution. Generally, it has been found that a two-
parameter Weibull strength distribution is effective in de-
scribing fibre strength.31–33

To implement a Weibull based fibre tensile strength
distribution, each fibre element was assigned a tensile
strength extrapolated from the Weibull function:

P ¼ 1� exp

�
�
�
L

L0

��
σf

σ0

�m�
, (2)

where P is cumulative probability of failure, σf is the fibre
tensile strength, L is variable fibre length, L0 is fibre gauge
length, m is the Weibull shape parameter (or modulus) and
σ0 is the Weibull scale parameter. For each element in the
fibre, a probability of failure P was randomly (and inde-
pendently) assigned based on a uniform distribution of
probabilities [0, 1]. This reflects the assumption that flaws
are equally likely at all locations along the fibre and that the
probability of failure is independent at each location.34

equation (2) was then solved to determine a local fibre
strength consistent with the Weibull strength distribution
and this was assigned to the element. Weibull parameters
for the fibres are not reported in McCarthy et al.11

However, the fibres used in11 were Owens Corning 495
E-glass fibres.30 Thus, to obtain usable Weibull parame-
ters, we have tested these fibres in our own laboratory.
Single fibre tests (SFT’s) were used similar to those in.35,36

Glass fibres were glued to a paper frame in alignment with
the axis of a central diamond shaped gap cut out from the
middle (Figure 3(a)). Before applying a tensile load, both
sides of the paper frame at mid-gauge were carefully cut so
that the load path is entirely through the fibre (Figure 3(b)).
The gauge length L0 was selected at 16 mm - the same as
the FE model. Tensile load was then applied until failure.
The failure load was divided by the average cross-sectional
area (averaged from microscope diameter measurements at
10 locations along the fibre) to give the fibre strength and
the test was then repeated to ascertain several fibre
strengths.

For a constant gauge length test such as this, equation (2)
can be rearranged as:

ln½�lnð1� PÞ� ¼ mln
�
σf
��mlnðσ0Þ, (3)

Table 1. Dimensions and material properties for glass fibre30 and matrix11 as from McCarthy et al.11

Material
Radius
(um)

Young’s modulus
(GPa)

Poisson’s
ratio

Young’s modulus
degradation factor
(see22,23) Yield stress (MPa)

E-glass fibre
(Owen corning 495)

7.5 75 0.23 0.0075 See Fibre damage and stochastic
fibre strength

Epoxy matrix (DGEBA/m-PDA
resin system)

— 3.5 0.3 — 80

Figure 2. Flowchart for simulating fibre damage process with
subroutines USDFLD and GETVRM.
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The test was conducted N = 30 times and failure
strengths were calculated and sorted in ascending order with
a unique rank value j. The cumulative probability is then
calculated as37:

PðjÞ ¼ j� 0:5

N
(4)

Fitting a straight line to the plot of ln½�lnð1� PÞ� versus
lnðσf Þ (Figure 4) allows determination of the Weibull pa-
rameters from the slope and y-intercept. Table 2 shows that
the Weibull shape parameter m and scale parameter σ0
obtained from Figure 4 are reasonable when compared to
other results for glass fibres.31,38–41 The calculated Weibull
parameters were then used to generate a list of single fibre
tensile strengths for assignment to individual fibre elements
in the FE model. Strengths were generated retaining the
variable length L as 16 mm in equation (2) as attempting to
scale for element size results in drastically unrealistic fibre
strengths. In fact, fibre strengths obtained by scaling for
element size are so high that they fail to produce any breaks
in the SFFTsimulation. The scaling overestimation problem
is well known – a number of authors have commented on the
issue31,42,43; however, there remains no straightforward way
to reliably scale (or extrapolate) the fibre strengths espe-
cially to fibre lengths on the micron scale. The methodology
for assigning fibre strengths to fibre elements is illustrated in
Figure 5.

