
Abstract
Being able to remove or weigh down the influence of outlier data is desirable for
any statistical model. While magnetic and electroencephalographic (MEEG) data
are often averaged across trials per condition, it is becoming common practice
to use information from all trials to build statistical linear models. Individual
trials can, however, have considerable weight and thus bias inferential results
(effect sizes as well as thresholded t/F/p maps). Here, rather than looking for
univariate outliers, defined independently at each measurement point, we apply
the principal component projection (PCP) method at each channel, deriving a
single weight per trial at each channel independently. Using both synthetic data
and open electroencephalographic (EEG) data, we show (1) that PCP is efficient at
detecting a large variety of outlying trials; (2) how PCP-based weights can be
implemented in the context of the general linear model (GLM) with accurate
control of type 1 family-wise error rate; and (3) that our PCP-based weighted
least squares (WLS) approach increases the statistical power of group analyses
as well as a much slower iterative reweighted least squares (IRLS) approach,
although the weighting scheme is markedly different. Together, our results show
that WLS based on PCP weights derived from whole trial profiles is an efficient
method to weigh down the influence of outlier EEG data in linear models.
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INTRODUCTION
Magnetic and electroencephalographic (MEEG) data analysis can be subdivided
into two main parts: preprocessing and processing. Data preprocessing
corresponds to any manipulation and transformation of the data, such as
artefacts removal and attenuation or change in data representations (spectral
transformation, source modelling). Data processing refers to mathematical
procedures that do not change the data, i.e. statistical analysis and statistical
modelling (1). Here, we present a method that improves data processing by
weighting down trials that have different dynamics from the bulk of the data,
within the context of an experimental design. We investigated single-trial
weighting for full scalp/channel statistical linear hierarchical modelling,
providing a more robust statistical analysis method to the community.

After data preprocessing, MEEG data are typically epoched to form three- or
four-dimensional matrices of e.g. channel × time × trials and channel ×
frequency × time × trials. Several neuroimaging packages are dedicated to the
statistical analyses of such large multidimensional data, often using linear
methods. For instance, in the LIMO MEEG toolbox (2), each channel, frequency
and time frame are analysed independently using the general linear model, an
approach referred to as mass-univariate analysis. Ordinary least squares (OLS)
approaches are used to find model parameters that minimize the error between
the model and the data. For least squares estimates to have good statistical
properties, it is however expected that the error covariance off-diagonals are

zeros, such that Cov(e) = σ2l, l being the identity matrix (3), assuming
observations are independent and identically distributed. It is well established
that deviations from that assumption lead to substantial power reduction and to
an increase in the false-positive rate. When OLS assumptions are violated,
robust techniques offer reliable solutions to restore power and control the false-
positive rate. Weighted least squares (WLS) approach is one such robust method

that uses different weights across trials, such that Cov(e) = σ2V, with V a
diagonal matrix:
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with y an n-dimensional vector (number of trials), X the n*p design matrix, β a p-
dimensional vector (number of predictors in X) and e the error vector of
dimension n. The WLS estimators can then be obtained using an OLS on
transformed data (equations 2 and 3):

F I G U R E  2
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with W a 1*n vector of weights.

When applied to MEEG data, a standard mass-univariate WLS entails obtaining a
weight for each trial but also each dimension analysed, i.e. channels,
frequencies and time frames. Following such procedure, a trial could be
considered as an outlier or be assigned a low weight, for a single frequency or
time frame, which is implausible given the well-known correlations of MEEG
data over space, frequencies and time. We propose here that a single or a few
consecutive data points should never be flagged as outliers or weighted down,
and that a single weight per trial (and channel) should be derived instead, with
weights taking into account the whole temporal or spectral profile. In the
following, we demonstrate how the principal component projection (PCP)
method (4) can be used in this context, and how those weights can then be used
in the context of the general linear model (WLS), applied here to event-related
potentials. Such weighting should not be taken to bypass data preprocessing.
Because measurement artefacts and physiological artefacts are typically several
orders of magnitude stronger than the signal of interest, and often span
consecutive trials, they require dedicated algorithms. After data preprocessing,
residual signal artefacts might however remain. In addition, natural and
unintended experimental variations might also exist among all trials, and the
weighting scheme aims to account for these.

METHOD

Trial-based weighted least squares

The new WLS solution consists of computing first-level general linear model
(GLM) beta estimates using weights from the PCP algorithm (4). As such, the
estimation procedure follows the usual steps of weighting schemes, like a
standard iterative reweighted least squares (IRLS) solution:
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The new WLS solution consists of computing first-level general linear model
(GLM) beta estimates using weights from the PCP algorithm (4). As such, the
estimation procedure follows the usual steps of weighting schemes, like a
standard iterative reweighted least squares (IRLS) solution:

�. After the OLS solution is computed, an adjustment is performed on residuals by
multiplying them by 
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where h is a vector of leverage points (i.e. the diagonal of the hat matrix H = X(X,

X)−1 X where X is the design matrix reflecting experimental conditions). This
adjustment is necessary because leverage points are the most influential on the
regression space, i.e. they tend to have low residual values (5).

�. Residuals are then standardized using a robust estimator of dispersion, the
median absolute deviation (MAD) to the median, and re-adjusted by the tuning
function. Here, we used the bisquare function. A series of weights is next
obtained either based on distances (PCP method) or minimizing the error term
(IRLS) with, in both cases, high weights for data points having high residuals
(with a correction for leverage).

�. The solution is then computed following equation 3.

