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Abstract  

The brain is highly segregated. Multiple mechanisms ensure that different types of 

memories are processed independently. Nonetheless, information leaks out across 

these memory systems. Only recently has the diversity of these leaks been revealed. 

Different memory types (skills vs. facts) can interact in simple ways, either allowing or 

preventing their further processing, or in more complex ways, allowing the sharing of 

abstract information between memories. Leaks occur from memories dependent upon 

hippocampal circuits, which have properties critical for leaks and activity patterns 

related to memory interactions. This hippocampal contribution is likely achieved in 

concert with cortical areas. Leaks between memories enable the application of 

knowledge in novel situations, explain learning dynamics, and solve important problems 

inherent to memory formation.  
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Leaks and the sharing of information  

It always leaks. This principle extends from government reports, to military intelligence, 

and even to our memories. It implies the sharing of information. Memory leaks (see 

Glossary) are highly varied, interfering with memory processing, enhancing memory 

formation, protecting and linking together different types of memory (facts and skills; 

[1-8]). The diversity of these leaks is only just being recognized and raises questions 

about how information, and at times highly complex information, can be transferred 

between different memory systems in the brain when multiple mechanisms keep 

memories segregated. Converging evidence is now revealing how this segregation 

breaks down, and how even complex serial information can be shared between different 

memory types [9-13]. Perhaps just as important, the growing appreciation for the 

diversity of leaks provides purchase on the functional contribution they make to 

cognition. Leaks support the transfer of highly complex information, which may act as 

a teaching signal enabling one memory to drive the formation of another. This explains 

learning dynamics and provides a solution to key computational and energetic memory 

problems.  

 

Leaky memories 

A leak is when information escapes from an encapsulated or otherwise sealed system. 

For example, it occurs when information about a clandestine operation is shared 

(inadvertently) by one secret service with another nation’s security service. The leak 

could contain quite simple information, such as simply that a cybersecurity attack is 

planned, or quite complex information, such as providing details of the attack. Similarly, 

different types of memory leaks contain different amounts of information (low vs. high 

bandwidth).  

 

Leaks with a low bandwidth 

Leaks occur between memories with very different contents (words vs. actions; [2, 3, 

5, 14, 15]). Learning a word-list and then immediately learning a motor skill impairs 

word-list retention (by approximately 15%; Figure 1). This impairment is specifically 

due to the motor skill learning. When the motor skill task is replaced with a task 

requiring the same number and type of movements but lacking any serial structure, 

thus removing the motor sequence learning aspect from the task, word recall is no 

longer impaired [2]. The interference remains when the order of tasks is reversed. 
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Learning a motor skill and then immediately learning a word-list impairs subsequent 

motor skill retention [2]. Importantly, skill impairment can be prevented by disrupting 

declarative knowledge [3, 4] using different techniques (e.g. transcranial magnetic 

stimulation (TMS) or exercise [4, 15-19]). Together, these studies provide converging 

evidence for reciprocal leaks between different types of memory [20].   

This kind of leak has two important features. First, the information leaking out is that a 

memory has or has not been formed (binary information). This is only a small amount 

of information – it is low-bandwidth. Second, the leak is acting to prevent further 

processing of the other memory, expressed as interference of that other memory [16]. 

This interference of the recently formed memory is solely due to the formation or 

processing of another memory, and is present regardless of whether the motor skill and 

word-list sequences have any features in common. For example, even different lengths 

of word-lists and actions sequence can interfere with one another ([2] vs. [6]). Thus, 

information that a memory is being processed leaks out to prevent processing in 

another memory system.   

A leak may control memory processing [21]. When the leak is present there is a 

physiological inhibition of neural circuits, which prevents processing, and memory 

retention is impaired. For example, declarative knowledge leaks inhibit motor cortical 

excitability, preventing motor skill processing and impairing skill retention. By contrast, 

when the declarative memory is absent, there is no physiological inhibition, and the skill 

memory is processed [15-19, 21, 22]. The leak modifies the fate of a different type of 

memory because there is a finite processing capacity – “a bottleneck” – which once 

saturated by the leak prevents processing of another different type of memory. This 

competition for limited resources explains how disrupting one memory system can boost 

memory performance within another system. For example, disrupting declarative 

explicit knowledge for a movement sequence enhances performance of that same 

sequence ([3, 4, 23]; see also [24]). A leak combined with a processing bottleneck 

provides a mechanism to control memory fate  [21]. More recently, work has revealed 

a qualitatively very different type of leak.  