Interface behaviour

The interface between a fibre and its surrounding matrix is
a flexible (i.e., non-rigid) interface that enables stress
transfer from the matrix to the fibre. The interface can
transfer increasing amounts of shear stress (as determined
by the applied loading) until it reaches a strength limit,
which we refer to as the interfacial shear strength (IFSSh).

Thus, the interface behaviour can be approximated by a
traction-separation law of the type outlined in Camanho
et al.44 Normal and tangential stress at the interface can
be defined as being linearly related to interface dis-
placement as:(

tn
ts

)
¼

(
Knn Kns

Kns Kss

)(
δn
δs

)
, (5)

where Knn, Kss and Kns are interface stiffnesses (normal,
shear and coupled, respectively), δn is delamination
opening displacement, and δs is the relative sliding dis-
placement. To simulate interfacial failure, two damage
criteria are introduced: damage initiation and damage
evolution. Once the initiation criterion is met, the in-
terface stiffness is degraded with increasing separation
until it has fully failed. The full cohesive interface re-
sponse is shown in Figure 6. A 2D axisymmetric FE
analysis is performed in this paper, and hence only normal

Figure 4. Weibull fitting plot of ln½�lnð1� PÞ� versus lnðσÞ for
the single fibre E-glass tensile tests. RequiredWeibull parameters
m and σ0 are determined from the slope and ‘y-intercept’.

Table 2. Calculated Weibull parameters (present work)
compared to reported values in the literature for single glass fibres.

Shape parameter m Scale parameter σ0 (MPa) Ref.

3.090 1649 38
3.993 2266 39
5.500 3810 31
5.610 2930 40
6.340 1550 41
6.475 3287 Present work

Figure 3. Single fibre test: (a) fibre placement and (b) fibre tensile
testing.
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and shear tractions, tn and ts, are considered in equation
(5).

Damage initiation can be defined based on either in-
terface stresses or displacements. The quadratic stress cri-
terion is employed in this work: that is, the cohesive
response begins to degrade once the following relationship
between the interface tractions is satisfied:�

< tn >

t0n

	2

þ
�
ts
t0s

	2

¼ 1, (6)

where tn and ts are the present normal and shear tractions,
and t0n and t0s are the peak values (or strengths) of the in-
terface when only the normal or shear modes are present,
respectively. Hence, IFFSh corresponds to t0s in the purely
shearing case. The Macaulay brackets < > ensure that the
compressive stress state does not initiate damage. Thus,
damage initiation involves a coupling between tensile and

shear stresses. To define the interface stiffness degradation
progress, a scalar parameter D, gradually increasing from 0
to 1, is introduced in the evolution law as:

tn ¼
8<
: ð1� DÞtn, tn ≥ 0,

tn,
(7)

and ts ¼ ð1� DÞts,
where tn and ts are the stresses predicted by the elastic
traction-separation law for the current strains without
damage. Here a fracture energy based linear damage evo-
lution is defined. The critical energy dissipated prior to
complete failureGC is prescribed, thereby defining the area
under the curve in Figure 6. When mode mixity is present,
the critical energy is defined according to a power law
interaction of the energies needed to cause failure in the
individual normal and shear directions as:

GC ¼ 1

,��
Gn

GC
n GT

	α

þ
�

Gs

GC
S GT

	α�1=α

, (8)

where Gn and Gs refer to the present interfacial energy
consumed in normal and shear directions, respectively; GT

is the present total energy invested (GT ¼ Gn þ GsÞ and GC
n

and GC
s are the critical fracture energies in the normal and

shear directions, respectively which require to be prescribed
in the model. The cohesive zone is implemented here via a
cohesive surface rather than by cohesive elements. The
interface properties used in the simulations are given in
Table 3. The initial normal and shear interface stiffness

Figure 5. Flowchart for assigning glass fibre strengths to individual fibre elements in the FE model.