Unlike IRLS, WLS weights are not derived for each time frames independently
but by looking at the multivariate distances in the principal component space
(step 2 above) and thus deriving a unique weight for all time frames. An
illustration of the method is shown in figure 1. Trial weights are computed as a
distance among trials projected onto the main (≥99%) principal components
space. Here, the principal components computed over the f time frames are
those directions that maximize the variance across trials for uncorrelated
(orthogonal) time periods (figure 1B). Outlier trials are points in the f-
dimensional space that are far away from the bulk. By virtue of the principal
component analysis (PCA), these outlier trials become more visible along the
principal component axes than in the original data space. Weights (figure 1E) for
each trial are obtained using both the Euclidean norm (figure 1C, distance
location) and the kurtosis weighted Euclidean norm (figure 1D, distance scatter)
in this reduced PCA space (see Ref. (4) for details). Weights are then applied to
each trial (at each data points) on the original data (i.e. there is no data
reduction). We exploit this simple technique because it is computationally fast
given the rich dimensional space of EEG data and because it does not assume
the data to originate from a particular distribution. The PCP algorithm is
implemented in the limo_pcout.m function and the WLS solution in
the limo_WLS.m function, both distributed with the LIMO MEEG toolbox
(https://limo-eeg-toolbox.github.io/limo_meeg/).

Simulation-based analyses
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A. Outlier detection and effectiveness of the weighting scheme

Simulated event-related potentials (ERPs) were generated to evaluate the
classification accuracy of the PCP method and to estimate the robustness-to-
outliers and signal-to-noise ratio (SNR) of the WLS solution in comparison to an
OLS solution and a standard IRLS solution, which minimizes residuals at each
time frame separately (implemented in limo_IRLS.m). To do so, we manipulated
the following: (1) the percentage of outliers, using 10%, 20%, 30%, 40% or 50% of
outliers; (2) the SNR (defined relative to the mean over time of the background
activity); and (3) the type of outliers. The first set of outliers were defined based
on the added noise: white noise, pink noise, alpha oscillations and gamma
oscillations following (6). In these cases, the noise started with a P1 component
and lasted ~200 ms (see below). The second set of outliers were defined based
on their amplitude or outlier-to-signal ratio (0.5, 0.8, 1.2 and 1.5 times the true N1
amplitude).

F I G U R E  5

Synthetic data were generated for one channel, using the model developed by
Yeung et al. (2018 — (7)). The simulated signal corresponded to an event-related
potential with P1 and N1 components (100 ms long) added to background activity
with the same power spectrum as human EEG, generating 200 trials of 500 ms
duration with a 250-Hz sampling rate. Examples for each type of simulation are
shown in figure 2 and results are based, for each case, on a thousand random

Fig. 1. Illustration of the PCP weighting scheme using trials for ‘famous faces’ of
the OpenNeuro.org publicly available ds002718 dataset. Data are from subject 3, channel 34 (see
section on empirical data analysis). Panel A shows the single-trial responses to all stimuli. The
principal component analysis is computed over time, keeping the components explaining the
most variance and summing to at least 99% of explained variance (giving here 69 eigenvectors,
i.e. independent time components from the initial 176 time points). The data are then projected
onto those axes (panel B). From the data projected onto the components, Euclidean distances for
location and scatter are computed (panels C and D – showing smooth histograms of weights)
and combined to obtain a distance for each trial. That distance is either used as weights in a
linear model or used to determine outliers (panel E, with outliers identified for weights below
~0.27, shown in dark grey). At the bottom right, the mean ERP for trials classified as good (red)
vs. outliers (black) and the weighted mean (green) are shown (panels F and G). Shaded areas
indicate the 95% highest-density percentile bootstrap intervals.
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repetitions. Performance of the PCP algorithm at detecting outlying synthetic
EEG trials was investigated by computing the confusion matrix and mapping the
true- and false-positive rates in the receiver operating space, and by computing
the Matthew correlation coefficients (MCCs – equation 4). The robustness, or
effectiveness of the weighting scheme, was examined by computing the Pearson
correlations and the Kolmogorov–Smirnov (KS) distances between the ground
truth mean and the OLS, WLS and IRLS means. Pearson values allowed to
estimate the linear relationships between estimated means and the truth while
KS distances provide a fuller picture of the overall differences in distributions.

The code used to generate the ERP and the results are available
at https://github.com/LIMO-EEG-
Toolbox/limo_test_stats/tree/master/PCP_simulations/.

F I G U R E  6

with TP the true positives, TN the true negatives, FP the false positives and FN
the false negatives.

B. Statistical inference

Accurate estimation of model parameters (i.e. beta estimates in the GLM –
 equation 3) is particularly important because it impacts group-level results.
Inference at the single-subject level may, however, also be performed and
accurate p-values need to be derived. Here, error degrees of freedom are
obtained using the Satterthwaite approximation ((8) equation 5).

F I G U R E  7

with dfe, the degrees of freedom of the error, the identity matrix, and the hat
matrix.

F I G U R E  8
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To validate p-values, simulations under the null were performed. Two types of
data were generated: Gaussian data of size 120 trials × 100 time frames and EEG
data of size 120 trials × 100 time frames with a P1 and N1 component as above,
added to coloured background activity with the same power spectrum as human
EEG. In each case, a regression (1 Gaussian random variable), an ANOVA (3
conditions of 40 trials — dummy coding) and an ANCOVA (3 conditions of 40
trials and 1 Gaussian random covariate) model were fitted to the data using the
OLS, WLS and IRLS methods. The procedure was performed 10,000 times, leading
to 1 million p-values per data/model/method combination and Type 1 errors with
binomial confidence intervals were computed.

Empirical data analysis

A second set of analyses used the publicly available multimodal face dataset (9)
to (1) investigate the PCP classification; (2) validate the GLM implementation for
type 1 error family-wise control at the subject level; (3) evaluate group results,
contrasting WLS against the OLS and IRLS methods. This analysis can be
reproduced using the script available at https://github.com/LIMO-EEG-
Toolbox/limo_meeg/blob/master/resources/code/Method_validation.m.