 

Leaks with a high bandwidth  

Highly complex information can also be shared between memory systems. A sequence 

can be composed of different types of information, including words or movements. 

Despite their differences in content, these sequences can be related to one another 

[25]. For example, a sequence of words could specify a sequence of movements through 
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a simple mapping between the semantic category of a word (clothing, furniture, type of 

transport, vegetable) and a movement to one of four positions (1 to 4; Figure 1). When 

this mapping is maintained, the sequences with different content share a common 

abstract structure; whereas, when this mapping is violated, the sequences have 

different structures. It is this abstract serial information that can leak between different 

types of memory. This leak is high-bandwidth because detailed information is being 

shared. 

When a skill and word-list memory are formed in quick succession, the abstract serial 

structure of a motor skill is shared with, and enhances the formation of a word-list 

memory ([6], see also [8]; Figure 1). The enhanced rate of word-list learning and 

improved subsequent recall only occurs when the tasks share a common structure.  The 

enhanced performance is expressed exclusively in serial recall – measured as the 

longest sequence of words recalled in the correct serial order – while other measures 

of performance, such as total recall, are not improved by the tasks sharing a common 

structure. This illustrates that it is specifically the common abstract serial structure of 

the tasks that is responsible for driving the enhanced performance. A similar pattern 

emerges when the order of the memory tasks is reversed. The abstract serial structure 

of a word-list can be transferred to, and so enhance the subsequent immediate learning 

of a movement sequence [6]. This high-bandwidth leak transmits highly detailed 

information about the serial structure common between the tasks.  

 

Leaks may be linked 

The enhanced learning due to a high-bandwidth leak of either the word-list or motor 

skill comes at a cost. When memory tasks with a shared structure are learnt in quick 

succession (motor skill and word-list task; or vice versa), the enhanced learning of the 

subsequent memory is (positively) correlated with the impaired retention of the initial 

memory (Figure 1). The impairment arises from a low-bandwidth leak sharing the 

simple information that a different type of memory is being formed. Yet, these high and 

low-bandwidth leaks are not only correlated they are causatively linked. Manipulations 

that minimize impaired retention of the initial task also substantially reduce the transfer 

of abstract knowledge from that task to the subsequent memory task [6, 7]. Thus, 

these observations suggest that leaks are causatively linked, and specifically that a 

high-bandwidth leak is dependent upon a low-bandwidth leak. However, this may not 

always be the case.    
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A low-bandwidth leak is detected by the disruption it causes to a newly formed memory 

[2, 5, 6]. Following its formation, a memory is unstable [20]. An unstable memory is 

susceptible to disruption from, for example, learning another memory, which impairs 

its retention. It becomes stabilised through offline processing during consolidation or 

through sustained practice [2, 26-30]. However, recent work demonstrates that 

stability can also be transferred between memories [7]. For example, learning a 

movement sequence will 6 hours later prevent a newly formed word-list memory from 

being susceptible to disruption when the memory tasks share a common structure 

(Figure 1). In this example, the motor skill memory developed stability – during its 6 

hours of consolidation – and this property was shared with the word-list memory. The 

shared stability was dependent upon a high-bandwidth leak of complex information 

about the serial structure common to the memory tasks. However, this high-bandwidth 

leak occurred despite the motor skill memory being stable – resistant to interference – 

and as a consequence, could not be impaired by a low bandwidth leak (i.e., the simple 

presence of the word-list memory). Potentially, this may demonstrate that high and 

low-bandwith leaks are independent, and are not critically linked. Alternatively, the 

stability of the motor skill may have simply prevented a low-bandwidth leak from the 

word-list from being detected. This pattern is preserved even when the order of the 

tasks is reversed: a word-list task protects a subsequent motor skill memory formed 6-

hours later from disruption [7]. Overall, quite simple information can leak out and affect 

the processing of another memory (low-bandwidth leak). For example, simply that a 

memory has been formed impairs the retention of a different memory type. Highly 

complex information can also leak out (high-bandwidth leak), which leads, for example, 

to the transfer of stability, protecting memories from disruption, when they have a 

common abstract structure. Yet, how do these leaks occur within the tightly segregated 

organization of the brain?  