Figure 6. Interfacial traction–separation response for the fibre-
matrix interface (t0 is max traction – i.e., strength).
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values were set to a sufficiently high value of 106 N/m345 to
ensure continuity of the stress and strain fields across
fibre and matrix.46,47 The strength values are taken from
experimental work in the literature (normal strength
3 MPa48 and shear strength 50 MPa39,49,50). Reliable
data on interfacial fracture energy is more difficult to
obtain for the epoxy-glass fibre interface. In this case,
the normal and shear fracture energy were adjusted until
the number of breaks in the FE model of the SFFT at
saturation were comparable with those in the experi-
ments (i.e., McCarthy et al.11 – see Figure 7). This, of
course, implies that the FE model is not yet fully pre-
dictive, but the difficulties in obtaining accurate ex-
perimental values for some of the input parameters
(especially fracture energies) are well known and were
also present in previous modelling attempts.21–24

However, once the model is confirmed to be represen-
tative of the experiment (e.g., in terms of number of
breaks at saturation), it can be used to study many as-
pects of the problem (i.e., stress distributions, fibre
break statistics etc.). The value (for the critical fracture
energy of the interface) arrived at by enforcing agree-
ment of number of breaks at saturation was 2.9 J/m2

(Table 3) which is within the experimental range of
values determined in Varna et al.51

Results and discussion

Evolution of fibre breaks and stress distributions

In the FE model, strain was increased incrementally and the
fibre break coordinates were recorded. Figure 7 compares the
evolution of the number of fibre breaks with applied strain for
the FE model devised here with two data sets from the ex-
periments in McCarthy et al.11 As noted in Interface behav-
iour, the critical fracture energy of the interface in the FE
model was tuned until the number of breaks at saturation was
nearly equivalent to the experiments (52 breaks in the FE

Table 3. Interface properties used in the numerical analysis.

Normal & shear initial stiffness Kn, Ks

(N/m3)
Normal strength t0n
(MPa)

Shear strength t0s ¼ IFFSh
(MPa)

Shear & normal fracture energy GC
n ¼ GC

s
(J/m2)

106 3 50 2.9

Figure 7. Comparison of number of fibre breaks versus applied
strain for the FE model and the experiments of McCarthy
et al.11.

Figure 8. Stress distribution along the fibre gauge length after the first
three fibre breaks (a) fibre axial stress (b) interfacial shear stress.

Cao et al. 2771



model and 51 and 53 breaks for the two experimental
results). With this equivalence established, we are now
able to use the FE model to study a number of aspects
of the problem. We note from Figure 7 that the FE break
distribution has a similar profile to the experimental
profiles, although the strains at which breaks occur
are somewhat lower in the FE model. This may be due to
the assignment of some weaker fibre strengths in the
model (Weibull strength data for the model is derived
from several repeat single fibre tests, but the two ex-
perimental SFFT results in Figure 7, obviously come
from a test on a single embedded fibre). It may also be that
the interfacial shear strength in the FE model (50 MPa
chosen from glass-fibre/epoxy literature39,46,47) was
somewhat higher than that in the experiments of Mc-
Carthy et al.11

To explore the possibility of closing the strain gap be-
tweenmodel and experiment further, we carried out a simple
parametric study to examine the effect of fibre-matrix in-
terface properties on the resultant fibre break evolution. The
influence of interfacial normal strength, interfacial shear
strength and critical fracture energy were investigated by

varying each one over three alternative values while holding
the other two constant (at the default values used in the
paper: t0n ¼ 3 MPa, IFFSh or t0s ¼ 50 MPa and
GC

n ¼ GC
s ¼ 2:9 J=m2). The result (given as Figure A1 in

the Appendix) essentially shows that the interface
properties (at least over the ranges investigated) had
minimal influence on the evolution of fibre breaks al-
though there were some minor differences between
number of breaks at saturation. The important point to
note however is that altering the interface properties had
little effect on closing the strain gap between model and
experiment. As explained above, the gap in Figure 7 is
likely due to the fibres in the FE model being somewhat
weaker than the (single) fibre used in the McCarthy et al.
experiments (due to how the Weibull strength data for the
FE model was obtained from multiple single fibre tests;
thereby, increasing the possibility of admitting results
from weaker fibres).