A. EEG data and preprocessing

Fig. 2. Illustration of simulated ERP ground truth with the different types of outlier trials. At the
top is shown the mean background, mean signal and resulting generated ERP with its 95%
confidence intervals. In each subsequent subplot is shown the mean ERP ground truth from 160
trials with their 95% confidence intervals (blue) with an SNR of 1. The first row shows in red the
mean ERP from outlier trials generated by adding white noise, pink noise, alpha or gamma
oscillations; the second row shows the mean ERP from outlier trials generated with variable
outlier-to-signal ratio (OSR) on the N1 component.
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The experiment consisted in the presentation of familiar, unfamiliar and
scrambled faces, repeated twice at various intervals, leading to a factorial 3
(type of faces) by 3 (repetition) design. The preprocessing reused the pipeline
described in Pernet et al. (2021) (10). EEG data were extracted from the MEG fif
files, time corrected and electrode position re-oriented and saved according to
EEG-BIDS (11) (available at OpenNeuro 10.18112/openneuro.ds002718.v1.0.2.). Data
were imported into EEGLAB (12) using the bids-matlab-tools v5.2 plug-in, and
non-EEG channel types were removed. Bad channels were next automatically
removed and data filtered at 0.5 Hz using pop_clean_rawdata.m of
the clean_radata plugin v2.2 (transition band [0.25 0.75], bad channel defined as
a flat line of at least 5 sec and with a correlation to their robust estimate based
on other channels below 0.8). Data were then re-referenced to the average
(pop_reref.m) and submitted to an independent component analysis (13)
(pop_runica.m using the runnica algorithm sphering data by the number of
channels -1). Each component was automatically labelled using the ICLabel v1.2.6
plug-in (14), rejecting components labelled as eye movements and muscle
activity above 80% probability. Epochs were further cleaned if their power
deviated too much from the rest of the data using the Artifact Subspace
Reconstruction algorithm (15) (pop_clean_rawdata.m, burst criterion set to 20).

B. High vs. low weight trials and parameters estimation

At the subject level (first level), ERPs were modelled at each channel and time
frame with the nine conditions (type of faces × repetition) and beta parameter
estimates obtained using OLS, WLS and IRLS. For each subject, high vs. low
weight trials were compared with each other at the channel showing the highest
between trials variance to investigate what ERP features drove the weighting
schemes. High and low trials were defined a priori as trials with weights (or
mean weights for IRLS) below the first decile or above the ninth decile. We used a
two-sample bootstrap-t method to compare the 20% trimmed means of high
and low trials in every participant, for each of these three quantities: temporal
SNR (the standard deviation over time); global power (mean of squared absolute
values, Parseval’s theorem); autocorrelation (distance between the two first
peaks of the power spectrum density, Wiener–Khinchin theorem). A similar
analysis was conducted at the group level averaging the metrics across trials.
Computations of the three quantities have been automatized for LIMO MEEG v3.0
in the limo_trialmetric.m function.

C. Statistical inference

In mass-univariate analyses, once p-values are obtained, the family-wise type 1
error rate can be controlled using the distribution of maxima statistics from
data generated under the null hypothesis (16). Here, null distributions were
obtained by first centring data per conditions, i.e. the mean is subtracted from
the trials in each condition, such that these distributions had a mean of zero,
but the shape of the distributions is unaffected. We then bootstrap these
centred distributions (by sampling with the replacement), keeping constant the
weights (since they are variance stabilizers) and the design. We computed 2,500
bootstrap estimates per subject. A thousand of these bootstrap estimates were
used to compute the family-wise type 1 error rate (FWER), while maxima and
cluster maxima distributions were estimated using 300 to 1,500 bootstraps
estimates in steps of 300, to determine the convergence rate, i.e. the number of
resamples needed to control the FWER. Since OLS was already validated in
Pernet et al. (2015), here we only present WLS results. Statistical validations
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presented here and other statistical tests implemented in the LIMO MEG toolbox
v3.0 (GLM validation, robust tests, etc.) are all available
at https://github.com/LIMO-EEG-Toolbox/limo_test_stats/wiki .

D. Performance evaluation at the group level

At the group level (second level), we computed 3 × 3 repeated measures ANOVAs
(Hotelling’s T^2 tests) separately on OLS, WLS and IRLS estimates, with the type
of faces and repetition as factors. Results are reported using both a correction
for multiple comparisons with cluster-mass and with threshold-free cluster
enhancement (TFCE) at p < .05 (16,17).

In addition to these thresholded maps, distributions were compared to further
understand where differences originated from. First, we compared raw effect
sizes (Hotelling’s T^2) median differences between WLS vs. OLS and WLS vs. IRLS
for each effect (face, repetition and interaction), using a percentile t-test with
alpha adjusted across all six tests using Hochberg’s step-up procedure (18). This
allowed checking if differences in results were due to effect size differences.
Then, since multiple comparison correction methods are driven by the data
structure, we compared the shapes of the F-value and of the TFCE-value
distributions (TFCE reflecting clustering). Each distribution was standardized
(equation 6), and WLS vs. OLS and WLS vs. IRLS distributions were compared at
multiple quantiles (19).

F I G U R E  9

with yzi the standardized data, y the data, y˜ the median and MAD the median

absolute deviation.

RESULTS

Outlier detection

The PCP method is used in the GLM to obtain weights and not to remove outliers
directly. Investigating outlier detection performance allowed however to
examine what kind of trials are weighted down and how good the method is at
detecting such trials. Figure 3 shows all the results for ERP simulated with an
SNR of 1. Similar results were observed when using an SNR of 2 (supplementary
figure 1). First and foremost, in all cases and for up to 40% of outlying trials,
classified trials are located in the upper left corner of the receiver-operating
characteristic (ROC) space, indicating good performances. When reaching 50% of
outliers, the true-positive rate falls down to ~40% and the false-positive rate
remains below 40%. This is best appreciated by looking at the plots showing
perfect control over false positives when data are contaminated with up to 40%
of white, alpha, and gamma outliers. In those cases, the MCCs also remain high
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(>0.6) although not perfect (not =1), indicating some false negatives. Compared
with other types of noise, pink noise elicited very different results, with MCCs
around 0 indicating chance classification level. Results from amplitude outliers
also show MCCs close to 0 with a linear decrease in true positives and a linear
increase in false positives as the percentage of outliers increases. This implies
that the PCP method did not detect amplitude changes around peaks. These
results are simply explained by the principal components being computed over
time frames, and outliers with pink noise and weaker or stronger N1 do not
affect the temporal profile of the ground truth sufficiently to lead to different
eigenvectors (‘directions’) in this dimension when decomposing the covariance
matrix, i.e. their temporal profiles do not differ from the ground truth.