 

Leaks in the brain  

The brain appears to be designed to prevent interactions, particularly between different 

types of memory. Different types of memories are predominately processed within 

different circuits [31]. This minimizes the opportunity for one type of memory, say for 

a set of skilled actions, to affect the processing of a different type of memory, say for a 

set of newly learnt facts [20]. According to current estimates, a memory is allocated to 

between 25% and 3% of the available neurons within a circuit [6, 32-34]. Less than 20 

neurons are required to drive the performance of a learnt navigation task [35]. At least 
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in principle, such sparse coding should enable very similar memories to be encoded in 

quick succession without any need to interact because they are allocated to distinct 

populations of neurons within a circuit. Furthermore, the activity patterns associated 

with different memories do not correlate, which enables them to remain distinct, and 

not interact [36-39]. With these principles as a backdrop, it seems paradoxical for any 

leak of information to occur between different types of memory. However, some recent 

studies have shown how this may occur.  

An intuitively appealing way for leaks to occur between memories is for them to share 

the same neuronal population during their formation [20, 40, 41]. This idea has recently 

been directly tested in snails by imaging neuronal activity during the formation of 

successive memories. It shows that the sharing of a neuronal population at memory 

formation explains the interference between memories [42]. Yet could this principle 

apply to humans, particularly when it appears to contradict sparse coding, which 

enables different memories to be formed within entirely different circuits? Some recent 

work shows how this contradiction could be resolved and shows how information can 

be exchanged between memories.     

The population of neurons activated during memory formation remain excitable for 

several hours (5-6 hours [9, 10]). This increases the probability that these same 

neurons will be allocated to the formation of another memory in the ensuing hours.  It 

is also during these 5-6 hours that a memory is susceptible to interference [26-28]. 

Thus, sparse coding no longer applies when memories are acquired in succession. 

Instead, memories share the same, or at least partially overlapping, neural population 

and this method of allocation occurs over the time window when memories interact. 

This principle of memory allocation is played out across cortical and subcortical brain 

areas, which explains how interactions occur between diverse memories [9, 10, 43, 44]. 

However, for it to explain the leak between memory systems requires that it operates 

within circuits capable of supporting the formation of different types of memory.  

 

Leaks between different memories 

The principle that different types of memory are processed within different circuits 

breaks down in the hippocampus. Memories for events are widely acknowledged to be 

dependent upon hippocampal circuits [31, 45]. They are dependent upon these circuits 

not only for their initial formation but also for their subsequent processing [46-50]. 

These circuits also play a less acknowledged, but no less important role in processing 

motor skill memories. Damage to the mediotemporal lobe (MTL), which includes the 
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hippocampus, prevents the acquisition of motor skills [51]. Hippocampal activation 

occurs during the formation of motor skill memories [52]. It also remains active 

following motor skill formation, continuing to process and modify the skill memory 

‘offline’ while remaining functionally connected to large-scale motor circuits [12, 13]. 

In this way, hippocampal circuits make a similar contribution to the processing of both 

declarative and motor skill memories by being critical for their formation and 

subsequent offline processing [51, 53].  

The offline processing of declarative or motor skill memories will maintain the elevated 

excitability of hippocampal circuits [54]. This will lead those same circuits to also be 

selected to support the formation of any subsequent memory because neurons with 

elevated excitability are preferentially allocated to memory formation ([9, 10]; Figure 

2). With first one memory and then another being allocated to the same, or at least 

overlapping circuit, interference occurs between the memories. This explains the 

correlation between hippocampal activation and memory interference [11]. Overall, by 

processing different types of memory and allocating these memories to the same 

circuits when acquired in succession (within ~5-6hrs), the hippocampus enables a 

recent memory to be disrupted by forming a different type of memory. This is a low 

bandwidth leak due to a memory being formed. More complex information can also leak 

out between different types of memory (high bandwidth leak) and here too converging 

evidence suggests that the hippocampus plays a central role.  