Figure 8 shows the distribution of both fibre axial stress
and interfacial shear stress along the fibre gauge length after
each of the first three fibre breaks. Instead of breaking at the
geometric centre of fibre fragment lengths (as occurred in
Wang et al.,22,23 where the fibre had a constant strength),
breaks appear at "random" locations along the glass fibre –
this is a consequence of the assignment of stochastic fibre
strengths along the fibre (consistent with the reality of a
stochastic distribution of flaws along brittle fibres). In ad-
dition, key aspects of the stress distributions are consistent
with experimental observation. To aid the discussion, the
local stress distributions near a fibre break are magnified in
Figure 9. Shear stress is zero at a fragment end, then rises to
a peak before assuming a near zero value along most of the
fibre length (Figure 8(b) and Figure 9(b)). The non-zero
interfacial shear stresses near the fragment ends induce an
increase in fibre axial stress from zero at the ends to a near
constant value for the rest of the fibre length (Figure 8(a) and
Figure 9(a)). The length over which this occurs is often
called the stress recovery length. As elongation increases,
the fibre stress becomes sufficient to induce new breaks, and
the fibre axial stress redistributes along the fibre fragment,
taking on an increased maximum axial stress. The break
process saturates when the fragments become sufficiently
short, such that the stress recovery regions from each end
meet and prevent the fibre stress from reaching the breaking
stress in the fragment. The profiles in Figures 8 and 9 are
consistent with the fibre equilibrium equation1

dσ
dy ¼ �2ts

r

�
and with the form of the stress profiles

measured experimentally using Raman spectroscopy in
studies such as Schadler and Galiotis.52 This is one of the
advantages of the FE approach – for example, neither the
Cox15 nor the Kelly-Tyson14 models correctly capture the
experimentally observed shear stress distribution near a

Figure 9. Local FE stress distribtions near a fibre break: (a) fibre
axial stress and (b) interficial shear stress.
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break in a bonded fibre (i.e., zero at the ends, a peak and a
reduction to zero as in Figure 9(b)).

Distribution of fibre break coordinates

The spatial distribution of fibre break coordinates along
the single embedded glass fibre is examined next. This is
important as it determines the fragment length distribu-
tion. Here, there has been recent experimental
evidence10,11 to suggest that the distribution of break
locations evolves towards strong correlation with the

Uniform distribution after a certain number of breaks (at
least for the E-glass/epoxy system in10,11). Therefore,
we test the goodness-of-fit of the Uniform distribution to
the break data from the FE model at various strain levels.
The uniform probability plot which graphs percentiles of
the data against percentiles of the standard Uniform
distribution is adopted. Figure 10 shows the FE break
coordinates plotted against predicted fibre break coor-
dinates having a Uniform distribution (and rescaled to
the units of the data). The ordered break coordinates are
graphed against standard uniform order statistic medians
by using Uniform order statistic medians as:

Figure 10. Uniform probability plots of single glass fibre break coordinates from the FE model: (a) 13 fibre breaks at 1.73% strain, (b)
26 fibre breaks at 1.99% strain, (c) 39 fibre breaks at 2.15% strain and, (d) 52 fibre breaks at 2.94% strain. Break coordinates from the
FE model (vertical axis) are plotted against predicted break coordinates obtained from uniform median order statistics (horizontal
axis).

Cao et al. 2773



mn ¼

8>>>>>><
>>>>>>:

1� mn i ¼ 1,

i� 0:3175

nþ 0:365
2 < i< n� 1,

0:5
1
n i ¼ n,

(9)

where n refers to the number of fibre breaks, the minimum
fibre break coordinate is the first order statistic and the
maximum fibre break coordinate is the nth order statistic.
The details of the Uniform order statistic medians are
described in Filliben.53 The quality of the fit is identified
by the probability plot correlation coefficient (PPCC).53