F I G U R E  1 0

High vs. low trial weights

The classification for real ERP data confirmed the simulation results: the PCP
algorithm weighted down trials with dynamics different from the bulk. Single-
subject analyses (supplementary table 1) and group analyses (figure 4) for WLS
showed that trials with a low weight are less smooth than trials with a high

Fig 3. PCP performance at detecting outlying trials with an SNR of 1. (A) Results for outliers
affected by white noise, pink noise, alpha and gamma oscillations. (B) Results for trials affected
by amplitude changes over the N1 component (0.5, 0.8, 1.2, 1.5 times the N1). The scatter plots map
the receiver operating characteristic space (false-positive rate vs. true-positive rate); the curves
display, from left to right, the median true-positive rate, false-positive rate and Matthew
correlation coefficients.
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weight (higher temporal variance ~10 vs. 7.26 μV and power ~131 vs. 69 dB, lower
autocorrelation 11 vs. 12.25 ms), despite having similar spectra (as expected from
data filtering and artefact reduction). This is an important result because
weights are determined from the multivariate Euclidian distance and skewness
of OLS residuals in the principal component space, which are independent of
those metrics but nevertheless capture those temporal variations.

By comparison, trials with low and high mean weights based on IRLS, did not
differ on those metrics (temporal variance ~9 vs. 7 μV, and power ~126 vs. 65 dB,
autocorrelation 12.25 vs. 12 ms), which is expected since IRLS weights are
computed independently at each time frames. While 11 out of 18 subjects show
maximum between-trial variance on the same channels for WLS and IRLS, only
28% of low weight trials were the same between the two methods, and 56% of
high weight trials. Since different trials have low or even high weights between
methods, this further indicates that the weighting scheme from WLS captures
well trial dynamics, differing from IRLS that relies on amplitude variations only.

F I G U R E  1 1

Fig. 4. Face ERPs computed for low- and high-weight trials derived from the weighted least
squares (WLS) and iterative reweighted least squares (IRLS) approaches. The top of the figure
displays the mean of low-weight (red) and high-weight (black) trials over right posterior
temporal (subject 2, channel 50), left frontal (subject 14, channel 4), and left posterior central
(subject 19, channel 66) areas showing that in both cases, low and high trials have different
dynamics, but also that WLS and IRLS have different weighting resulting in different low and
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Effectiveness of the weighting scheme
The effect of adding outliers on the mean can be seen in figure
5 and supplementary figure 2 in which contaminated data are compared to the
ground truth. The standard mean, i.e. the ordinary least squares ERPs, shows an
almost linear decrease in Pearson correlations and linear increase in KS
distances to the ground truth as the percentage of outlier increases, an expected
behaviour since OLS are not robust. Our reference robust approach, IRLS, shows
robustness to white noise, alpha and gamma oscillations with higher Pearson
correlations than the OLS. Yet it performed worse than the OLS with pink noise
and amplitude outliers, showing lower correlations with the ground truth,
despite having similar KS distances in all cases. As the IRLS solution weights
data to minimize residuals at each time point separately, these are also expected
results, giving an average distance (over time) larger than OLS.

F I G U R E  1 2

high weight ERPs. The lower part of the figure displays single-subject mean tSNR, power and
autocorrelation (scatter plots) along with the percentile bootstrap difference between low- and
high-weight trials (black circles are the bootstrap 20% trimmed mean differences and the pink
rectangles show the 20% trimmed mean and 95% confidence intervals) revealing that statistical
outliers identified by the PCP algorithm (i.e. OLS residual trials with a large distance in the
multivariate space) differ in their tSNR, power and autocorrelation, while this is not the case of
IRSL outliers.

Fig. 5. Robustness of the PCP method to outlying trials with an SNR of 1. The upper part of the
figure shows median and 95% CI results for outliers affected by white noise, pink noise, alpha
and gamma oscillations. The lower part of the figure shows results for trials affected by
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The new WLS approach showed stronger resistance to outliers than OLS and IRLS
for white noise, alpha and gamma oscillations, with higher Pearson correlations.
For pink noise and N1 amplitude outliers, it performs as well as the IRLS, despite
different KS distances (slightly lower correlations with the ground truth for SNR
of 1 and slightly higher correlation for SNR of 2). The IRLS algorithm attenuates
the influence of those data points that differ from the ground truth, but this
may be from different trials at different time points. By doing so, KS distances to
the ground truth were similar or lower (for alpha and gamma oscillations) than
the OLS. The WLS approach attenuates the influence of trials with different time
courses and thus, the WLS ERP mean is affected at every time point, even if the
detection concerns a small part of the time course, leading to higher KS
distances even with a small number of outliers.

To summarize, simulations showed that the PCP algorithm detects well trials
with different dynamics from the bulk leading to WLS-ERP that are, in general,
more similar to the ground truth than ERP derived from OLS or IRLS (higher
Pearson correlations). Additional results from real-world data indicate that trials
with low PCP-WLS weights are trials with different temporal profiles, concurring
with the higher Kolmogorov–Smirnov distances observed in the simulation.

Statistical inference for single subjects

The average type 1 error rate for every channel and time frame tested with
simulated data is at the nominal level (5%) for OLS. Results also show that IRLS
approaches are a little lenient, with small but significantly smaller p-values
than expected, leading to an error rate of ~0.055. Conversely, WLS approaches
are conservative for simulated ERP, with p-values slightly too high, giving a type
1 error rate of ~0.04) and lenient with purely Gaussian data (type 1 error ~0.065 –
 table 1). This behaviour of WLS is caused by the PCP method that optimizes
weights based on distances across time, except that with simulated Gaussian
data there is no autocorrelation and the PCA returns a much higher number of
dimensions, leading to a meaningless feature reduction and thus meaningless
trial distances and weights.