Abstract information leaks from memories formed by hippocampal circuits. For example, 

only motor skill memories that are dependent upon the hippocampus for their formation 

show performance transfer to a word-list with a shared structure [6]. High-order 

sequences – where several prior actions are required to predict the subsequent action 

(n-1 plus n determines n+1) – are dependent upon the hippocampus ([51, 52]; see 

also [55]). By contrast, low order sequences – where a prior action uniquely predicts 

the subsequent action (n alone determines n+1) – are not dependent upon the 

hippocampus and do not show transfer to a word-list, even one with a shared structure 

[6]. This suggests that hippocampal circuits are required for the sharing of abstract 

serial information between different types of memory.  

Abstract knowledge is learnt by the hippocampus, with highly complex multidimensional 

learning experiences collapsed onto an abstract regularity [56]. For example, the 

information available during the performance of a sequence is collapsed, combined in a 

single representation (low-dimensional manifold), to provide an abstract sequence of 

state transitions (-2-3-4-; [57, 58]). This abstract relationship is represented within 
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circuits, which are subsequently allocated to the formation of a new memory ([9, 10, 

56, 59, 60]; Figure 2). Having this abstract relationship already represented within a 

circuit will guide and enhance the formation of a new memory with the same abstract 

structure, albeit with a different content (actions vs. words), which explains how 

abstract knowledge is shared between different memory types [6]. Overall, abstract 

information leaks from memories dependent upon the hippocampus because these 

circuits extract abstract regularities, and then by being subsequently allocated to the 

formation of a different memory type (action vs. word) share that knowledge. While the 

hippocampus has a pivotal role to play in the leaks between memories, there is 

accumulating evidence that cortical circuits also play a role in the leak between 

memories.  

 
Leaks across the cortex 

Leaks between different types of memories may depend upon the cortex. Lesions to the 

frontal cortex (in rodents) prevent interference between memories [61]. Similarly, in 

humans disrupting the function of cortical areas with repetitive transcranial magnetic 

stimulation (TMS) prevents the leak between different types of memory [5]. For 

example, disrupting prefrontal function prevents a newly formed word-list memory from 

being impaired by learning a motor skill memory. Equally, the impairment of a newly 

formed motor skill memory by learning a word-list can be prevented by disrupting 

cortical function, in this case, by applying stimulation to the motor cortex. These 

observations are specifically due to preventing the interaction between the memories 

because neither of the individual memories is affected by the stimulation. Stimulation 

was only applied after both memories had been formed [5, 20]. Together, these studies 

establish the critical importance of cortical circuits for the leak between memories.   

Disrupting cortical function modifies brain activity. Specifically, applying TMS to a 

cortical area affects excitability throughout a network of brain areas. For example, 

changes in cortical excitability affect hippocampal function due to cortico-hippocampal 

connectivity following learning [13, 62-65]. By changing excitability there are changes 

in how memories are allocated to populations of neurons [9, 10]. Rather than memories 

being allocated to the same population of neurons when they are acquired in quick 

succession, which leads to interference between the memories, they are instead 

allocated to distinct neural populations, which prevents interference [5, 20, 40-42]. 

Artificially modifying excitability makes the pattern of brain activity associated with each 

memory distinct (decorrelation), which prevents interactions between memories within 

the hippocampus [38, 39]. The cortico-hippocampal networks that are artificially 
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modulated by stimulation to prevent interference between different memory systems 

may operate in a similar physiological fashion to mediate the cortical control of memory 

leaks. Thus, cortico-hippocampal networks may trade-off between accurate retention 

and the adaptive benefits provided by a leak, for example, enhanced learning (see 

Figure 1C).   