There is assumed to be a high level of agreement of the
break coordinates with the uniform distribution when the
value of PPCC is greater than 0.99. The uniform prob-
ability plots of fibre break coordinates are empirically
fitted and the empirical curves are compared with 45°
reference lines in Figure 10 (45° indicating perfect
agreement with the Uniform distribution). We can see
that, beyond about 26 fibre breaks (Figure 10(b)) there is
close adherence to the 45° line and the PPCC value is
greater than 0.99. This indicates that, beyond a certain
stage in the test, the break location data evolves towards
the uniform distribution. This is consistent with what both
Kim et al.10 and McCarthy et al.11 observed experi-
mentally (in McCarthy et al.,11 the PPCC was in excess of
0.99 from about 31 breaks). The implication of the
Uniform distribution of break locations is that break
coordinates tend to be spaced equally along the fibre and
that breaks are equally likely at all locations -i.e., there is
no preferential location for breaks to occur. What is in-
teresting here is that the FE model has produced the same
evolution of spatial distribution of breaks as has been
observed experimentally. This allows us to make some
observations about what leads to this result. The reason
for this transition to a Uniform distribution is probably
similar in model and experiment. Early in the test, there
are just a few breaks and their location will be governed
by the Weibull fibre strength distribution (i.e., the weakest
flaws fail first). As noted by Kim et al.,10 the small size of
the data set and the existence of weak flaws will lead to
variability in the early break statistics. However, noting
that flaws are equally likely at each location along a brittle
fibre33 (despite their strength), as the sampling number of
breaks increases, we might expect to see a transition to
breaks being equiprobable along the fibre – i.e., a Uni-
form distribution. This is indeed what is observed ex-
perimentally. The existence of the same result in the FE
model allows us to probe the model inputs that lead to this
result. In the model (Fibre damage and stochastic fibre
strength), each element is first assigned an independent

and random probability of failure P [0, 1] from a Uniform
distribution. This reflects the fact that flaws are equally
likely at all locations and that failure probability (flaw
severity) is independent of location.33 A fibre strength σf
determined from the Weibull distribution of fibre
strengths is then assigned to the element by solving
equation (2) for σf. Hence, early in the FE test, break
locations are governed by the Weibull strength distri-
bution, but as more breaks occur, the equiprobability of
breaks at any location dominates and the data can be
expected to evolve to a Uniform distribution. The
equivalence of experimental and modelling results with
regard to distribution of breaks suggest that the approach
taken to assigning local fibre strengths in the FE model is
satisfactory – i.e., correctly accounting for the stochastic
Weibull distribution of strengths and the equal likelihood
of flaws along the fibre.

Distribution of fragment lengths

As has already been noted in McCarthy et al.11 and Kim
et al.,10 the mathematical consequence of a Uniform dis-
tribution of break locations is a fragment length distribution
due to Whitworth29,54–56 (see Appendix in Kim et al.10 for
the distribution equation). What is interesting for us here is
to compare the FE distribution of fragment lengths to ex-
periment. Figure 11 compares cumulative fragment length
distributions (at saturation) for the FE model with an ex-
perimental glass fibre-epoxy result from McCarthy et al.11

Figure 11. Comparison of cumulative fragment length
distributions (at saturation) for the FE model (glass fibre-epoxy,
52 breaks) and experimental results from McCarthy el al.11 (glass
fibre-epoxy, 45 breaks) and Feih et al.54 (glass fibre-polyester, 39
breaks). Gauge length was 16 mm in each case.
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Although not directly comparable, a glass fibre-polyester
result from Feih et al.57 is also included for comparison.
Firstly, the scale of fragment lengths produced by the model
(fragments ranging from 15 to 466 µm) is roughly in
agreement with the magnitudes in the experiments (see
Figure 11). The form of the FE and experimental curves are
similar although there is some discrepancy in relation to the
position (mean) and spread (variation) of the data. In
general, narrow distributions of fragment lengths are
thought to be attributable to a narrow underlying fibre
strength distribution while lower mean critical fragment
length (i.e., a distribution shifted to the left) indicates higher
interfacial shear stress transmission.3,4 Here, the FE glass
fibre-epoxy result exhibits a wider spread than the experi-
mental glass fibre-epoxy result (McCarthy et al.11). This may
be due to a wider spread in the fibre strength distribution
because the results in McCarthy et al. come from a frag-
mentation test on a single embedded fibre sample; whereas,
numerous (ex-situ) single fibre tests (SFTs) were performed
to determine the Weibull strength statistics for the glass fibre
in the FEmodel. The FE result also yields a somewhat shorter
mean critical fragment length of 309.2 µm compared to
370 µm for McCarthy et al.11 This suggests that the inter-
facial shear strength in the FE model (50 MPa chosen from
glass-fibre/epoxy literature39,49,50) may have been somewhat
higher than the actual interface strength in McCarthy et al.11