The WLS family-wise type 1 error rate (i.e. controlling the error for statistical
testing across the whole data space) examined using nullified ERP data from
Wakeman and Henson (2015) shows a good probability coverage for both
maximum and cluster statistics with 95% confidence intervals overlapping with
the expected nominal value (figure 6). Individual mean values ranged from 0.039
to 0.070 for maximum statistics (across subject average 0.052) and 0.044 to 0.07
for spatial-temporal clustering (across subject average 0.051). Those results do
not differ significantly from OLS results (paired bootstrap t-test). Additional
analyses based on the number of bootstraps used to build the null distribution
indicate that 800 to 1,000 bootstrap samples are enough to obtain stable results
and that the errors are relatively well distributed in space and time even if some
channels tend to be more affected than others, i.e. there is no strong sampling

amplitude changes over the N1 component (0.5, 0.8, 1.2, 1.5 times the N1). Mean Pearson
correlations indicate how similar the reconstructed means are to the ground truth (averaged
over time), with WLS (in red) largely outperforming OLS (in blue) and IRLS (in green) for white,
alpha and gamma noise and higher level of outlying trials, while being less performant for pink
noise and N1 amplitude outliers. The mean Kolmogorov–Smirnov distances indicate how much
the overall distribution of values differs from the ground truth, showing that WLS ERPs are
overall more distant to the (outlier biased) OLS while IRLS still follows the OLS closely.
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bias: maximum number of errors occurring at the same location was 0.05%
using maximum statistics and 0.9% using spatial-temporal clustering, see figure
6, error density maps.

To summarize, simulations with synthetic data and nullified real-world ERP
show that using a Satterthwaite approximation of the degrees of freedom of the
error in the context of a WLS solution to the GLM with a single weight per trial
controls well the type 1 error rate.

Performance evaluation at the group level

Repeated measures ANOVAs using parameter estimates from each method
revealed two spatial-temporal clusters for the face effect for both WLS and IRLS,
but only the first cluster was declared statistically significant using OLS (table
2). The expected results (9) with full faces having stronger N170 responses than
scrambled faces are replicated for all approaches (start of cluster 1). Maximum
differences were observed over the N170 only when using OLS parameters. Using
WLS and IRLS gave maxima much later (P280), a result also observed when using
TFCE rather than spatial-temporal clustering. In each case, a repetition effect
was also observed in a much more consistent way among methods with the
second presentation of stimuli differing from the first and third presentations
(figure 7).

The statistical maps show that group results based on WLS parameter estimates
lead to smaller F-values than those obtained from OLS or IRLS estimates (note
the difference in maxima table 1 and scale in figure 7), which is confirmed by the
median differences in Hotelling’s T^2 values (table 3). As expected from a
statistical method, the overall shape of ERPs and topographies are unchanged –
only effect sizes and significance are affected (supplementary tables 2 and 3).

Considering uncorrected p-values, this shift in F-values translates into weaker
statistical power for WLS: face effect – OLS = 34% of significant data frames, WLS
= 31% and IRLS = 34%; repetition effect – OLS = 39%, WLS = 35% and IRLS = 39%. By
contrast, results based on cluster-corrected p-values showed however more
statistical power for WLS relative to OLS for the face effect (OLS 20%, WLS 22%
and IRLS 25% of significant data frames with cluster mass and 3%, 5% and 3% of
significant data frames with TFCE), and mixed results for the repetition effect
(OLS 31%, WLS 28% and IRLS 31% of significant data frames with cluster mass and
7%, 8% and 7% of significant data frames with TFCE). The comparison of
distributions’ shapes by deciles (figure 8) provides some understanding of this
phenomenon. For the face effect, WLS normalized F-values tended to be higher
but did not differ significantly from OLS or from IRLS, while TFCE-values were
significantly larger, from the second decile onward when compared to OLS, and
for deciles 2, 3, 4, 7, 8 and 9 compared to IRLS. For the repetition effect, WLS
normalized F-values were also higher and differed from OLS on deciles 2, 7, 8 and
9 for both F-values and TFCE-values while it differed from IRLS on decile 9 only
when looking at F-values, and deciles 2, 5, 8 and 9 when looking at TFCE-values.
Finally, for the interaction effect, WLS did not differ from OLS or IRLS in terms
of F-values but had significantly weaker TFCE-values than OLS (deciles 1, 3, 6, 7, 8
and 9) and IRLS (all deciles but the fourth).

Table 1. Type I error rate binomial 95% confidence intervals at every time frames
and channels for simulated data under the null hypothesis.
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Null Gaussian Null ERP

Regression OLS [0.0495 0.0503] [0.0498 0.0507]

WLS [0.0636 0.0645] [0.0400 0.0408]

IRLS [0.0555 0.0564] [0.0527 0.0536]

ANOVA OLS [0.0493 0.0502] [0.0493 0.0501]

WLS [0.0695 0.0706] [0.0374 0.0382]

IRLS [0.0575 0.0584] [0.0540 0.0549]

ANCOVA condition OLS [0.0494 0.0502] [0.0493 0.0502]

WLS [0.0699 0.0709] [0.0379 0.0386]

IRLS [0.0578 0.0587] [0.0546 0.0555]

ANCOVA covariate OLS [0.0496 0.0505] [0.0496 0.0504]

WLS [0.0638 0.0648] [0.0410 0.0418]

IRLS [0.0563 0.0572] [0.0538 0.0547]