Hippocampal activity can also affect cortical activity [66, 67]. The changes in 

hippocampal activity due to memory interactions would then lead to cortical changes 

[11]. This explains the physiological inhibition of the motor cortex when a skill memory 

interacts with declarative knowledge (for the movement sequence), which prevents 

further motor skill processing [16]. The leak (low bandwidth) between memories is 

occurring within the hippocampus but affecting cortical activity. Yet, the relationship 

between cortical and hippocampal activity may change when the memories acquired in 

quick succession share the same structure (high bandwidth leak). This common feature 

may trigger the activation of large-scale cortical circuits associated with the earlier 

memory [13, 68]. For example, large-scale motor circuits may become activated even 

during word-list learning, when, and only when, the word-list had the same structure 

as a motor sequence learnt earlier. This would be an “ectopic” activation, with a memory 

representation (in this case for motor memories) becoming activated along with the 

activation of a different memory representation, which is aligned with the task being 

learnt (in this case for words). Thus, cortical circuits may drive hippocampal activity 

and so provide information about a common serial structure to enhance learning of the 

subsequent memory with the same structure [6, 68, 69].  

However, how information leaks is shaped by memory state (unstable vs. stable). A 

memory is stabilized during practice or subsequently offline during consolidation [7, 26, 

28, 29, 70-72]. Once in this state a memory leak is no longer expressed as enhanced 

learning of a different memory type with the same structure; instead, it transfers the 

stability it has developed to a newly formed different type of memory with the same 

structure, and so protects this new and otherwise unstable memory from disruption 

(see Figure 1C vs. Figure 1D; [6] cf. [7]). This change in memory state is due to changes 

in how a memory is represented within circuits, and how those circuits function [29, 72, 

73]. For example, a spatial memory ceases to be dependent upon the hippocampus, 

and instead becomes dependent upon the frontal cortex [47, 74]. The shift in underlying 

circuitry alters memory state (unstable vs. stable), how memory leaks are expressed 

(enhanced learning vs. protection from disruption), and may also alter how they occur. 

Leaks may become mediated by travelling waves sharing information through upper 

and lower cortical layers [75, 76]. The state of a memory changes due to awareness 
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for learning, the duration of practice, offline processing, which differs across different 

brain states (wakefulness and sleep), and at subsequent retrieval [27, 29, 77-81]. Each 

of these memory state changes alters how a memory is represented, and at least in 

principle, could therefore modify how leaks occur, develop, and are expressed.  

 

A leak solves problems  

A leak of highly complex information enables the flexible application of knowledge 

across different situations (generalization). For example, a melody may be learnt as 

a sequence of sounds (auditory memory), which subsequently can guide the skillful 

playing of the melody on a musical instrument (motor memory). The sequences have a 

different content (auditory vs. action) but a common structure, which when shared 

through a leak makes that information available to a different memory type.  So even 

though experience of a task may be lacking, performance will suggest otherwise (i.e., 

non-naïve; Figure 1; Box 1).  

Leaking complex information explains the dynamics of human learning. An initial “fast” 

performance improvement may develop because what is being learnt has a structure in 

common with a different memory type formed earlier (action vs. words; [6]). Sharing 

this critical information will aid learning, enhancing it, and producing “fast” performance 

improvements. Yet associating the common structure with the unique content of each 

memory will take time, requiring changes in network strength – dependent upon, for 

example, synaptic changes and protein synthesis – leading to a subsequent “slow” 

performance improvement (fast-slow learning). Thus, information within one memory 

helps drive the formation of a different type of memory – when they have a common 

structure – providing a novel explanation for the dynamics of learning.  

Other explanations of learning dynamics are based upon network properties. 

Hippocampal networks undergo rapid plastic change – explaining the initial “fast” 

performance changes – while subsequent plastic changes occur more slowly in cortical 

networks – explaining the subsequent “slow” performance changes [73]. This balances 

plasticity and stability, ensuring that whilst information from the environment drives 

the formation of new memories it does not corrupt long-standing memories [82, 83]. A 

leak between memory systems complements this by providing an explanation for 

learning dynamics when information that is already available within the brain, for 

example, the abstract structure of actions, is being used to drive the formation of 

another memory, such as a word-list with the same serial structure. Thus, both network 

properties and memory leaks explain learning dynamics, but for different contexts: one 
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when external information alone is responsible for memory formation, and the other 

when external information is only partially responsible for memory formation.  

Leaks may also solve challenging energetic and computational problems of memory 

formation. A leak allows the network changes that represent a property of an existing 

memory to be shared with another memory system. This reduces the need for an 

energetically demanding investment to be made into network changes; for example, in 

synaptic strength, because they are already present in another memory system [84]. 