(which was not reported). The presence of shorter fragment
lengths in the FE case also indicates a stronger interface.
Turning to the experimental glass fibre-polyester result (Feih
et al.57), the spread is even larger. Again, this can be attributed
to more variation in the fibre strength statistics. In this case,
we can assess this directly as the Weibull modulus for the
fibres used in the FEmodel and the fibres in Feih et al.57,54 are
both available. The Weibull modulus was 6.8 (see Table 2)
for the fibres modelled in the FE study here, but only 4.4 in
Feih et al. – a smaller Weibull modulus indicates a wider
spread of the fibre strength data.

Conclusions

The paper develops an FE model of the single fibre frag-
mentation test (SFFT) for direct comparison with the ex-
perimental results in McCarthy et al.11 (i.e., an E-glass fibre
embedded in an epoxy matrix). A cohesive surface is used to
model interface behaviour, and a Weibull distribution of
fibre strengths (determined by single fibre tests on the E-
glass fibres) is implemented in the model by assigning
strengths from the distribution to the elements along the
fibre. It remains difficult to access accurate experimental
data on all input parameters. In this case, the fracture energy
of the interface was not accessible, so this was adjusted to
provide an equivalent number of fibre breaks (at saturation)
as the experiment. With equivalent break numbers at sat-
uration established, the model was then used to successfully

study a number of key aspects of the problem. Of particular
interest is the fact that the model correctly captures a number
of important experimentally observed outcomes. The form
of the evolution of fibre break numbers with strain is
roughly in agreement with experiment and fibre breaks
occur at random locations along the fibre as required. In
addition, the distribution of fibre break locations evolves
towards good agreement with a Uniform distribution at
some point in the test (26 fibre breaks & 2% strain here), but
conforms to different distributions earlier in the test. This
agrees with recent experimental observations by Kim et al.10

and McCarthy et al.11 The form of the cumulative fragment
length distribution from the FE model is also roughly in
agreement with experiment. The effectiveness of the model
in capturing experimentally observed fibre break statistics
confirms the usefulness of the approach taken here to as-
signing stochastic fibre strengths to elements in the FE model
(i.e., the probability of failure being independent at each
element and local strength being assigned from the appro-
priate Weibull distribution of strengths). The fibre axial stress
and interfacial shear stress distributions are also consistent
with experiments both along the fibre and close to breaks.

Theoretical models are often used to back-calculate in-
terfacial shear strength (IFSSh) from SFFTs in the assess-
ment of the fibre-matrix interface; however, such models
cannot capture the range of key behaviours which can be
included in an FE model. Correct model predictions on each
of the aspects studied here (break statistics, stress distri-
butions etc.) suggest FE modelling can play an important
role in the analysis of fibre fragmentation tests including
replacing theoretical approaches to aid more accurate cal-
culation of IFSSh. However, much more work is required to
experimentally determine sufficiently accurate input pa-
rameters (such as interfacial fracture energy) to make these
models fully predictive.
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Note

1. σ is fibre axial stress, ts is interfacial shear traction, y is axial
length, r is fibre radius.
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Appendix

Figure A1. Parametric study indicating the effect of interface failure upon the fibre break evolution during the test (i.e., on number of
breaks versus strain): (a) influence of normal strength t0n , (b) influence of interfacial shear IFFSh or t

0
s and (c) influence of critical energy

GC
n ¼ GC

s , (taking the shear and normal critical as equal).
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