F I G U R E  1 3

F I G U R E  1 4

Fig. 6. Type 1 error rates under the null using the PCP-WLS method. The top row shows the
subjects’ error rates: cell-wise, i.e. averaged across all time frames and channels, and corrected
for the whole data space, i.e. type 1 family-wise error rate using either the distribution of
maxima or the distribution of the biggest cluster masses. Results are within the expected range
(marked by dotted black lines) with overlapping 95% confidence intervals for maximum
statistics and spatial-temporal clustering. The middle row shows the effect of the number of
resamples, with the dashed lines representing the boundaries of the individual 95% average
confidence intervals, and the black lines the average. The cell-wise error is not affected by the
number of bootstrap samples since it does not depend directly on this parameter to estimate the
null (left). Using maximum statistics and cluster-mass distribution estimates shows a stronger
dependency on the number of bootstrap estimates, with results stable after 800 to 1,000
bootstraps. The bottom row shows error density maps (sum of errors out of 27,000 null maps).
The cell-wise error (i.e. no correction for multiple comparisons) shows that errors accumulate,
with some channels showing many consecutive time frames with 5% error. By contrast,
maximum statistics (middle) and the maximum cluster-masses (right) do not show this effect
(maxima at 0.05% and 0.9%), suggesting little to no spatial bias in sampling (note the very
different density scales for the three measures).
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Table 2. Face and repetition effects results using cluster-mass correction and
TFCE for each of the three methods.

OLS WLS IRLS

Face Effect

Cluster
1

140 ms to 504 ms, max = 74, p = 0.002 at
184 ms channel EEG049

140 ms to 424 ms, max = 64, p = 0.002 at
280 ms channel EEG017

136 ms to 432 ms, max = 74, p = 0.002 at
292 ms channel EEG006

Cluster
2

440 ms to 648 ms, max = 17.6, p = 0.032 at
616 ms channel EEG057

520 ms to 648 ms, max = 22, p = 0.032 at
636 ms channel EEG055

TFCE
max = 74, p = 0.026 at 184 ms channel
EEG049

max = 64, p = 0.012 at 280 ms channel
EEG017

max = 74, p = 0.012 at 292 ms channel
EEG006

Repetition Effect

Cluster
1

232 ms to 648 ms, max = 50, p = 0.001 at
588 ms channel EEG057

232 ms to 648 ms, max = 51, p = 0.001 at
612 ms channel EEG045

236 ms to 648 ms, max = 52, p = 0.001 at
588 ms channel EEG057

TFCE
max = 50, p = 0.002 at 588 ms channel
EEG057

max = 51, p = 0.001 at 612 ms channel
EEG045

max = 52, p = 0.001 at 588 ms channel
EEG057

Fig 7. Main face effects observed using OLS, WLS or IRLS first-level derived parameters. The left
column shows the full channels × times thresholded maps using cluster-mass correction for
multiple comparisons (p < .05). Topographies are plotted at three local maxima. WLS and IRLS
maps show late effects absent with the OLS solution. The middle and right columns show time
courses of the mean parameter estimates per condition (blue, red and orange) and condition
differences (green, purple and black) over channel 50 (right inferior-temporal) and channel 6
(middle anterior frontal).
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Table 3. Median differences in Hotelling’s T^2 values for each effect tested with
percentile bootstrap 95% confidence intervals (p = 0.001).

Face Effect Repetition Effect Interaction Effect

WLS vs. OLS −0.32 [−0.36 −0.28] −0.54 [−0.59 −0.48] −0.21 [−0.29 −0.13]

WLS vs. IRLS −0.34 [−0.39 −0.30] −0.53 [−0.58 −0.48] −0.14 [−0.21 −0.08]

F I G U R E  1 5

F I G U R E  1 6

To summarize, for the significant main face effect and main repetition effect, a
general pattern of more right-skewed distributions of F-values and TFCE-values
for WLS than for OLS was observed leading to an increase of statistical power
(significance) for cluster corrected analyses, while preserving the topographies
(figure 7) and overall ERP shapes (overlap of point estimates with 95% CI of the
different methods – supplementary table 2).

DISCUSSION
Simulation and data-driven results indicate that the proposed WLS-PCP method
is efficient at down weighting trials with dynamics differing from the bulk,
leading to more accurate estimates. Results show that, for ERP, deriving weights
based on the temporal profile provides a robust solution against white noise or
uncontrolled oscillations. For biological (pink) noise and amplitude variations
that do not alter the temporal profile, the PCP algorithm does not classify well
outlier trials, leading to a decrease in detection performance compared with

Fig. 8. Comparisons of the deciles of standardized F-value (first and second columns) and TFCE-
value (third and fourth columns) distributions. Comparisons were done independently for the
face effect, the repetition effect and their interaction.
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white, alpha or gamma noise. Rather than a defect, we see this as biologically
relevant (see below). Importantly, even in those cases of failed detection, the
overall correlations with the ground truth remained high (≥0.99). When
analysing real data, differences in amplitude variations were also captured by
the PCP/WLS approach, with amplitude variations related to trials that were out
of phase with the bulk of the data.

Group-level analyses of the face dataset replicated the main effect of face type
(faces > scrambled) in a cluster from ~150 ms to ~350 ms but also revealed a late
effect (>500 ms), observed when using WLS and IRLS parameter estimates but
absent when using OLS parameter estimates. Despite more data frames declared
significant with WLS than OLS, effects sizes were smaller for WLS than for OLS
and IRLS. The shape of the F distributions when using WLS parameter estimates
were however more right skewed than when using OLS or IRLS, leading cluster
corrections to declare more data points as significant. Indeed, under the null,
very similar distributions of maxima are observed for the three methods leading
to more power for the more skewed observed distributions. The interplay
between first-level regularization, second-level effect size, and multiple
comparison procedures depends on many parameters, and it is not entirely
clear how statistical power is affected by their combination and requires deeper
investigation via simulations. Empirically, we can nevertheless conclude that
group results were statistically more powerful using robust approaches at the
subject level than when using OLS.