Simultaneously, this reduces the computationally intensive problem of selecting from 

the vast array of network states (both in activity and synaptic weight space) that can 

lead to a desired adaptive performance (ill-posed network problem; [85, 86]).  Instead, 

the combination of network states has already been solved, and through a leak made 

available to other memory systems. Thus, the leak between memory systems may 

overcome some of the toughest problems in memory formation. 

 

Concluding remarks 

Leaks can be quite simple. Binary information about whether a memory has been 

formed (or not) can leak out and shape the fate of a different memory (i.e. whether it 

is retained or impaired; [1, 2, 4-6, 9, 10, 21]; Figure 1). This simple information is 

analogous to a security leak that an attack is planned without any specific details (low-

bandwidth leak). Yet, leaks can also transfer detailed information between memories, 

allowing the same abstract information to be applied to different contents (skills vs. 

facts, generalization [6, 7]). In this case, the complex information is analogous to a 

security leak with specific details about a planned attack; such as the time, place and 

that nature of the attack (high bandwidth leak). These leaks enable different types of 

contents to merge, and common relational (spatial, temporal) structures to emerge, 

which could lead to the construction of internal representations (grammar and schemas) 

and perhaps even concepts (see Outstanding Questions). Leaks rely upon the 

hippocampus and the cortex, which perhaps contributes by driving hippocampal circuits 

and controlling the leak (balancing cost vs. benefits). The mechanisms supporting a 

memory leak will likely change as the state of the memory changes during further 

practice and offline processing (over wakefulness and sleep), which explains the 

changed expression of the leak (enhanced learning vs. protection) as memory state 

changes (unstable vs. stable; [6] vs. [7], see Outstanding Questions). Leaks enable the 

transmission of information across content boundaries, to enable memories to be linked 

based upon abstract structure, explaining learning dynamics, allowing the creation of 
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internal representations, and providing solutions to both energetic and computational 

challenging memory problems.   
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Box 1. Different types of transfer 

For some types of transfer initial performance is improved. Having practiced a sequence 

of movements with one hand, subsequent performance with the other hand is skilful 

despite having never performed the sequence with that hand (i.e., intermanual transfer; 

[80, 87-89]). During practice the sequence is learnt within multiple co-ordinate frames 

– external (spatial location or allocentric) plus internal space (finger or egocentric) – 

and this redundancy allows performance to be transferred between the hands [78, 80]. 

Yet, this type of transfer occurs within a memory system and relies on redundancy. By 

contrast, between memory systems, generalization is dependent on different contents 

(actions vs. words) having a common feature (serial structure), which is a degenerate 

coding. This may lead to different expressions of generalization. For example, learning 

a sequence of movements does not improve intial performance, but instead enhances 

the subsequent learning of a sequence of words when the two sequences (words vs. 

actions) share a common serial structure ([6]; Figure 1). Alternatively, it can serve to 

protect a memory from disruption. For example, a newly formed motor skill memory 

would normally only become resistant to disruption through practice or during 

consolidation, yet it can be protected from disruption because it shares a structure with 

a previously learnt word-list ([7, 27]; Figure 1). Thus, information leaking between 

memory systems can give rise to a variety of different forms of generalization.   
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Glossary  

Generalization: The ability to flexibly apply acquired knowledge or skill across different 

situations. It is detected by showing performance transfer. For example, intermanual 

transfer demonstrates that a skill learnt with one hand generalizes between hands. 

Equally, learning a set of overlapping stimulus pairings (A-B, B-C, C-D, D-E) leads to 

subsequent recall of the pairings and also the novel pairing (A-E; transitive inference; 

high-order learning). Learning about different objects including tools and their function 

leads to subsequently correctly identifying (categorizing) a novel object (chair, desk, 

hammer). Each of these may rely upon a common core computation (recurrent 

networks) albeit implemented within different brain circuits to extract common features 

(across skills, pairings, objects).   

Interference: The impaired recall of a newly formed memory due to a manipulation. 

Traditionally, this manipulation has taken the form of learning another memory: one 

memory task (task A) is immediately followed by another memory task (task B). The 

subsequent recall of task A is impaired. Other manipulations have also been used, which 

directly affected brain physiology. For example, brain stimulation techniques 

(transcranial magnetic stimulation or optogenetics) and protein synthesis inhibitors. 