Because the proposed weighing technique relies on a PCA, it is typically
requested to have more trials (observations) than data points (time, frequency,
or time per frequency), ensuring a full rank covariance matrix. From a design
perspective, this is a desirable feature. For a ‘standard’ ERP up to 1-s long, down
sampled at 250 Hz, that means 251 trials in total after artefact rejection (about
70 trials per condition for 2 × 2 factorial design). One might argue that it is more
than usually used, but there is evidence that many more trials than usual are
needed for properly powered studies (see (1) for a discussion and references
therein). For power analyses, looking at high-frequency modulation and thus
typically analysing at 500 Hz, this means again 250 data points and thus at least
251 trials, which is more problematic. One can turn to the algorithm to
compensate for the lack of trials. One solution may be to use a decomposition
for rank reduced data while another may be to down sample the data. Additional
simulations varying the number of trials (1,500 to 126) and sampling rate (1,000
Hz, 500 Hz and 250 Hz) and using white noise outliers indicate that having more
trials than time frames always gives better classification results (as expected)
but also that down sampling gives better results than using ill-conditioned data
(supplementary table 4). Down sampling, however, interacts with the number of
outliers (a priori unknown with real data) such as low sampling rate and high
outlier number (>40%) cases that have poor performances. In such conditions,
computing the data decomposition with ill-conditioned data provides better
results. As a practical solution, the default usage of the limo_pcout.m function is
thus to down sample the data by 2 if there are not enough trials. If this still
results in rank deficient data, the PCP algorithm computes weights on the
original ill-conditioned data. For spectral analysis in the high-frequency domain
that will likely suffer from such data conditioning, this still provides a good
(automated) solution. It might also be possible to derive better weights (and thus
more robust results) by maximizing the multivariate spread of the data in
removing more components (i.e. retaining less than 99% of the variance) using
e.g. a data-driven criteria and/or using a more robust decomposition. This would
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however require extensive simulations beyond the scope of this paper that
applied the PCP method (4) to create a new WLS scheme.

Using the trial dynamics (temporal or spectral profile) to derive a single weight
per trial makes sense, not just because the observed signal is autocorrelated,
but also because it is biologically relevant. Let us consider first the signal plus
noise model of ERP generation (20–22). In this conceptualization, ERPs are time-
locked additive events running on top of background activity. An outlier time
frame for a given trial may occur if (1) the evoked amplitude deviates from the
bulk of evoked trials or (2) the background activity deviates from the rest of the
background activity. In the former case, the additional signal may be conceived
either as a single process (a chain of neural events at a particular location) or a
mixture of processes (multiple, coordinated neural events). In both cases, the
data generating process is thought to be evolving over time (auto-regressive)
which speaks against flagging or weighting a strong deviation at a particular
time frame only. It is likely that several consecutive time frames deviate from
most other trials, even though only one time frame is deemed an outlier. In the
case of a deviation in background activity, it would mean that for an extremely
brief period, a large number of neurons synchronized for non-experimentally
related reasons and for this trial only. Although we do not contend that such
events cannot happen in general, this would mean that, in the context of ERP
outlier detection, the background activity varies by an amount several folds
bigger than the signal, which goes against theory and observations. Let us now
consider the phase resetting model (23,24). In this model, ERPs are emerging
from phase synchronization among trials, due to stimulus-induced phase-
resetting of background activity. If a trial deviates from the rest of the trials, this
implies that it is out of phase. In this scenario, deriving different weights for
different time frames (i.e. IRLS solution) means that the time course is seen as
an alternation of normal and outlying time frames, which has no meaningful
physiological interpretation. Thus, irrespective of the data generating model,
the WLS approach seems biologically more appropriate than the IRLS method.

In conclusion, we propose a fast and straightforward weighting scheme of single
trials for statistical analyses. Results indicate that it captures and attenuates
well ERP noise, leading to increased estimation precision and possibly increased
statistical power at the group level.
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Supplementary Table 1. Subjects 95% percentile bootstrap confidence intervals
of 20% trimmed mean differences between high and low trials obtained using
PCP-WLS or IRLS at channels with the highest between-trial variance. Intervals
that do not include 0 (i.e. the difference between high vs. low trials is
statistically significant) are shown on a grey background.

tSNR Difference (µV) Power Difference (dB) Autocorrelation Difference (ms)

WLS IRLS WLS IRLS WLS IRLS

s2 [−0.03 0.54] [0.26 1.14] [−2 6] [3 18] [−8.5 1.8] [5.09 16.4]

s3 [2.35 2.92] [−4.48 −2.34] [35 50] [−55 −22] [−3.9 3.5] [16.6 45.9]

s4 [0.14 069] [1.9 3.43] [1 13] [39 64] [−13 −6.7] [−12.8 3.2]

s5 [4.03 8.25] [10.7 13.57] [77 200] [297 382] [−13 −4.7] [−14.6 −4.9]

s6 [1.51 2.87] [−0.74 1.98] [24 48] [−6 33] [−4.8 −0.39] [−0.6 17.8]

s7 [1.16 5.1] [2.44 5.26] [38 141] [54 129] [−4 11.1] [−7.3 11.2]

s8 [7.49 8.21] [7.57 8.55] [154 173] [159 183] [−24 −19.8] [−20.2 −14.1]

s9 [2.97 7.96] [−4.55 0.44] [52 169] [−74 28] [−16 −7.1] [−1.5 7.1]

s10 [−0.61 0.9] [−3.47 2.27] [−11 11] [−107 102] [0.9 9.1] [−0.2 1.5]

s11 [−0.73 4.46] [4.57 7.27] [−11 168] [123 200] [−2.9 1.4] [0 7.8]

s12 [6.69 11.17] [−2.06 4.85] [149 250] [−98 93] [−31 −22] [−13.1 −2.7]

s13 [−5.06 0.1] [−6.8 2.91] [−222 2] [−285 142] [4.4 12] [−6.2 0.19]

Supplementary Figure 1. PCP performance at detecting outlying trials with an SNR of 2. (A)
Results for outliers affected by white noise, pink noise, alpha and gamma oscillations. (B) Results
for trials affected by amplitude changes over the N1 component (0.5, 0.8, 1.2, 1.5 times the N1). The
scatter plots map the receiver operating characteristic space (false-positive rate vs. true-
positive rate); the curves display, from left to right, the median true-positive rate, false-positive
rate and Matthew correlation coefficients.
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s14 [4.81 7.63] [3.54 7.77] [174 270] [123 270] [−0.4 24] [−6.9 13.3]

s15 [1.69 3.91] [−0.97 2.06] [36 93] [−20 51] [−6.5 1.1] [1.8 10.5]

s16 [−6.85 8.4] [−2.13 13.82] [−164 300] [−65 444] [−8.3 8.7] [−16 14.1]

s17 [2.34 3.72] [2.31 4.09] [34 68] [45 83] [−29.4 −15.9] [−13.8 2.4]

s18 [0.54 1.28] [−0.64 1.86] [6 20] [−3 27] [−15.7 −2.43] [−28.8 11.4]

s19 [−0.39 0.71] [−0.40 0.57] [−8 16] [−9 17] [−6.9 −1.3] [−7.1 −1.5]

F I G U R E  1 8

Supplementary Table 2. Pairwise differences in mean parameter estimates
(arbitrary unit) measured at channel 50 and 6 at the maximum of the famous
faces responses.

OLS WLS IRLS

Famous faces vs. scrambled
−4.93 
[−12.2 2.32]

−4.52 
[−11.39 2.34]

−5.82 
[−12.76 1.11]

Cluster 1 
Channel 50

Unfamiliar faces vs. scrambled
−4.77 
[−12.42 2.86]

−4.64 
[−13.02 3.72]

−5.19 
[−11.93 1.54]

Supplementary Figure 2. Robustness of the PCP method to outlying trials with an SNR of 2. The
upper part of the figure shows the median and 95% CI results for outliers affected by white noise,
pink noise, alpha and gamma oscillations. The lower part of the figure shows results for trials
affected by amplitude changes over the N1 component (0.5, 0.8, 1.2, 1.5 times the N1). Mean
Pearson correlations indicate how similar the reconstructed means are to the ground truth
(averaged over time), with WLS (in red) largely outperforming OLS (in blue) and IRLS (in green)
for white, alpha and gamma noise and a higher level of outlying trials while being less
performant for pink noise and N1 amplitude outliers than OLS only. The mean Kolmogorov–
Smirnov distances indicate how much the overall distribution of values differs from the ground
truth, showing that WLS ERPs are overall more distant to the (outlier biased) OLS while IRLS still
follows the OLS closely.
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Famous vs. unfamiliar faces −0.15 
[−3.13 2.81]

0.12 
[−3.28 3.53]

−0.62 
[−4.86 3.60]

Famous faces vs. scrambled
2 
[−5.25 9.25]

1.71 
[−5.16 8.59]

1.68 
[−6.05 9.41]

Cluster 1 
Channel 6

Unfamiliar famous faces vs. scrambled
3.21 
[−5.80 12.22]

2.20 
[−5.97 10.38]

2.95 
[−6.08 11.99]

Famous vs. unfamiliar faces
−1.20 
[−5.72 3.30]

−0.49 
[−5.03 4.04]

−1.27 
[−5.47 2.93]

Famous faces vs. scrambled
−4 
[−13.82 5.82]

−4.11 
[−15.62 7.40]

−4.04 
[−13.31 5.23]

Cluster 2 
Channel 50

Unfamiliar faces vs. scrambled
−2.16 
[−9.20 4.87]

−2.17 
[−9.83 5.48]

−2.32 
[−8.96 4.31]

Famous vs. unfamiliar faces
−1.83 
[−6.47 2.81]

−1.93 
[−9.76 5.88]

−1.71 
[−7.47 4.03]

Supplementary Table 3. Medians and maxima of the Hotelling’s T^2, F-values,
cluster-mass and TFCE scores for each effect of the ANOVA and methods used at
the first level.

medianT maxT medianF maxF medianCluster maxCluster medianTFCE maxTFCE

OLS 4.44 157.64 2.09 74.19 72.57 22,591.41 130.41 40,992.1

Face effect WLS 3.98 136.27 1.87 64.13 64.29 19,453.52 85.72 35,828.8

IRLS 4.49 157.77 2.11 74.25 34.41 23,300.19 130.88 54,888.48

OLS 5.38 107.03 2.53 50.37 35.25 39,116.91 244.38 82,143.67

Repetition effect WLS 4.46 109.14 2.1 51.36 33.76 33,979.02 129.89 76,244.1

IRLS 5.32 110.86 2.5 52.17 37.31 39,870.66 212.27 98,429.06

OLS 5.45 126.31 1.12 26.01 23.79 387.94 27.64 483.46

Interaction effect WLS 5.17 78.15 1.06 16.09 21.14 317.38 25.69 470.1

IRLS 5.32 135.67 1.09 27.93 30.57 283.44 22.9 366.41

Supplementary Table 4. Additional simulations with white noise and SNR of 1
tested the PCP performance (here Matthew correlation coefficients) for different
sampling rates and number of trials, in particular having 50% more trials than
time frames (1.5 trial-to-frame ratio (TFR)), just 1 extra (>1 TFR) or just 1 less (<1
TFR) trial or having 50% less trials than time frames (0.5 TFR).

Sampling Frequency % of Outliers 1.5 TFR >1 TFR <1 TFR 0.5 TFR

10% 0.4248 0.4274 0.4259 0.4379

20% 0.5609 0.566 0.5654 0.5815

1,000 Hz 30% 0.6465 0.6511 0.6509 0.6664

40% 0.7032 0.7079 0.7079 0.7172

50% 0.4238 0.3666 0.3664 0.1835

10% 0.4307 0.4379 0.4352 0.4555

20% 0.5706 0.5815 0.5804 0.6152

500 Hz 30% 0.6558 0.6664 0.6659 0.708

40% 0.7118 0.7172 0.7172 0.7374

50% 0.3049 0.1835 0.1832 0.0593

10% 0.4417 0.4555 0.4487 0.478

20% 0.5937 0.6152 0.6135 0.6671

250 Hz 30% 0.6777 0.708 0.7074 0.7806

40% 0.7232 0.7374 0.7375 0.2326

50% 0.0922 0.0593 0.0576 0.0207
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