These manipulations have a retrograde (retroactive) effect. They interfere with a 

recently formed memory (retrograde interference) to impair subsequent recall. By 

contrast, in another type of interference a manipulation affects the subsequent 

formation of a memory (anterograde interference).   

Memory Leak: the sharing of information across memory systems. The information 

leaking can be quite simple (low-bandwidth), e.g. that a memory has or has not been 

formed. When a memory has been formed this information leaks out and interferes with 

processing in a different memory system. This interference is due to the formation or 

processing of another memory, and is observed regardless of whether or not the 

different memory types have features in common. Highly complex abstract information 

can also be shared (high-bandwidth leak). Following the formation of a memory the 

immediate learning of a different type of memory is enhanced, or several hours later it 

is protected from disruption when the different types of memory have a common 

structure. In these examples the leak is sharing highly detailed information about the 

structure common between the tasks. 

Transfer: When performance acquired in one situation is applied to a novel situation. 

For example, the skilled performance of a sequence of finger movements acquired with 
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one hand is transferred to the other hand (intermanual transfer). Earlier experience is 

being used to guide successful performance in a novel situation. Transfer can lead to 

improved initial performance, or an enhanced ability to learn in the novel situation 

(please see Box 1).  
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Figure Legends 

 
Figure 1. Different leaks. (A) Learning one memory (task a), and then immediately 
learning another different type of memory (word vs. skill; task b) impairs retention of 
the initial memory. The fate of the initial memory is determined by the simple presence 
or absence of the other memory (low-bandwidth leak). (B) A word sequence and a 
skilled movement sequence have a common abstract structure when there is a simple 
mapping between the semantic category of a word (clothing, furniture, type of 
transport, vegetable), and movement positions (1 to 4). (C) Regardless, of any 
common abstract structure between the memory tasks the impairment in the retention 
of the intial memory remains (low-bandwidth leak). This impairment is correlated with 
the enhanced learning that occurs in the subsequent memory task (task b) when the 
tasks have a common structure, despite having different contents (words vs. skill; see 
also Box 1). The enhanced learning is due to the sharing of abstract information from 
one memory (task a) with a subsequently formed memory (task b; high-bandwidth 
leak). (D) Introducing a time interval between the memory tasks (~ 6 hours), stabilises 
the initial memory preventing its impaired retention, and prevents enhanced learning 
in the subsequent task. Yet, abstract information still leaks from a stable memory. It 
protects newly formed memories from disruption, preventing their impaired retention, 
when they have a common structure. Memory state (unstable vs. stable) modifies the 
expression of the leak (enhanced learning vs. protection).  
 
 
 
 
Figure 2. Leaky mechanisms. (A) Different memory types (skills vs. facts) leak into 
another when allocated to overlapping neural populations. The hippocampal neurons 
allocated to a memory remain excitable following its formation (~5-6 hours), which 
increases the likelihood that these same neurons will be allocated to a subsequent 
memory, and this overlap restricts the available processing impairing retention of the 
initial memory [9, 10]. That impairment is related to hippocampal activity [11]. The 
cost of this impairment (low-bandwidth leak) has a potential benefit. By being allocated 
to an overlapping population of neurons an abstract feature common to both memories 
(2-3-1-4) is already encoded within the population, and as a consequence the new 
memory can be acquired more quickly (high-bandwidth leak; [56]). This enhanced 
learning is correlated to the impaired retention of the initial memory because both 
depend upon being allocated to an overlapping neural population [6]. (B) Increasing 
the time interval between forming the memories provides an opportunity for the 
excitability of the neural population to decline, for the memories to be allocated to 
distinct populations, and without sharing an overlapping population there is no leak of 
information between memories (low or high-bandwidth; [6]). Decreasing excitability 
(prolonged practice) prevents memory leaks – both memory interference and transfer 
of enhanced performance to a related task are prevented [29, 72, 90-92]; conversely, 
increasing excitability (brain stimulation) enables performance transfer [92, 93]. 
Together, these observations link excitability with memory leaks (low and high-
bandwidth). Yet, different mechanisms may operate for different expressions of a leak 
(enhancement vs. protection). 
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